THE NUMBER OF k-DIGIT FIBONACCI NUMBERS

Jan-Christoph Puchta

Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstr. 1, 79104 Freiburg, Germany
(Submitted July 1999-Final Revision July 2000)
Define $a(k)$ to be the number of k-digit Fibonacci numbers. For $n>5$, we have $1.6 F_{n-1}<$ $F_{n}<1.7 F_{n-1}$. Thus, if F_{n} is the least k-digit Fibonacci number, we have $F_{n+5}>1.6^{5} F_{n}>10.48 \cdot 10^{k-1}$. On the other hand, $F_{n+3}<1.7^{4} F_{n-1}<1.7^{4} \cdot 10^{k-1}<8.36 \cdot 10^{k-1}$. Therefore, F_{n+5} always has at least $k+1$ digits, but F_{n+3} always has k digits. Hence, for $k>1$, we always have $a(k)=4$ or $a(k)=5$. Define $A(x)$ to be the number of $k \leq x$ such that $a(k)=5$. Guthmann [1] proved the following theorem.

Theorem 1: For $x \rightarrow \infty$, we have

$$
A(x)=\alpha x+O(1),
$$

where

$$
\alpha=\log 10 / \log ((1+\sqrt{5}) / 2)-4=0.78497 \ldots
$$

His proof uses Baker's bound on linear forms in logarithms. Here we will give a very short proof of this statement and generalize it to residue classes. Since, except for $k=1$, we have $a(k)=4$ or 5, we get

$$
\#\left\{n \mid F_{n}<10^{x}\right\}=\sum_{k \leq x} a(k)=4(x-A(x))+5 A(x)+O(1) .
$$

On the other hand, we have $F_{n} \sim \frac{1}{\sqrt{5}} \varphi^{n}$; thus, the left-hand side is $x \frac{\log 10}{\log \varphi}+O(1)$ and solving for $A(x)$ gives the theorem.

Now define $A(x, q, l)$ to be the number of $k \leq x, k \equiv l(\bmod q)$, such that $a(k)=5$. Using this notation, we claim the following theorem.

Theorem 2: For any fixed q, we have

$$
A(x, q, l) \sim \frac{\alpha}{q} x
$$

where α is defined as above.
We first note that $F_{n+4} / F_{n} \rightarrow \varphi^{4}$. If F_{n} is the least Fibonacci number with k digits, then $a(k)=5$ if and only if $F_{n+4}<10^{k}$. Now let $\varepsilon>0$ be fixed. Then we consider three cases:

1. $10^{k-1}<F_{n}<\left(\frac{10}{\rho^{4}}-\varepsilon\right) 10^{k-1}$. If n is sufficiently large, this implies $F_{n+4}<10^{k}$, thus $a(k)=5$.
2. $\left(\frac{10}{\rho^{4}}-\varepsilon\right) 10^{k-1}<F_{n}<\left(\frac{10}{\varphi^{4}}+\varepsilon\right) 10^{k-1}$. In this case, we might have $a(k)=4$ or $a(k)=5$.
3. $F_{n}>\left(\frac{10}{\rho^{4}}+\varepsilon\right) 10^{k-1}$. In this case we have, for n sufficiently large, $F_{n+4}>10^{k}$; thus, only F_{n}, \ldots, F_{n+3} have k digits, which implies $a(k)=4$. We also note that, in this case, we have $F_{n}<(\varphi+\varepsilon) 10^{k-1}$, since otherwise F_{n-1} would also have k digits.

If we consider only case 1 , we get a lower bound for $A(x, q, l)$. Thus we have, for $x>x_{0}(\varepsilon)$, the estimate

$$
A(x, q, l) \geq \#\left\{k \leq x, k \equiv l(\bmod q) \mid \exists n: 10^{k-1}<F_{n}<\left(\frac{10}{\varphi^{4}}-\varepsilon\right) 10^{k-1}\right\} .
$$

We set $k=k^{\prime} q+l$, and taking logarithms we get

$$
A(x, q, l) \geq \#\left\{\left.k^{\prime} \leq \frac{x-l}{q} \right\rvert\, \exists n:\left(k^{\prime} q+l-1\right) \log 10+\varepsilon<n \log \varphi<\left(k^{\prime} q+l\right) \log 10-4 \log \varphi-\varepsilon\right\}
$$

which is equivalent to

$$
\begin{aligned}
& A(x, q, l) \geq \\
& \#\left\{\left.k^{\prime} \leq \frac{x-l}{q} \right\rvert\, \exists n: n \log \varphi-l \log 10+4 \log \varphi+\varepsilon<k^{\prime} q \log 10<n \log \varphi-l \log 10+\log 10-\varepsilon\right\} .
\end{aligned}
$$

Since $\frac{q \log 10}{\log \varphi}$ is irrational, the fractional part of $\frac{k^{\prime} q \log 10}{\log \varphi}$ is uniformly distributed (mod 1). k^{\prime} is counted if and only if the fractional part of $\frac{k^{\prime} q \log 10}{\log \varphi}$ is contained in some interval of length

$$
\frac{\log 10-4 \log \varphi-2 \varepsilon}{\log \varphi} \geq \alpha-5 \varepsilon
$$

Hence, for $y>y_{0}$, the number of $k^{\prime}<y$ with $a\left(k^{\prime} q+l\right)=5$ is $\geq(\alpha-6 \varepsilon) y$. If $k^{\prime}<\frac{x-l}{q}$, then $k \leq x$; thus, we get the lower bound $A(x, q, l) \geq(\alpha-6 \varepsilon) \frac{x}{q}$. In the same way we get the upper bound $A(x, q, l) \leq(\alpha-6 \varepsilon) \frac{x}{q}$, if $\varepsilon \rightarrow \infty$, we obtain the statement of Theorem 2 .

ACKNOWLEDGMENT

The author would like to thank the anonymous referee for correcting the proof of Theorem 2.

REFERENCE

1. A. Guthmann. "Wieviele k-stellige Fibonaccizahlen gibt es?" Arch. Math. 59.4 (1992):334340.

AMS Classification Number: 11B37

