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1. INTRODUCTION 

le this paper we study the properties of linear recursive sequences and give some applica-
tions to matrices. 

For al9 % eZ, the corresponding Lucas sequence {u„} is given by u0 = 0, ul = 1, and un+l + 
axun +a>2Un_i = 0 (n > 1). Such series have very interesting properties and applications, and have 
been studied in great detail by Lucas and later writers (cf. [2], [4], [6], [10]). 

The general linear recursive sequences {un} is defined by un +a$in_l + • • -+amun_m = 0 (n > 0). 
Since Dickson [2], many mathematicians have been devoted to the study of the theory of linear 
recursive sequences. More recently, linear recursive sequences in finite fields have often been 
considered; for references, one may consult [3], [5], [7], [8], [11], [12], [13], [16], [17], and [18]. 

In this paper we extend the Lucas series to general linear recursive sequences by defining 
{u„(al9..., am)} as follows: 

HL-w = - = tf-i = 0, ffa = l, 

un+aiun_l + -+ajin_m = 0 (TI = 0, ±1, +2,...), 
where m>2 and am * 0 . 

We mention that sequences like (1.1) have been studied by Somer in [12] and [13], and by 
Wagner in [15]. 

In Section 2 we obtain various expressions for {un(al9..., am)}. For example, 

kl+2k2+-+mkm=n Kl' ' *' Km • 

m m+m-\ 

where Xl9..., Xm are all distinct roots of the equation xm + alxm~l + ••• +aw = 0. 
The purpose of Section 3 is to give the formula for the powers of a square matrix and farther 

properties of {un(al9..., am)}. The main result is that 
#i-l fm-l \ 

r=0 \s=r J 

where un = un(al9 ...9am) (n = 0, ±1, ±2,...) aed^4 is an m x m matrix with the characteristic poly-
nomial a0xm + atxm~l + • • - + am (a0 = 1). 

Formula (1.2) is a generalization of the Hamilton»Cayley theorem, and it provides a simple 
method of calculating the powers of a square matrix. 

Let 21 ? . . . , lw be the roots of the equation xm + alxm~l + "-+am = 09 un = u„(al9...9am)9 and 
sn = X[ +... + Zn

m (n = 1,2,3,...). In Sections 2 and 3 we also show that 
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ft in 

Y,skun_k=nun and s^-^H^-k-
k=l 

We establish the following identityin Section 4: 
&=i 

m-l fm-l 
Ukn+l ~ 

kQ+kx+---+km_x = k 
lr \1r I . . . IT 1 1 J -I I \Y,as-rUn-s\ * 

0 \s=r 2X+/ 

(1.3) 

(1.4) 

where ur = ur(ah ...,am) and aQ = l. 
For later convenience, we use the following notations throughout this paper: Z denotes the 

set of integers; Z+ denotes the set of positive integers; \A\ denotes the determinant of A; and 
{ww(a1?..., am)} denotes the sequence defined by (1.1). 

29 EXPRESSIONS FOR {^(ap..., aj] 

In this section we establish some formulas for {un(ah ...,am)}. 

Lemma 2.1: Let ah ...,am be complex numbers with am ^ 0 . For any « e Z , w e have 

^(0h. . -> t fJ = -
1 

K
am 

(*i 1 

Proof: Let 
v» ~un -^^V-- ,—>— and un~--—v_n_n n n\ a. a a n a n n 

Since vx_m - • • • - v_x = 05 v_m = -amv0 - -am, we see that ui_m =. • • = i/^ = 0, t/0 = 1. Also, 

1 
v-n-m ' ,« v-n-m+l ' ' -»-l+v-» 

- 0 (w = 0,±l,±2,.:.). 
Thus, MW = w„(a1? ...,am) for any w e Z. 

Theorem 2J: Let al3...,am be complex numbers with am ^ 0. Then the generating functions of 
{*/„(%..., a j } and {*#_„(a1?...,aj} are given by 

and 

X^K-..3^K=T- ; 

Ydti_n(al,...,am)xn = l 
n=0 xm+alxm-l + ---+ani 

Proof: Let un = ^„(a1?..., aw), a0 = 1, and a* = 0 for k > m. Then 
oo \f m \ oo /" n \ 

„=0 A&=0 ) n=0 \k=0 J 
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Observe that anHrl = ~- = an = 0 foin>m and that un_m = -> = u_l = Q for n e {1,2, . . . ,ZW-1}. SO 
we have 

£ a A ^ = SaA^ = 0 for w = 1,2,3,..., 
&=0 &=0 

and therefore, 

It thee follows that 

f oo \f m \ 
= a0w0-i. 

00 1 

ywx« = _ L 
^ n l + ap + '-'+a^ 

From the above and Lemma 2.1, we see that 
CO -j CO 

w=l \ am am am j 

k=Q 

1 

xm 

This completes the proof. 

Corollary 11: Let a0-*0 = l and ( E ; o f l / ) C = 0 * / ) z I F o r w = l,2,3,..., we have 6W = 

Proof: Since the coefficient of xm in (l + a1x + ---i-amxw + --)~1 is the same as the coeffi-
cient of xm in (1 + ajX-f —+araxm)-1

3 by using Theorem 2.1 we get bm = um(al,...,am). This 
completes the proof. 

We remark that Corollary 2.1 gives a simple method of calculating {b„}. 

Theorem 2.2: Let ax,..., am be complex numbers with aw * 0 and 
m 

xm+alxm-l + -^am_lx+am^H(x~-Ail 
1=1 

(«) For n- 0,1,2,..., we have 

(*! + ' " + &„,)!, nf t + ...+fc fr ...akm 

kl+2k2+---+mkm=n I' m 
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(b) For n = m,m + l,m + 2,..., wehave 

^ m 1 . . 1 
h ... lkm 

^j +2^r2 + • • • + m ^ = w-m " I • ^ w JU-JU « J ' m-v 

Proof: Since 1+axx + • • • + aOTxw = (1 - ^ x ) • • • (1 - lmx), by Theorem 2.1, we have 

i«„(«1,...,a>«=n-r4T=n s ^ 
«=0 /=! A /?ix /=! V&=0 

=1 I tf-4 «=0 I ki + ---+k=n 

This implies 

From Theorem 2.1 and the multinomial theorem, we see that 
oo 1 co 

2X(a,,-,«U)x"= ! =lH)r(*1* + ---+vT 
«=o l + a^+'-'+a^x: r=0 

r 
oo oo 

Z(-i)rZ 

( 

£-d h- f . . . h. f 
k}+2k2+—+mkm=n 1 ' w 

- r ! of1--a** 

v *i &, + •••+£ = r 

• Z * Z-f i t -1 . . . i t i 
(K + - + km)\{_l)kx+...+kmakx _ _aim 

Thus, 

This proves part (a). 
N o w consider part (b). It follows from Theorem 2.1 that 

1 1 
) (X-Am) 

_ (-lr-1^ i 1 
K-K (i-f) (i-f-) •f n z _X_ 

:1+---+itO T=«-/il \ 1 

if1 f i Ym^ 

Therefore, we have 
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u^„(al9...9am): 
am 

JL^, for n>m. 

By Lemma 2.1 and part (a), 
kl + ---+k=n~m A l ' " 

a, 1 

Hence, the proof Is complete. 

Remark 2.1: Let xm 4 - a ^ ! + • • • + am = (x - Ij) • • • (x - 2 J . If {u„(al9..., a j } Is given by its 
generating function, by Theorem 2.2(a) we have 

i#>l3...,aj = X 4 S 4 2 - ^ (»*0), (2.1) 

as was found by Wagner [15]. 
Suppose a0 = 1 and % = 0 for k £{0,l,...,m}. Using Theorem 2.1 and Cramer's rule, one 

can prove the following facts: 
(a) For n = 1,2,3,..., we have 

(b) For w = /w + l, w + 2,..., we have 

-v?-i 

a2-K % - * 

(2.2) 

u_n(al9...,am) = \-— 
,n-m+l 

an-2 an-3 

a2m-n 
a2m-n+l 

*m-l 

(2.3) 

Here, (a) is well known (see [9]) when {un(al9...9am)} is given by Its generating function. 

Theorem 23: Let al9...,am be complex numbers with am & 0, and Xl912,..., Xm be the distinct 
roots of the equation xm + HjX "̂1 + • • - + am = 0. For any Integer n9 we have 

^K->^) = Z 
«ri(A,-^) 

;=1 

Proof: Consider the following system of m linear equations in m unknowns xu x2,...,xm: 
xl+x2 + --- + xm = 0 

(2.4) 

xrixl+xrix2+-+x^ixm=i 
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Since (2.4) Is equivalent to 

2 j A2 

im-2 im-2 
Al A2 

\ A l A2 

yn~2 
Am 
Am J 

X2 

*m-\ 

\Xm J 

0 

0 

by the solution of Vandermonde's determinants and Cramer's rule, we obtain 

x> = 1 U(K-h) 

(-1)" 

1 

m-l 

r>s 

(~-l)m+i 

0(4 

A™ 

1 
4 

XT'2 

1 0 1 
4- i ° 4+i 

Ai^l 1 AM 

1 1 
4-1 4+1 

1 

qm-l 

m-2 ^m-2 qm-2 nm 
Ai-l Al 

1 

1 

yn-2 
A*» 

r, s*i j*i 

For H G Z , set 
m in+m--i 

From the above, we see that w ^ = • • • = u_x = 0, n0 = I Also, 

Un+alUn-l + ---+amUn-m- 5lI<V*,) {xm
i+<hxrl+-+<*m) 

= 0 (« = 0,±1,±2,. . .) . 

Thus, ww = ww(al9..., am) for « = 0, ± 1, + 2,. . . . This completes the proof 

For example, let {S(n, m)} be the Stirling numbers of the second kind given by 

xn = ^Sfam)x(x-X)---(x-m + V). 

It is well known (see [1]) that 
m=0 

9 • J = 0 

w ,-w-l 

^w)=~[I(7)H)^n = I^r 1 1 - »>™^i-MIiQ-j) 

Thus, for /1 > wi > 1, S(n, m) = un_m(al9..., aw), where a1?..., aw are determined by(x - l)(x - 2) • • • 
(x - /w) = xOT + a^™'1 + '-'dm. From this, we may extend the Stirling numbers of the second kind 
by defining S(n, m) = un_m(al9..., am) for any w e Z and W G Z + . 
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Remark 2.2: Suppose that the equation xm + a1xm~l + ••• +aw = 0 has distinct nonzero roots lh 
..., Am, and that {UJ satisfies the recurrence relation Un +alUn_l + '~+amUn-m = 0 (n >m). It is 
well known (see [1]) that there are m constants ch...,cm such that Un = <\X[ +c2Xn

2 + '-+cmAn
m 

for every n = 0,1,2,.... 

If am * 0 and xm + a^™'1 + • • • + am = (x -1^ •••(*- Xr)^, where 21?..., Xr are all distinct, 
then using Theorem 2.1 we can prove that 

«„(«,,...,aJ = ̂ X X ["t-J-"1+» W / i J i i ^ („>0), (2.5) 
a/w /=1 y=0 V n J J! 

where 

Theorem 2.4: Let al9..., am be complex numbers with am * 0, xw + ajX™-1 + —h am = (x - /lj) • • • 
( x - A J , sn=X'l + Xl

2 + — +X'm and^ = w„(a1?...,aj. For w = 1,2,3,..., we have 

Ar=l £=1 

Proof: Since 

Iv"=——!——-o-vr'o-vr'-a-vr1. 
we have 

oo m m oo <invn oo n 

n=0 i = l i = l n = l f l n = l f l 

By differentiating the expansion, we get 
" l 0 ° im-iir -v W — 1 °° £w=1wifll*w _ A „_! 
^n~0 unx n=l 

That is, 

Vw=i / W o / n=i 

Comparing the coefficients of xn on both sides gives 
n 

To complete the proof, by the above and Lemma 2.1 one can easily derive 
n 

£jS-kUk-n-m ~ nU-n~m-
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3. THE FORMULA FOR THE POWERS OF A SQUARE MATRIX 

This section is devoted to giving a formula for the powers of a square matrix. First, we 
derive an explicit formula for companion matrices and then give a formula for arbitrary square 
matrices. 

Theorem 3.1: Let %...9aw be complex numbers with am^0, « e Z , and un = un(al9...9am). 
Then 

'0 
1 0 

1 '• 

- f l L V 

-a, 'm-l 

0 -a2 
1 -a, 

1 ax ct2 
1 a, 2m-2 

a, 

UL Ux n+1 

\Un-m+l Un-m+2 

un+m-l 
Un+m-2 

un J 

Proof: Let 

A = 

(0 
1 0 

1 •. 
-a, 'm-l 

0 -a2 
1 -a 

(l ax a2 
1 a, 

D = 

i J 

a, m-l 
2m-2 

and 

A£ 
un+m-l 
Un+rn-2 

Since ux_m = ... = 1/̂  = 0 and u0 = 1, we see that DM0 = ^4°. 
Clearly? MkA - Mk+l for any k e Z . Therefore, for « = 1,2,3,..., we have 

and 

From this, it follows that 

M„ = Mn_xA = Mn_2A2 =... = M0A" 

M_„ = M_^A~l = MM,A~2 = - . = Mn^-". -/I i K £ - « + l 71+2' 

DMn=DM0An = An and DM_n ^ DM0A~n = A~n, 

which proves the theorem. 

Remark 3.1: Let {#„(<*!, ...,#„,)} be given by its generating function. For «>0? the result of 
Theorem 3.1 is known (see [9]). 

Corollary 3.1: Let al9 ...9am be complex numbers with am ^ 0 , WGZ 5 and i^ = i^(a1? ...,aw). 
Then 

^ ™ i " « i#3 

*w+w-l 
f,n+m-2 =(-ir<-

I W « ~ » J + 1 Un-m+2 
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Proof: Let A9 D9 and Mn be the matrices as in the proof of Theorem 3.1. It is clear that 
\A\ = (~l)mam and \D\= 1. Thus, taking the determinant of both sides of the identity An =DMn 

gives the result. 

Clearly, Corollary 3.1 is a vast generalization of the known fact that F1^-Fn_lFn+l = (-1)"-1, 
where {Fn} is the Fibonacci sequence. 

Corollary 3*2: Let o^ ...,aM be complex numbers with am ^ 0 , xm+alxm~l + '"+am = (x-Zl)"' 
(x-AJ,nGZ,u„ = un(ah...,aJ,mdsn = An

l + An
2 + --'-¥An

m. Then 
m 

Sn=~lLkakUn-k> 
k=l 

Proof: Suppose that A is the companion matrix in Theorem 3.1. Then xm + a{xm~l + • • • + am 

is the characteristic polynomial of A and hence A1?..., Xm are the eigenvalues of A. From matrix 
theory, we know that the eigenvalues of A" are X[9 An

2, ...,Xl
m. Denote the trace of the matrix C 

by tr(Q. Then, by the above and Theorem 3.1, 

s„ = A" + A"2 + • • • +rm = tr(A") = tr(DM„) 
fm-i m-l 

i=i Vfc=o ) k=o 

m-l m 

k=l 

This proves the corollary. 

Theorem 3.2: Let A be an m x m matrix with the characteristic polynomial ZA(X) = a^m +aix?n~l 

+-'+am9 am*09 neZ9mdun = un(al9...9am). Then 
m-l (m-l \ 

J^w/* For n e Z and arbitrary numbers v0,..., v ^ , set 
m-l i s \ 

5=0 Vr=0 7 

Then 
m m-l / * "\ m 

5>rfU = Y, -£"-* 2>*<W* =0 (n = 0,± 1,±2,...). 
&=0 5=0 Vr=0 Jk=0 

Since a0 = 1 and u_t = • • • = i / ^ = 0, we see that 

5=0 Vr=0 / r=0 \s=r J r~0 \s=r 

n-l fm+r \ 
= vn + T \Jlas-r^-sk = v„ (n = 0,l,...,m-l). 

r=0 V^=^ / 

Hence, {v*} is uniquely determined by (3.1) and (3.2). 

2001] 
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From the Hamilton-Cayley theorem, we know that Am +axAm l + - • • +amI = O, where / is the 
m x m unit matrix and O is the m x m zero matrix. So, for n e Z, 4̂W + a^"- 1 + • • • + amAn~m = O. 
If we set i4n = (4n))wxw, then 

4w)+a14w-1) + . - . + a ^ - m ) = 0 Oi = Q,±l, ±2,...). 

Applying the above result, we get 
i w - l Z ' jr ^ m-1 fm-\ \ 

4f = Z Tos-rfp \«n-,=Z I X - A - S W &i=!.2>•••»'»)• 
,s=o V=o y r=o V^=r y 

Hence, 
w-l fm-l \ 

r=0 V =̂r y 
The proof is now complete. 

Since %_,„ = • • • = i/^ = 0 and u0 - 1, we see that a0i/m_r + • • • + ^w_!_r% = ~^_ r if 0 < r < 
w - 1 . Thus, the Hamilton-Cayley theorem is a special result of Theorem 3.2 in the case n = m. 

We remark that the result of Theorem 3.2 provides a very simple method of calculating the 
powers of a square matrix. 

Corollary 3.3: Letp be an odd prime, a,b,e,d e Z, p\ad- be, A = (a -d)2 + 4bc. Then 

a bY-W 
c d) 

il (mod/?) if(f) = l, 

Wl (modp) if(£) = 0, 

[(orf-ftc)/ (mod/?) if(A) = - i ? 

where / is the 2 x 2 identity matrix and (j) denotes the Legendre symbol. 

Proof: Let u_x = 0, u0 = 1, and w„+1 = {a + d)un-(ad-bc)un_l (n = 0,1,2,...). Then t/„ = 
un(~a -d,ad- be). Since the characteristic polynomial of (a

c
 b

d) is x2 - (a+rf)x+ad-hc, using 
Theorem 3.2 we see that 

Clearly, A = (a+aT)2 - 4(ad-bc). Thus, by [10, pp. 46-47], 

Vi-(i) = ° (mod/>), V i = (j) (modp). 

Putting the above together yields 

fa ftVHW 

If (f) = 1 then « H A ) = «p_i s (t)= * ( m o d P)- I f (P) = - !> t h e n Vi s - 1 ( m o d P) a n d 

Mp s 0 (modp). Thus, wp_(A) = u^ -{a+d)up - (arf-bcyu^ = ad-bc (mod/7). 
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If (™) =0, then p | A. Using Fermat's little theorem, we see that 

Mn_(A) -Un = p-®-U» W 
a+d + JEY+l (a + d-JXY1 

2 W/> + l 

-^(p + lXa+d)"^^ (modp). 

Combining the above produces the desired result. 

4. A N r o E N T I T Y F O R ^ i i ! , . . . , ^ ) } 

Using Theorems 3.1 and 3.2, one can prove the following identity. 

Theorem 4.1: Let a1? ...,am be complex numbers with am&0, a0 = l, and un = un{al,...7am). 
Then, for n, I e Z and k e Z+, we have 

% i + / : 
* ! m - l / m - l 

Proof: Let 4̂, D, and Mw denote the matrices as in the proof of Theorem 3.1. It is clear that 
the characteristic polynomial of A is xm + a^™"1 + ~*+am. So? by Theorem 3.2, 

m-l (m-l \ 

r=Q \s=r J 
From this and the multinomial theorem for square matrices, it follows that 

f m-l (m-l 

I r=0 V*=r 

> \k 

k\ 
j m—i 

m-l (m-l \kr Hrkr+l 

k\k\...k TFI\Las-rvn-s\ *-• . 
tC0flL\1--'-TKm-l = 

Multiplying both sides on the left by D l and then applying Theorem 3.1, we see that 

Affei+z = 
k\ m-l f m-l 

k0+kl + -+km_]=k V ^ l ! , " ^ - l ! r = o U " " V Y*rkr+l nz«-j M 
Now, comparing the elements in row 1 and column 1 of the matrices on both sides yields the 
result. 

Corollary 4*1: Let ax and a2 be complex numbers with a2 *0 . If {Ur} is the Lucas sequence 
given by U0 = 0, £/j = 1, and Ur +alUr_l +a2Ur_2 = 0- (r = 0, ± 1, ±2,...), then 

(4.1) 
J=O V J 

where » , / G Z and k GZ+ . 
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Proof: Note that Ur = ur_x{ax, a2). By taking m - 2 In Theorem 4.1 and then replacing / by 
/ - 1 , we obtain the result. 
Remark 4.1: When nj>0 and ax - a2 = - 1 , the result of Corollary 4.1 was established by my 
brother Zhi-Wei Sun [14]. (In the case / = 0, the result is due to Siebeck [2, p. 394].) Here I give 
the following general identity, 

(4.2) Uk
sUL+i = i f f Yii-a^f-'UU, 

/=(A / 
where {£//} satisfies the recurrence relation U!

r + a^J^ + a2U,
r__2 = 0 (w = 0, ± 1, ± 2,...). This can 

be proved easily by using the relation U'r = U[Ur -ajJffJj.^ and the known formula 

U = 
v°ii~4a2 

x r X _ _ v r 

-a1+^jax-4a2 I -al~^jal -4a2 

2 

Corollary 4.2: Let a1? ...,am be complex numbers with am&0, aQ = \ and un = un(a1,...,am). 
For » , / e Z , we have 

ro-1 / ' m - l A 

Proof: Putting k = 1 in Theorem 4.1 yields the result. 

Corollary 4.3: Let /? be a prime, %...,aM eZ , p\am9 l,n e Z, a0 = 1, and i/n = un(al,...,an). 
Then 

J W - 1 W - l 

"np+/ = £ IL^-rUn-sUrpU (mod/>) . 

Proof: If &0 + • • • -f ̂ w_j = /?, then 

p? [l (mod/?) if/? = &r, for some r e {0,..., m-1}, 
*o' * * * *m-i' [0 (mod/?) otherwise. 

This, together with Theorem 4.1 and Fermat's little theorem, gives 
m-l (m-\ V 

/w-1 m-l 

= Z Z ^ - A - A / H - / (mod/?), 
which is the result. 
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FHW39 Is Prime 

David Broadhurst and Bouk de Water have recently proved that i^1839 is prime. 
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