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1. INTRODUCTION 

The classical binomial inversion formula states that an = Hk=o(k)(~tyk^k (n ~ ®> ̂  2,...) if and 
only if hn = Tl=Q(l)(-l)kak (n = 0,1,2,...). In this paper we study those sequences {an} such 
that Hn

k=0(l)(-lfak = ±an (n = 0,1? 2,...). If EJU(Z)H)*"* = <**("* °), we say that {aj is an 
invariant sequence. If Efc=0(*)(~l)*a* = -an (n>0)9 we say that {an} is an inverse invariant 
sequence. 

Throughout this paper, let IS denote the set of invariant sequences, and let IIS denote the set 
of inverse invariant sequences. We mention that it can be proved easily that {an) GIIS if and only 
if a0 = 0 and {^g-} elS or {nan^} GIS. 

In Section 2 we list some typical examples of invariant sequences. For example, 

{̂r}> {(i1)}' { ^ f K H ' {"F-l}'{Lnh {(~l)"Bn} sis' 
where {Fn}, {Ln}, and {Bn} denote the Fibonacci sequence, Lucas sequence, and Bernoulli num-
bers, respectively. The Bernoulli numbers {BJ are given by B0 = 1 and JTk~Jo{n

k)Bk = 0 (n > 2), 
In Section 3 we investigate the generating functions of invariant sequences. As a conse-

quence, it is proved that {an} elS if and only if there is a sequence {a2Ic} such that 

"« = ̂ r l ( £ h (» = <U2,...). 
k=0 
2\k 

Section 4 is devoted to recursion relations for invariant sequences. The main result is 

z(*)(/(*)-(-ir*t(J)/(*)]4^=o (»=o,i,2,...), 
where {AJ GIS and/is an arbitrary function. We also point out similar recursion relations for 
inverse invariant sequences. As consequences, if {BJ, {Fn}, and {LJ denote the Bernoulli num-
bers, Fibonacci sequence, and Lucas sequence, respectively, then 

zftlfHrvc*)-£ (*W>V*=° ("=°> l> 2> •••)• 
^=o^ A ,s=o V / y 

and 

if*) /w+Hr'Xf*V^K-*=0 (»=0A2,...), 

Z(i)f/(*) - (-ir* t [ks)f(S)\Ln-k = <> (II = 0, 1, 2, ...). 

324 [AUG. 



INVARIANT SEQUENCES UNDER BINOMIAL TRANSFORMATION 

This gives infinitely many recursion relations for the Bernoulli numbers, Fibonacci sequence, and 
Lucas sequence. 

In Section 5 we establish the following transformation formulas: 
(1.1) Let {FJ be the Fibonacci sequence. If an = TJk=QFk_lhn_k (« = 0,1,2,...) then {aj GIS 

if and only if {bj G IS. 
(1.2) Let {Fn} be the Fibonacci sequence. If YTk=QCtkbn_k = Fn+i (^ = 0,1,2,...), then {an} GIS 

if and only if {hn} GIS. 
(1.3) Let {an} and {An} be two sequences satisfying Hl=o^n-kAk = l (n = 0,1,2,...). Then 

K ) e.ZS if and only if ( 4 J GIS. 
(1.4) Let {aw} and ( 4 J be two sequences satisfying TJl=0(n

k)an_kAk = 1 (/i = 0,1,2,...). Then 
{aj e/S if and only if {4} e ZS. 

(1.5) If {4} GZS with 4) ^ 0 and {a„} is given by aQA$ - 1 and TJl=Qan_kAk -0 (n - 1,2,3,...), 
then {a„+2} eZS and {EJU**} G / S -

(1.6) If {An} GIS with 4 ^ 0 and {aw} is given by aQA$ = 2 and YTk=0an_kAk = 1 (n = 1,2,3,...), 
then {a„+1} e/ZS and {«aw} GIS. 

(1.7) Let {a„}, {&„}, and {c„} be three nonzero sequences satisfying cn =-^Yfl=0 akbn_k 

(« = 0,1,2,...). If two of the three sequences are invariant sequences, then the other 
sequence is also an invariant sequence. 

(1.8) Let {a„}, {hj, and {cj be three nonzero sequences satisfying c„ = ^X£=o(fc)aA-fc 
(« = 0,1,2,...). If two of the three sequences are invariant sequences, then the other 
sequence is also an invariant sequence. 

2, EXAMPLES OF INVARIANT SEQUENCES 

In this section we present some typical examples of invariant sequences. One can easily 
verify the following examples: 
Example 1: {1/2"}GIS. 
Example 2: If AQ = 2 and An = 1 (n > 1), then {An} GIS. 
Example3: If AQ = Ax = 0 and An = n (n> 2), then {Ar}} GIS. 
Example 4: If v0(f) - 2, vx(t) = 1, v„+1(0 = vn(t) + tv„_x(t) (n > 1), then {vn(t)} GIS. 
Examples: lfu0(t) = 0, 1 (̂0 = 1, un+1(t) = un(t) + tun_l(t) (n>\), then {un(t)}eIIS, {nu^t)} 
eISymd{^}GlS. 
Example 6: If Tn(x) = cos(n arccosx) is the rfi1 Tchebychev polynomial, then {Tn(x)/(2x)n} GIS. 
Example 7: Let {Bn} be the Bernoulli numbers. Then {(-IfBJ GIS and {(-l)w+1(2w+l ~l)BnJ 
{n + l)}GlS. 

For further examples, we need the following Vandermonde identity: 

£(*X»-*HX» / 
where x and y are real numbers and n is a nonnegative integer. 
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Example8: If x * 0 , 1,2,..., then {(x/
n

2) / (*)} GIS. 
By Vandermondess identity, it is clear that 

= (-1)" f(n-x-i)(x/2\(-Ty(n-(x/2)-i)=e?) 

o si »-* iUi o l n ) (-) • 
Example 9: If TM e {1,2,3,...}, then {1 / C ^ 1 ) } e /-?• Since 

( 7 ) = ( w + n - l ) l (2m-l)l = ( y ) 
("j?") (iw-1)! (2W+W-1)! ("+2J'-1)' 

the result follows from Example 8 immediately. 

Example 10: {(2n) / 22"} e IS. 
Clearly, (~J,/2) / ("') = (2") / 22". So the example is a special case of Example 8. 

Example 11: If m e {0,1,2,...}, then 

K(.i)*H' 
By Vandermonde's identity, 

Set 

Then {^(x)} e 75 by the above and the binomial inversion formula. Note that 

(2m-i(n + x \ (2m-ifn + 2rn-l-x} , / niff2'"-1/' x "\, Jo [* + 2 I I I J * = JI [ /i + 2w / ^ " H ^ + 2 w J * -
So we have 

3, THE GENERATING FUNCTIONS OF INVARIANT SEQUENCES 
For any sequence {an} the formal power series J^=Qanxn is called the generating function of 

{an}, and the formal power series E^=0
an7r ^s called the exponential generating function of {an}. 

326 [AUG. 



INVARIANT SEQUENCES UNDER BINOMIAL TRANSFORMATION 

Theorem 3.1: Let a(x) = I,^anx\ Then ELo(DHf% = ± a * (n = °> *> 2
? •••) i f a n d onlY i f 

a(x) satisfies the equation a(-^) = ±(l - x)a(x). 

Proof: Clearly, 

(l-xra(-^-)=t(-lfakx\l-xr-k = ±(-l)kakxk±(-l;k\-xy 

= ifl(-D^^f"1-?-r)l(-i> \ xn (3.1) 

Therefore, the result follows. 
Remark 3.1: Formula (3.1) is known (see [1]). 

Corollary 3.1: Let {an} be a given sequence. Then: 
(a) {an} G IS if and only if {2an+l - an) G IIS. 
(b) {an} G IIS if and only if a0 = 0 and {2an+l -aj elS. 
(c) If {aJ G IS> then {an+2 - an+l} G IS. 
(i) If {aJ e /ZS, then K + 2 ~aw+1} e ZZS. 

Proof: Let ftn = 2a^+1 - aw, b(x) = Y^=0 bnxn, and a(x) - E^=0 #„*" • J t *s c l e a r t n a t 

jI x ] = j f - 2 j x 1 2(x-l), 
and so 

vx-ly x vx-ly x 
Thus, 

a ( ^ ) = ± 0 ~ x W 

= ±(x-l)Kx) + ^ l l ) ( ± a ( ) » a 0 ) . 

This, together with Theorem 3.1, deduces, that {aj eIS<=>{bJ GIIS, {aj GlISoaQ = 0, and 
{bn} GIS. Hence, 

{an} G IS(IIS) => {*„} G /ZSCZS) => {26w+1 - b„} G IS(IIS) 
=> (4K+2 -<W) + <U ^ ZS(/ZS) => K + 2 -a,+1} G IS(IIS). 

This completes the proof. 

Remark 3.2: If â  = Hn
k=Q(n

k)(-l)k0[k + a„, then by the binomial inversion formula. Conversely, 
if {aJ G IS, we may take an = an+l by Corollary 3.1(a). 

Corollary 3.2: Suppose {aJ G IS, AQ = Ax = 0, and An = Z^o% (« > 2). Then {AJ G IS, 

Proof: Let s_t -g_2 = Q and 5W = 2^=o% (« > 0). Then 4i = sn_2 for w > 0. If a(x) and 
A(x) are the generating functions of {an} and ( 4 J , respectively, we see that 
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-=- x2 

H=0 

Hence, 
J2 

A(x) = x2^snxn=—-a(x). 
*,_r\ A X 

A{j^yj^(l-x)a(x) = (l-x)A(x). 

This, together with Theorem 3.1, proves the corollary. 

Theorem 3.2: Let A*(x) be the exponential generating function of {An}. Then {AJ elS if and 
only if A*(x)e~x/2 is an even function, and {An} GIIS if and only if A*(x)e~x/2 is an odd function. 

Proof: Clearly 
m lr m HI on / *t x x « 

Ar=0 j 

Thus. 
fc=0 Klm=0mi w=0U=(A ' f i ! 

Z(?)(-1M = ±4, (t = o,i,2,...) 
o ,4*(-*K = ±A*(x) <=> i4*(-x)ex/2 = ±A\x)e~ 

This completes the proof. 
Remark 3.3: The first part of Theorem 3.2 is due to Zhi-Wei Sun. 

Corollary 3.3: Let {A^} be a given sequence. Then 
(a) {An} G /£ if and only if there exists a sequence {a2k} such that 

4 , = £ i ( j k (" = 0,1,2,...). 

(J) {Arl} G 7/5 if and only if there exists a sequence {tf2£+1} s u ch that 

2f/fc 
Proof: Suppose 

^ ) = I ^ A and ^ = ̂  = 1 " ^ . 

Then ^f*(x) = a(x)e*/2, and hence 

If {4,} G ZS, then a(-Jc) = a(x) by Theorem 3.2. Hence, a2n_x = 0 for w = 1,2,3,.... On 
setting â  =2kak, we see that 

4,=iZ(jk = i l f * k (" = 0,1,2,...). 
^ Ar=0v ' ^ Ar=0V ' 

2|fc 

Conversely, if there is a sequence {a2k} for which 
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then 

for 

4, = ̂ Sf?V* (n = 0,l,2,...), 
2\k 

4. = Z(?Ja*^T 

rak/2k if2|Jfc, 
ah = 0 if2JJfc. 

So y4*(x)̂  x/2 = a(x) Is an even function. It then follows from Theorem 3.2. that ( 4 J £ ZS\ 
This proves part (a). Part (b) can be proved similarly. 

4. RECURSION RELATIONS FOR WVAMIANT SEQUENCES 

In this section we present Infinitely many recursion relations for Invariant sequences. 

Theorem 4.1: Let {A^} e IS. For any function/ we have 

Mk / W - H r * ! * / (* )K* = 0 (n = 0,l,2,...) 

Proof: Let A*(x) be the exponential generating function of {4,}, 

k\ c*o(x)=i fc-i^/w+ifi]/(j)]^-
jt=o V 5=0 

and 

crw=if(-i)k/(*)-2(")/(*) V 
* ! ' 

From the binomial inversion formula, we know that 
k 

(-l)*/(*) + E ( * ) / ( 4 e / 5 and | ( - l ) * / ( * ) - l ( * ) / ( 4 e / / S . 

So, by Theorem 3.23 Co(x)e~x/2 Is an even function and C*(x)e~x/2 is an odd function 
Now suppose 

<*n = Eo@(/w-(-i)"-AZ0/^J4-, 
If n is even, then 

a» = Wk 
k=0 

( 

H)V(*)-xi;j/wiHr*^-
5=0 

So aw /n\ Is the coefficient of xn In the power series expansion of A*(-x)C£(x). Since ^*(-x)-
Cf(x) (= ^4*(-x)ex/2 -G^x)^7 2) Is an odd function by Theorem 3.25 we find an = 0 for all even 
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Similarly, when n is odd, -anln\ is the coefficient of xn in the power series expansion of 
A*{~x)Cl{x). Since A*{~x)Q{x) (= A*{-x)exl2 • Cj(x)e~x/2) is an even function by Theorem 3.2, 
we must have an - 0 for all odd n. This concludes the proof 

Corollary 4.1: Let {Bn} be the Bernoulli numbers. For any function/, we have 

l(?)(Hr*/(*)-1(*)/(*))^u=o (»=o, i,2,...). 
Proof: This is immediate from Example 7 and Theorem 4.1. 

Let {Fn} and {!,„} be the Fibonacci sequence and Lucas sequence, respectively. It is easily 
seen that {Fn} e /ZS and {Ln} e ZS\ Thus, by Corollary 4.1, we have 

and 

l ( j W u = 0 (» = 0,2,4,...) (4.1) 

Z ( ? ) M U = 0 (/i = U,5,...). (4-2) 
£=0V 

This result has been given by the author in [2]. 

Corollary 4.2: Let {Ln} be the Lucas sequence. For any function/, we have 

=̂oV /v *=<A ' J 

Using the method in the proof of Theorem 4.1, one can similarly prove 

Theorem 4.2: Let {Arl} e # 5 . For any function/ we have 

4 - * = 0 (if = 0,1,2,...). 

Corollary 43: Let {Fn} denote the Fibonacci sequence. For any function/ we have 

X ^ (/i = 0,1,2,...). 

5. TRANSFORMATION FORMULAS FOR INVARIANT SEQUENCES 

Theorem 5.1: Let {an}, {bn}, and {cj be three nonzero sequences satisfying cn = ^L-SLoaA-& 
(w = 0,1,2,...). If two of the three sequences are invariant sequences, then the other sequence is 
also an invariant sequence. 

Proof: Let dQ = 0 and dn+l = (n + l)cn (n > 0). If a(x), A(x), and d(x) are the generating 
functions of {an}, {hj, and {</„}, respectively, then 

d{x) = f > + l)cnxn+l = xa(x)b(xl 
«=0 

330 [AUG. 



INVARIANT SEQUENCES UNDER BINOMIAL TRANSFORMATION 

Suppose {an} elS. Then a ( ^ ) = (1™ x)a(x). Since 

using Theorem 3.1, we see that 

{c„ }eISo{d„}eIIS&d f -^ - ) = -(1 - x)d(x) 

o * ( ^ y ) = (l-*)*(*)<=>ft,} e/S. 
This is the result. 

Corollary 5J.: Let {«„} and {#„} be two sequences for which 

2>A-* = 1 (w = 0,l,2,...). 
,fc=0 

Then {aj e IS if and only if {*„} e ZS. 

Proof: Putting cw = - ^ in Theorem 5.1 yields the result. 

Corollary 5.2: Let' {Fn} be the Fibonacci sequence. Then, if {an} and {b„} satisfy the relation 
Hn

k=oakK-k = ̂ +i (w = °> 1,2, •••)> we have {aj e ZS if and only if {bj e ZS. 

Proof: It is easy to check that {~pr} eZS\ This, together with Theorem 5.1, gives the result. 

Theorem 5*2: Let {an}, {bn}, and {c„} be three nonzero sequences satisfying 

* = ££(*)%**-* (" = 0,1,2,...). 
lc=Q 

If two of the three sequences are invariant sequences, then the other sequence is also an invariant 
sequence. 

Proof: Let a*(x), b*(x), and c*(x) be the exponential generating functions of a(x), b(x), and 
c(x), respectively. It is clear that a*(x)F(x) = c*(2x). So 

c*(2x)e~x = a*(x)e~x/2 'b*(x)e'x/2. 

This, together with Theorem 3.2 yields the result.. 

Corollary 53: Let {an} and {&„} be two sequences satisfying 

l(?W* = 1 (» = 0,1,2,...). 

Then {aj eZS if and only if {bj elS. 

Proof: Taking cn = H2n in Theorem 5.2 gives the result. 
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Theorem 53: If {An} e IS with A0 & 0 and If {aw} is given by 
n 

flfe4o = l and ^4kaB_i k=0 0=1,2,3,. . .) , 
£=0 

then {aw+2} e75 and {JTk=Qak} e75. 

Proof: Let a(x) and ^4(x) be the generating functions of {aw} and {An}9 respectively. It is 
clear that a(x)A(x) = 1. Set ^(x) = E^oCEJU a ^ ) ^ • T h e n 

r \ l t \ l 

1-x (l-x)^4(x)' 
Since ^(^zi) = (1 - x)A(x) by Theorem 3.1, from the above we see that 

qfe)=i-wV-i)"0^) = (1"x)gl(y)-
Now, applying Theorem 3.1, we find {E^=0%} eZS and so {tfw+2} e 75 by Corollary 3.1(c). 

Theorem 5.4: If {An} G IS with A0 * 0 and if {a„} is given by 

a0A0 = 2 and £4fc<V* = l (w = 1,2,3,...), 
ifc=0 

then {an+l} e 775 and {̂ a„} e 75. 

Proof: Let a(x) and ^4(x) be the generating functions of {an} and {An}, respectively. It is 
obvious that a(x)A(x) - 1 + p j . Since ^4(̂ zr) = (1 - x)i4(x) by Theorem 3.1, we find 

( x \ 2-x , v 
Vx-iy (i-x)^(x) v ' 

Set a0(x) = E*=0
 an+ixn a°d ^i(^) = E*=0 nanxn. Then a0(x) = (a(x) - a0) / x and a^x) = xa'(x), 

where a'x (= E^Li nanxn~l) is the formal derivative of a(x). Hence, by the above, we get 

and 

o-*w*)=(i-*)^)(^j=^«{^)=3,(^) 
This implies that {aw+1} e 775 and {naj e 75 by Theorem 3.1. 

Theorem 5.5: Let {FJ be the Fibonacci sequence. If {an} and {*w} satisfy the relation an = 
^Uh-A-k (n = 0,1,2,...), then {aj e IS if and only if {bj e 75. 

Proof: It is well known that E^=0 7^xw = x / (1 - x - x2). Thus, 

n=0 i-X-X 

«=0 «=0 w=0 I x x 

w=0 

and therefore 
1-x 
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Let a(x) and b(x) denote the generating functions of {an} and {b„}9 respectively. From the 
relation an = ELo Fk-A-k O = 0,1,2,...), we find 

*(*) = ~x b(x). 
l-x-x1 

Thus, 

x-l) i___x__pL_\2 \x-lj l-x-x2 l x - 1 / 
x-l Vjc-1/ 

Hence, by Theorem 3.1, 

K } e / l S o a ^ j = ( l - j ) f l W o i [ ^ I ) = ( l - i ) J ( x ) o { J „ } e / 5 . 

This proves the theorem. 
Remark 5.1: One can easily prove the following inversion formula. 

n n-2 
ar, = HFk-A-k (n = 0,l,2,...)ob„ = a„-Y,ak (n = 0,1,2,...). 
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