LINEAR RECURSIVE SEQUENCES AND POWERS OF MATRICES

Zhi-Hong Sun

Department of Mathematics, Huaiyin Teachers College, Huaiyin, Jiangsu 223001, P.R. China
E-mail: hyzhsun@public.hy.js.cn
(Submitted July 1999-Final Revision November 1999)

1. INTRODUCTION

In this paper we study the properties of linear recursive sequences and give some applications to matrices.

For $a_{1}, a_{2} \in \mathbb{Z}$, the corresponding Lucas sequence $\left\{u_{n}\right\}$ is given by $u_{0}=0, u_{1}=1$, and $u_{n+1}+$ $a_{1} u_{n}+a_{2} u_{n-1}=0(n \geq 1)$. Such series have very interesting properties and applications, and have been studied in great detail by Lucas and later writers (cf. [2], [4], [6], [10]).

The general linear recursive sequences $\left\{u_{n}\right\}$ is defined by $u_{n}+a_{1} u_{n-1}+\cdots+a_{m} u_{n-m}=0(n \geq 0)$. Since Dickson [2], many mathematicians have been devoted to the study of the theory of linear recursive sequences. More recently, linear recursive sequences in finite fields have often been considered; for references, one may consult [3], [5], [7], [8], [11], [12], [13], [16], [17], and [18].

In this paper we extend the Lucas series to general linear recursive sequences by defining $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$ as follows:

$$
\begin{gather*}
u_{1-m}=\cdots=u_{-1}=0, u_{0}=1 \\
u_{n}+a_{1} u_{n-1}+\cdots+a_{m} u_{n-m}=0 \quad(n=0, \pm 1, \pm 2, \ldots) \tag{1.1}
\end{gather*}
$$

where $m \geq 2$ and $a_{m} \neq 0$.
We mention that sequences like (1.1) have been studied by Somer in [12] and [13], and by Wagner in [15].

In Section 2 we obtain various expressions for $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$. For example,

$$
\begin{aligned}
u_{n}\left(a_{1}, \ldots, a_{m}\right) & =\sum_{k_{1}+2 k_{2}+\cdots+m k_{m}=n} \frac{\left(k_{1}+\cdots+k_{m}\right)!}{k_{1}!\cdots k_{m}!}(-1)^{k_{1}+\cdots+k_{m}} a_{1}^{k_{1}} \cdots a_{m}^{k_{m}} \\
& =\sum_{i=1}^{m} \frac{\lambda_{i}^{n+m-1}}{\prod_{j \neq i}\left(\lambda_{i}-\lambda_{j}\right)}(n=0,1,2, \ldots)
\end{aligned}
$$

where $\lambda_{1}, \ldots, \lambda_{m}$ are all distinct roots of the equation $x^{m}+a_{1} x^{m-1}+\cdots+a_{m}=0$.
The purpose of Section 3 is to give the formula for the powers of a square matrix and further properties of $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$. The main result is that

$$
\begin{equation*}
A^{n}=\sum_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right) A^{r} \tag{1.2}
\end{equation*}
$$

where $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)(n=0, \pm 1, \pm 2, \ldots)$ and A is an $m \times m$ matrix with the characteristic polynomial $a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m}\left(a_{0}=1\right)$.

Formula (1.2) is a generalization of the Hamilton-Cayley theorem, and it provides a simple method of calculating the powers of a square matrix.

Let $\lambda_{1}, \ldots, \lambda_{m}$ be the roots of the equation $x^{m}+a_{1} x^{m-1}+\cdots+a_{m}=0, u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$, and $s_{n}=\lambda_{1}^{n}+\cdots+\lambda_{m}^{n}(n=1,2,3, \ldots)$. In Sections 2 and 3 we also show that

$$
\begin{equation*}
\sum_{k=1}^{n} s_{k} u_{n-k}=n u_{n} \quad \text { and } \quad s_{n}=-\sum_{k=1}^{m} k a_{k} u_{n-k} . \tag{1.3}
\end{equation*}
$$

We establish the following identity in Section 4:

$$
\begin{equation*}
u_{k n+l}=\sum_{k_{0}+k_{1}+\cdots+k_{m-1}=k} \frac{k!}{k_{0}!k_{1}!\cdots k_{m-1}!} \prod_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right)^{k_{r}} u_{\sum_{r=0}}^{\sum_{r-1} k_{r}+l}, \tag{1.4}
\end{equation*}
$$

where $u_{r}=u_{r}\left(a_{1}, \ldots, a_{m}\right)$ and $a_{0}=1$.
For later convenience, we use the following notations throughout this paper: \mathbb{Z} denotes the set of integers; \mathbb{Z}^{+}denotes the set of positive integers; $|A|$ denotes the determinant of A; and $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$ denotes the sequence defined by (1.1).

2. EXPRESSIONS FOR $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$

In this section we establish some formulas for $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$.
Lemma 2.1: Let a_{1}, \ldots, a_{m} be complex numbers with $a_{m} \neq 0$. For any $n \in \mathbb{Z}$, we have

$$
u_{n}\left(a_{1}, \ldots, a_{m}\right)=-\frac{1}{a_{m}} u_{-n-m}\left(\frac{a_{m-1}}{a_{m}}, \ldots, \frac{a_{1}}{a_{m}}, \frac{1}{a_{m}}\right) .
$$

Proof: Let

$$
v_{n}=u_{n}\left(\frac{a_{m-1}}{a_{m}}, \ldots, \frac{a_{1}}{a_{m}}, \frac{1}{a_{m}}\right) \text { and } u_{n}=-\frac{1}{a_{m}} v_{-n-m} .
$$

Since $v_{1-m}=\cdots=v_{-1}=0, v_{-m}=-a_{m} v_{0}=-a_{m}$, we see that $u_{1-m}=\cdots=u_{-1}=0, u_{0}=1$. Also,

$$
\begin{aligned}
& u_{n}+a_{1} u_{n-1}+\cdots+a_{m} u_{n-m} \\
& =-\left(\frac{1}{a_{m}} v_{-n-m}+\frac{a_{1}}{a_{m}} v_{-n-m+1}+\cdots+\frac{a_{m-1}}{a_{m}} v_{-n-1}+v_{-n}\right) \\
& =0 \quad(n=0, \pm 1, \pm 2, \ldots) .
\end{aligned}
$$

Thus, $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$ for any $n \in \mathbb{Z}$.
Theorem 2.1: Let a_{1}, \ldots, a_{m} be complex numbers with $a_{m} \neq 0$. Then the generating functions of $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$ and $\left\{u_{-n}\left(a_{1}, \ldots, a_{m}\right)\right\}$ are given by

$$
\sum_{n=0}^{\infty} u_{n}\left(a_{1}, \ldots, a_{m}\right) x^{n}=\frac{1}{1+a_{1} x+\cdots+a_{m} x^{m}}
$$

and

$$
\sum_{n=0}^{\infty} u_{-n}\left(a_{1}, \ldots, a_{m}\right) x^{n}=1-\frac{x^{m}}{x^{m}+a_{1} x^{m-1}+\cdots+a_{m}} .
$$

Proof: Let $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right), a_{0}=1$, and $a_{k}=0$ for $k>m$. Then

$$
\left(\sum_{n=0}^{\infty} u_{n} x^{n}\right)\left(\sum_{k=0}^{m} a_{k} x^{k}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} u_{n-k}\right) x^{n} .
$$

Observe that $a_{m+1}=\cdots=a_{n}=0$ for $n>m$ and that $u_{n-m}=\cdots=u_{-1}=0$ for $n \in\{1,2, \ldots, m-1\}$. So we have

$$
\sum_{k=0}^{n} a_{k} u_{n-k}=\sum_{k=0}^{m} a_{k} u_{n-k}=0 \text { for } n=1,2,3, \ldots,
$$

and therefore,

$$
\left(\sum_{n=0}^{\infty} u_{n} x^{n}\right)\left(\sum_{k=0}^{m} a_{k} x^{k}\right)=a_{0} u_{0}=1 .
$$

It then follows that

$$
\sum_{n=0}^{\infty} u_{n} x^{n}=\frac{1}{1+a_{1} x+\cdots+a_{m} x^{m}} .
$$

From the above and Lemma 2.1, we see that

$$
\begin{aligned}
\sum_{n=1}^{\infty} u_{-n} x^{n} & =-\frac{1}{a_{m}} \sum_{n=m}^{\infty} u_{n-m}\left(\frac{a_{m-1}}{a_{m}}, \ldots, \frac{a_{1}}{a_{m}}, \frac{1}{a_{m}}\right) x^{n} \\
& =-\frac{1}{a_{m}} x^{m} \sum_{k=0}^{\infty} u_{k}\left(\frac{a_{m-1}}{a_{m}}, \ldots, \frac{a_{1}}{a_{m}}, \frac{1}{a_{m}}\right) x^{k} \\
& =-\frac{x^{m}}{a_{m}} \cdot \frac{1}{1+\frac{a_{m-1}}{a_{m}} x+\cdots+\frac{1}{a_{m}} x^{m}} \\
& =-\frac{x^{m}}{x^{m}+a_{1} x^{m-1}+\cdots+a_{m}} .
\end{aligned}
$$

This completes the proof.
Corollary 2.1: Let $a_{0}=b_{0}=1$ and $\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=1$. For $m=1,2,3, \ldots$, we have $b_{m}=$ $u_{m}\left(a_{1}, \ldots, a_{m}\right)$.

Proof: Since the coefficient of x^{m} in $\left(1+a_{1} x+\cdots+a_{m} x^{m}+\cdots\right)^{-1}$ is the same as the coefficient of x^{m} in $\left(1+a_{1} x+\cdots+a_{m} x^{m}\right)^{-1}$, by using Theorem 2.1 we get $b_{m}=u_{m}\left(a_{1}, \ldots, a_{m}\right)$. This completes the proof.

We remark that Corollary 2.1 gives a simple method of calculating $\left\{b_{n}\right\}$.
Theorem 2.2: Let a_{1}, \ldots, a_{m} be complex numbers with $a_{m} \neq 0$ and

$$
x^{m}+a_{1} x^{m-1}+\cdots+a_{m-1} x+a_{m}=\prod_{i=1}^{m}\left(x-\lambda_{i}\right) .
$$

(a) For $n=0,1,2, \ldots$, we have

$$
\begin{aligned}
u_{n}\left(a_{1}, \ldots, a_{m}\right) & =\sum_{k_{1}+k_{2}+\cdots+k_{m}=n} \lambda_{1}^{k_{1}} \lambda_{2}^{k_{2} \cdots \lambda_{m}^{k_{m}}} \\
& =\sum_{k_{1}+2 k_{2}+\cdots+m k_{m}=n} \frac{\left(k_{1}+\cdots+k_{m}\right)!}{k_{1}!\cdots k_{m}!}(-1)^{k_{1}+\cdots+k_{m}} a_{1}^{k_{1} \cdots a_{m}^{k_{m}} .}
\end{aligned}
$$

(b) For $n=m, m+1, m+2, \ldots$, we have

$$
\begin{aligned}
u_{-n}\left(a_{1}, \ldots, a_{m}\right) & =-\frac{1}{a_{m}} \sum_{k_{1}+\cdots+k_{m}=n-m} \frac{1}{\lambda_{1}^{k_{1}} \cdots \lambda_{m}^{k_{m}}} \\
& =\sum_{k_{1}+2 k_{2}+\cdots+m k_{m}=n-m} \frac{\left(k_{1}+\cdots+k_{m}\right)!}{k_{1}!\cdots k_{m}!}\left(-\frac{1}{a_{m}}\right)^{k_{1}+\cdots+k_{m}+1} a_{1}^{k_{m-1}} \cdots a_{m-1}^{k_{1}} .
\end{aligned}
$$

Proof: Since $1+a_{1} x+\cdots+a_{m} x^{m}=\left(1-\lambda_{1} x\right) \cdots\left(1-\lambda_{m} x\right)$, by Theorem 2.1, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} u_{n}\left(a_{1}, \ldots, a_{m}\right) x^{n} & =\prod_{i=1}^{m} \frac{1}{1-\lambda_{i} x}=\prod_{i=1}^{m}\left(\sum_{k=0}^{\infty} \lambda_{i}^{k} x^{k}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k_{1}+\cdots+k_{m}=n} \lambda_{1}^{k_{1}} \cdots \lambda_{m}^{k_{m}}\right) x^{n} .
\end{aligned}
$$

This implies

$$
u_{n}\left(a_{1}, \ldots, a_{m}\right)=\sum_{k_{1}+k_{2}+\cdots+k_{m}=n} \lambda_{1}^{k_{1}} \lambda_{2}^{k_{2}} \cdots \lambda_{m}^{k_{m}} .
$$

From Theorem 2.1 and the multinomial theorem, we see that

$$
\begin{aligned}
\sum_{n=0}^{\infty} u_{n}\left(a_{1}, \ldots, a_{m}\right) x^{n} & =\frac{1}{1+a_{1} x+\cdots+a_{m} x^{m}}=\sum_{r=0}^{\infty}(-1)^{r}\left(a_{1} x+\cdots+a_{m} x^{m}\right)^{r} \\
& =\sum_{r=0}^{\infty}(-1)^{r} \sum_{n=0}^{\infty}\left(\sum_{\substack{k_{1}+2 k_{2}+\cdots+m k_{m}=n \\
k_{1}+\cdots+k_{m}=r}} \frac{r!}{k_{1}!\cdots k_{m}!} a_{1}^{k_{1}} \cdots a_{m}^{k_{m}}\right) x^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k_{1}+2 k_{2}+\cdots+m k_{m}=n} \frac{\left(k_{1}+\cdots+k_{m}\right)!}{k_{1}!\cdots k_{m}!}(-1)^{k_{1}+\cdots+k_{m}} a_{1}^{k_{1}} \cdots a_{m}^{k_{m}}\right) x^{n} .
\end{aligned}
$$

Thus,

$$
u_{n}\left(a_{1}, \ldots, a_{m}\right)=\sum_{k_{1}+2 k_{2}+\cdots+m k_{m}=n} \frac{\left(k_{1}+\cdots+k_{m}\right)!}{k_{1}!\cdots k_{m}!}(-1)^{k_{1}+\cdots+k_{m}} a_{1}^{k_{1} \cdots a_{m}^{k_{m}} .}
$$

This proves part (a).
Now consider part (b). It follows from Theorem 2.1 that

$$
\begin{aligned}
\sum_{n=m}^{\infty} u_{-n}\left(a_{1}, \ldots, a_{m}\right) x^{n} & =-x^{m} \frac{1}{\left(x-\lambda_{1}\right)} \cdots \frac{1}{\left(x-\lambda_{m}\right)} \\
& =\frac{(-1)^{m-1} x^{m}}{\lambda_{1} \cdots \lambda_{m}} \cdot \frac{1}{\left(1-\frac{x}{\lambda_{1}}\right)} \cdots \frac{1}{\left(1-\frac{x}{\lambda_{m}}\right)}=-\frac{x^{m}}{a_{m}} \prod_{i=1}^{m}\left(\sum_{k=0}^{\infty}\left(\frac{x}{\lambda_{i}}\right)^{k}\right) \\
& =-\frac{1}{a_{m}} \sum_{n=m}^{\infty}\left(\sum_{k_{1}+\cdots+k_{m}=n-m}\left(\frac{1}{\lambda_{1}}\right)^{k_{1}} \cdots\left(\frac{1}{\lambda_{m}}\right)^{k_{m}}\right) x^{n} .
\end{aligned}
$$

Therefore, we have
[aug.

$$
u_{-n}\left(a_{1}, \ldots, a_{m}\right)=-\frac{1}{a_{m}} \sum_{k_{1}+\ldots+k_{m}=n-m} \frac{1}{\lambda_{1}^{k_{1}} \cdots \lambda_{m}^{k_{m}}} \text { for } n \geq m .
$$

By Lemma 2.1 and part (a),

$$
\begin{aligned}
u_{-n}\left(a_{1}, \ldots, a_{m}\right) & =-\frac{1}{a_{m}} u_{n-m}\left(\frac{a_{m-1}}{a_{m}}, \ldots, \frac{a_{1}}{a_{m}}, \frac{1}{a_{m}}\right) \\
& =-\frac{1}{a_{m}} \sum_{k_{1}+2 k_{2}+\cdots+m k_{m}=n-m} \frac{\left(k_{1}+\cdots+k_{m}\right)!}{k_{1}!\cdots k_{m}!}(-1)^{k_{1}+\cdots+k_{m}}\left(\frac{a_{m-1}}{a_{m}}\right)^{k_{1}} \cdots\left(\frac{1}{a_{m}}\right)^{k_{m}} .
\end{aligned}
$$

Hence, the proof is complete.
Remark 2.1: Let $x^{m}+a_{1} x^{m-1}+\cdots+a_{m}=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{m}\right)$. If $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$ is given by its generating function, by Theorem 2.2(a) we have

$$
\begin{equation*}
u_{n}\left(a_{1}, \ldots, a_{m}\right)=\sum_{k_{1}+k_{2}+\cdots+k_{m}=n} \lambda_{1}^{k_{1}} \lambda_{2}^{k_{2}} \cdots \lambda_{m}^{k_{m}} \quad(n \geq 0) \tag{2.1}
\end{equation*}
$$

as was found by Wagner [15].
Suppose $a_{0}=1$ and $a_{k}=0$ for $k \notin\{0,1, \ldots, m\}$. Using Theorem 2.1 and Cramer's rule, one can prove the following facts:
(a) For $n=1,2,3, \ldots$, we have

$$
u_{n}\left(a_{1}, \ldots, a_{m}\right)=(-1)^{n}\left|\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \tag{2.2}\\
a_{0} & a_{1} & \cdots & a_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{2-n} & a_{3-n} & \cdots & a_{1}
\end{array}\right| .
$$

(b) For $n=m+1, m+2, \ldots$, we have

$$
u_{-n}\left(a_{1}, \ldots, a_{m}\right)=\left(-\frac{1}{a_{m}}\right)^{n-m+1}\left|\begin{array}{cccc}
a_{m-1} & a_{m-2} & \cdots & a_{2 m-n} \tag{2.3}\\
a_{m} & a_{m-1} & \cdots & a_{2 m-n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n-2} & a_{n-3} & \cdots & a_{m-1}
\end{array}\right| .
$$

Here, (a) is well known (see [9]) when $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$ is given by its generating function.
Theorem 2.3: Let a_{1}, \ldots, a_{m} be complex numbers with $a_{m} \neq 0$, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ be the distinct roots of the equation $x^{m}+a_{1} x^{m-1}+\cdots+a_{m}=0$. For any integer n, we have

$$
u_{n}\left(a_{1}, \ldots, a_{m}\right)=\sum_{i=1}^{m} \frac{\lambda_{i}^{n+m-1}}{\prod_{\substack{j=1 \\ j \neq i}}^{m}\left(\lambda_{i}-\lambda_{j}\right)} .
$$

Proof: Consider the following system of m linear equations in m unknowns $x_{1}, x_{2}, \ldots, x_{m}$:

$$
\begin{align*}
& x_{1}+x_{2}+\cdots+x_{m}=0 \\
& \lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{m} x_{m}=0 \\
& \cdots \tag{2.4}\\
& \lambda_{1}^{m-2} x_{1}+\lambda_{2}^{m-2} x_{2}+\cdots+\lambda_{m}^{m-2} x_{m}=0 \\
& \lambda_{1}^{m-1} x_{1}+\lambda_{2}^{m-1} x_{2}+\cdots+\lambda_{m}^{m-1} x_{m}=1 .
\end{align*}
$$

Since (2.4) is equivalent to

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{m} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1}^{m-2} & \lambda_{2}^{m-2} & \cdots & \lambda_{m}^{m-2} \\
\lambda_{1}^{m-1} & \lambda_{2}^{m-1} & \cdots & \lambda_{m}^{m-1}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m-1} \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right),
$$

by the solution of Vandermonde's determinants and Cramer's rule, we obtain

$$
\begin{aligned}
x_{i} & =\frac{1}{\prod_{r>s}\left(\lambda_{r}-\lambda_{s}\right)}\left|\begin{array}{ccccccc}
1 & \cdots & 1 & 0 & 1 & \cdots & 1 \\
\lambda_{1} & \cdots & \lambda_{i-1} & 0 & \lambda_{i+1} & \cdots & \lambda_{m} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\lambda_{1}^{m-1} & \cdots & \lambda_{i-1}^{m} & 1 & \lambda_{i+1}^{m-1} & \cdots & \lambda_{m}^{m-1}
\end{array}\right| \\
& =\frac{(-1)^{m+i}}{\prod_{r>s}\left(\lambda_{r}-\lambda_{s}\right)}\left|\begin{array}{cccccc}
1 & \cdots & 1 & 1 & \cdots & 1 \\
\lambda_{1} & \cdots & \lambda_{i-1} & \lambda_{i+1} & \cdots & \lambda_{m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\lambda_{1}^{m-2} & \cdots & \lambda_{i-1}^{m-2} & \lambda_{i+1}^{m-2} & \cdots & \lambda_{m}^{m-2}
\end{array}\right| \\
& =\frac{(-1)^{m+i}}{\prod_{r>s}\left(\lambda_{r}-\lambda_{s}\right)} \prod_{r>s}\left(\lambda_{r}-\lambda_{s}\right)=\frac{1}{\prod_{j \neq i}\left(\lambda_{i}-\lambda_{j}\right)}(i=1,2, \ldots, m) .
\end{aligned}
$$

For $n \in \mathbb{Z}$, set

$$
u_{n}=\sum_{i=1}^{m} \frac{\lambda_{i}^{n+m-1}}{\prod_{j \neq i}\left(\lambda_{i}-\lambda_{j}\right)} .
$$

From the above, we see that $u_{1-m}=\cdots=u_{-1}=0, u_{0}=1$. Also,

$$
\begin{aligned}
u_{n}+a_{1} u_{n-1}+\cdots+a_{m} u_{n-m} & =\sum_{i=1}^{m} \frac{\lambda_{i}^{n-1}}{\prod_{j \neq i}\left(\lambda_{i}-\lambda_{j}\right)}\left(\lambda_{i}^{m}+a_{1} \lambda_{i}^{m-1}+\cdots+a_{m}\right) \\
& =0 \quad(n=0, \pm 1, \pm 2, \ldots) .
\end{aligned}
$$

Thus, $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$ for $n=0, \pm 1, \pm 2, \ldots$. This completes the proof.
For example, let $\{S(n, m)\}$ be the Stirling numbers of the second kind given by

$$
x^{n}=\sum_{m=0}^{n} S(n, m) x(x-1) \cdots(x-m+1) .
$$

It is well known (see [1]) that

$$
S(n, m)=\frac{1}{m!} \sum_{i=0}^{m}\binom{m}{i}(-1)^{m-i} i^{n}=\sum_{i=1}^{m} \frac{i^{n-1}}{\prod_{\substack{j=1 \\ j \neq i}}^{m}(i-j)} \text { for } n \geq m \geq 1
$$

Thus, for $n \geq m \geq 1, S(n, m)=u_{n-m}\left(a_{1}, \ldots, a_{m}\right)$, where a_{1}, \ldots, a_{m} are determined by $(x-1)(x-2) \cdots$ $(x-m)=x^{m}+a_{1} x^{m-1}+\cdots a_{m}$. From this, we may extend the Stirling numbers of the second kind by defining $S(n, m)=u_{n-m}\left(a_{1}, \ldots, a_{m}\right)$ for any $n \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$.

Remark 2.2: Suppose that the equation $x^{m}+a_{1} x^{m-1}+\cdots+a_{m}=0$ has distinct nonzero roots λ_{1}, \ldots, λ_{m}, and that $\left\{U_{n}\right\}$ satisfies the recurrence relation $U_{n}+a_{1} U_{n-1}+\cdots+a_{m} U_{n-m}=0(n \geq m)$. It is well known (see [1]) that there are m constants c_{1}, \ldots, c_{m} such that $U_{n}=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}+\cdots+c_{m} \lambda_{m}^{n}$ for every $n=0,1,2, \ldots$.

If $a_{m} \neq 0$ and $x^{m}+a_{1} x^{m-1}+\cdots+a_{m}=\left(x-\lambda_{1}\right)^{n_{1}} \cdots\left(x-\lambda_{r}\right)^{n_{r}}$, where $\lambda_{1}, \ldots, \lambda_{r}$ are all distinct, then using Theorem 2.1 we can prove that

$$
\begin{equation*}
u_{n}\left(a_{1}, \ldots, a_{m}\right)=\frac{1}{a_{m}} \sum_{i=1}^{r} \sum_{j=0}^{n_{i}-1}\binom{n_{i}-j-1+n}{n}(-1)^{n_{i}-j} \frac{f_{i}^{(j)}\left(\frac{1}{\lambda_{i}}\right)}{j!} \lambda_{i}^{n+n_{i}-j}(n \geq 0), \tag{2.5}
\end{equation*}
$$

where

$$
f_{i}(x)=\prod_{\substack{s=1 \\ s \neq i}}^{r}\left(x-\frac{1}{\lambda_{s}}\right)^{-n_{s}} \quad \text { and } \quad f_{i}^{(j)}(x)=\frac{d^{j} f_{i}(x)}{d x^{j}} .
$$

Theorem 2.4: Let a_{1}, \ldots, a_{m} be complex numbers with $a_{m} \neq 0, x^{m}+a_{1} x^{m-1}+\cdots+a_{m}=\left(x-\lambda_{1}\right) \cdots$ $\left(x-\lambda_{m}\right), s_{n}=\lambda_{1}^{n}+\lambda_{2}^{n}+\cdots+\lambda_{m}^{n}$ and $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$. For $n=1,2,3, \ldots$, we have

$$
\sum_{k=1}^{n} s_{k} u_{n-k}=n u_{n} \quad \text { and } \quad \sum_{k=1}^{n} s_{-k} u_{k-n-m}=n u_{-n-m} .
$$

Proof: Since

$$
\sum_{n=0}^{\infty} u_{n} x^{n}=\frac{1}{1+a_{1} x+\cdots+a_{m} x^{m}}=\left(1-\lambda_{1} x\right)^{-1}\left(1-\lambda_{2} x\right)^{-1} \cdots\left(1-\lambda_{m} x\right)^{-1},
$$

we have

$$
\log \sum_{n=0}^{\infty} u_{n} x^{n}=-\sum_{i=1}^{m} \log \left(1-\lambda_{i} x\right)=\sum_{i=1}^{m} \sum_{n=1}^{\infty} \frac{\lambda_{i}^{n} x^{n}}{n}=\sum_{n=1}^{\infty} \frac{s_{n} x^{n}}{n} .
$$

By differentiating the expansion, we get

$$
\frac{\sum_{n=1}^{\infty} n u_{n} x^{n-1}}{\sum_{n=0}^{\infty} u_{n} x^{n}}=\sum_{n=1}^{\infty} s_{n} x^{n-1} .
$$

That is,

$$
\left(\sum_{n=1}^{\infty} s_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} u_{n} x^{n}\right)=\sum_{n=1}^{\infty} n u_{n} x^{n} .
$$

Comparing the coefficients of x^{n} on both sides gives

$$
\sum_{k=1}^{n} s_{k} u_{n-k}=n u_{n} .
$$

To complete the proof, by the above and Lemma 2.1 one can easily derive

$$
\sum_{k=1}^{n} s_{-k} u_{k-n-m}=n u_{-n-m} .
$$

LINEAR RECURSIVE SEQUENCES AND POWERS OF MATRICES

3. THE FORMULA FOR THE POWERS OF A SQUARE MATRIX

This section is devoted to giving a formula for the powers of a square matrix. First, we derive an explicit formula for companion matrices and then give a formula for arbitrary square matrices.

Theorem 3.1: Let a_{1}, \ldots, a_{m} be complex numbers with $a_{m} \neq 0, n \in \mathbb{Z}$, and $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$. Then

$$
\left(\begin{array}{ccccc}
0 & & & & -a_{m} \\
1 & 0 & & & -a_{m-1} \\
& 1 & \ddots & & \vdots \\
& & \ddots & 0 & -a_{2} \\
& & & 1 & -a_{1}
\end{array}\right)^{n}=\left(\begin{array}{ccccc}
1 & a_{1} & a_{2} & \cdots & a_{m-1} \\
& 1 & a_{1} & \cdots & a_{m-2} \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & a_{1} \\
& & & & 1
\end{array}\right)\left(\begin{array}{cccc}
u_{n} & u_{n+1} & \cdots & u_{n+m-1} \\
u_{n-1} & u_{n} & \cdots & u_{n+m-2} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n-m+1} & u_{n-m+2} & \cdots & u_{n}
\end{array}\right)
$$

Proof: Let

$$
A=\left(\begin{array}{ccccc}
0 & & & & -a_{m} \\
1 & 0 & & & -a_{m-1} \\
& 1 & \ddots & & \vdots \\
& & \ddots & 0 & -a_{2} \\
& & & 1 & -a_{1}
\end{array}\right), \quad D=\left(\begin{array}{ccccc}
1 & a_{1} & a_{2} & \cdots & a_{m-1} \\
& 1 & a_{1} & \cdots & a_{m-2} \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & a_{1} \\
& & & & 1
\end{array}\right)
$$

and

$$
M_{n}=\left(\begin{array}{cccc}
u_{n} & u_{n+1} & \cdots & u_{n+m-1} \\
u_{n-1} & u_{n} & \cdots & u_{n+m-2} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n-m+1} & u_{n-m+2} & \cdots & u_{n}
\end{array}\right)
$$

Since $u_{1-m}=\cdots=u_{-1}=0$ and $u_{0}=1$, we see that $D M_{0}=A^{0}$.
Clearly, $M_{k} A=M_{k+1}$ for any $k \in \mathbb{Z}$. Therefore, for $n=1,2,3, \ldots$, we have

$$
M_{n}=M_{n-1} A=M_{n-2} A^{2}=\cdots=M_{0} A^{n}
$$

and

$$
M_{-n}=M_{-n+1} A^{-1}=M_{-n+2} A^{-2}=\cdots=M_{0} A^{-n}
$$

From this, it follows that

$$
D M_{n}=D M_{0} A^{n}=A^{n} \quad \text { and } \quad D M_{-n}=D M_{0} A^{-n}=A^{-n}
$$

which proves the theorem.
Remark 3.1: Let $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$ be given by its generating function. For $n \geq 0$, the result of Theorem 3.1 is known (see [9]).

Corollary 3.1: Let a_{1}, \ldots, a_{m} be complex numbers with $a_{m} \neq 0, n \in \mathbb{Z}$, and $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$. Then

$$
\left|\begin{array}{cccc}
u_{n} & u_{n+1} & \cdots & u_{n+m-1} \\
u_{n-1} & u_{n} & \cdots & u_{n+m-2} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n-m+1} & u_{n-m+2} & \cdots & u_{n}
\end{array}\right|=(-1)^{m n} a_{m}^{n}
$$

Proof: Let A, D, and M_{n} be the matrices as in the proof of Theorem 3.1. It is clear that $|A|=(-1)^{m} a_{m}$ and $|D|=1$. Thus, taking the determinant of both sides of the identity $A^{n}=D M_{n}$ gives the result.

Clearly, Corollary 3.1 is a vast generalization of the known fact that $F_{n}^{2}-F_{n-1} F_{n+1}=(-1)^{n-1}$, where $\left\{F_{n}\right\}$ is the Fibonacci sequence.
Corollary 3.2: Let a_{1}, \ldots, a_{m} be complex numbers with $a_{m} \neq 0, x^{m}+a_{1} x^{m-1}+\cdots+a_{m}=\left(x-\lambda_{1}\right) \cdots$ $\left(x-\lambda_{m}\right), n \in \mathbb{Z}, u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$, and $s_{n}=\lambda_{1}^{n}+\lambda_{2}^{n}+\cdots+\lambda_{m}^{n}$. Then

$$
s_{n}=-\sum_{k=1}^{m} k a_{k} u_{n-k}
$$

Proof: Suppose that A is the companion matrix in Theorem 3.1. Then $x^{m}+a_{1} x^{m-1}+\cdots+a_{m}$ is the characteristic polynomial of A and hence $\lambda_{1}, \ldots, \lambda_{m}$ are the eigenvalues of A. From matrix theory, we know that the eigenvalues of A^{n} are $\lambda_{1}^{n}, \lambda_{2}^{n}, \ldots, \lambda_{m}^{n}$. Denote the trace of the matrix C by $\operatorname{tr}(C)$. Then, by the above and Theorem 3.1,

$$
\begin{aligned}
s_{n} & =\lambda_{1}^{n}+\lambda_{2}^{n}+\cdots+\lambda_{m}^{n}=\operatorname{tr}\left(A^{n}\right)=\operatorname{tr}\left(D M_{n}\right) \\
& =\sum_{i=1}^{m}\left(\sum_{k=0}^{m-i} a_{k} u_{n-k}\right)=\sum_{k=0}^{m-1}(m-k) a_{k} u_{n-k} \\
& =-m a_{m} u_{n-m}-\sum_{k=0}^{m-1} k a_{k} u_{n-k}=-\sum_{k=1}^{m} k a_{k} u_{n-k}
\end{aligned}
$$

This proves the corollary.
Theorem 3.2: Let A be an $m \times m$ matrix with the characteristic polynomial $\chi_{A}(x)=a_{0} x^{m}+a_{1} x^{m-1}$ $+\cdots+a_{m}, a_{m} \neq 0, n \in \mathbb{Z}$, and $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$. Then

$$
A^{n}=\sum_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right) A^{r}
$$

Proof: For $n \in \mathbb{Z}$ and arbitrary numbers v_{0}, \ldots, v_{m-1}, set

$$
v_{n}^{*}=\sum_{s=0}^{m-1}\left(\sum_{r=0}^{s} a_{s-r} v_{r}\right) u_{n-s} .
$$

Then

$$
\begin{equation*}
\sum_{k=0}^{m} a_{k} v_{n-k}^{*}=\sum_{s=0}^{m-1}\left(\sum_{r=0}^{s} a_{s-r} v_{r}\right) \sum_{k=0}^{m} a_{k} u_{n-s-k}=0 \quad(n=0, \pm 1, \pm 2, \ldots) \tag{3.1}
\end{equation*}
$$

Since $a_{0}=1$ and $u_{-1}=\cdots=u_{1-m}=0$, we see that

$$
\begin{align*}
v_{n}^{*} & =\sum_{s=0}^{n}\left(\sum_{r=0}^{s} a_{s-r} v_{r}\right) u_{n-s}=\sum_{r=0}^{n}\left(\sum_{s=r}^{n} a_{s-r} u_{n-s}\right) v_{r}=v_{n}+\sum_{r=0}^{n-1}\left(\sum_{s=r}^{n} a_{s-r} u_{n-s}\right) v_{r} \tag{3.2}\\
& =v_{n}+\sum_{r=0}^{n-1}\left(\sum_{s=r}^{m+r} a_{s-r} u_{n-s}\right) v_{r}=v_{n} \quad(n=0,1, \ldots, m-1) .
\end{align*}
$$

Hence, $\left\{v_{n}^{*}\right\}$ is uniquely determined by (3.1) and (3.2).

From the Hamilton-Cayley theorem, we know that $A^{m}+a_{1} A^{m-1}+\cdots+a_{m} I=O$, where I is the $m \times m$ unit matrix and O is the $m \times m$ zero matrix. So, for $n \in \mathbb{Z}, A^{n}+a_{1} A^{n-1}+\cdots+a_{m} A^{n-m}=O$. If we set $A^{n}=\left(a_{i j}^{(n)}\right)_{m \times m}$, then

$$
a_{i j}^{(n)}+a_{1} a_{i j}^{(n-1)}+\cdots+a_{m} a_{i j}^{(n-m)}=0 \quad(n=0, \pm 1, \pm 2, \ldots) .
$$

Applying the above result, we get

$$
a_{i j}^{(n)}=\sum_{s=0}^{m-1}\left(\sum_{r=0}^{s} a_{s-r} a_{i j}^{(r)}\right) u_{n-s}=\sum_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right) a_{i j}^{(r)} \quad(i, j=1,2, \ldots, m) .
$$

Hence,

$$
A^{n}=\sum_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right) A^{r} .
$$

The proof is now complete.
Since $u_{1-m}=\cdots=u_{-1}=0$ and $u_{0}=1$, we see that $a_{0} u_{m-r}+\cdots+a_{m-1-r} u_{1}=-a_{m-r}$ if $0 \leq r \leq$ $m-1$. Thus, the Hamilton-Cayley theorem is a special result of Theorem 3.2 in the case $n=m$.

We remark that the result of Theorem 3.2 provides a very simple method of calculating the powers of a square matrix.
Corollary 3.3: Let p be an odd prime, $a, b, c, d \in \mathbb{Z}, p \nmid a d-b c, \Delta=(a-d)^{2}+4 b c$. Then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{p-\left(\frac{\Delta}{p}\right)} \equiv\left\{\begin{array}{lll}
I & (\bmod p) & \text { if }\left(\frac{\Delta}{p}\right)=1 \\
\frac{a+d}{2} I & (\bmod p) & \text { if }\left(\frac{\Delta}{p}\right)=0 \\
(a d-b c) I & (\bmod p) & \text { if }\left(\frac{\Delta}{p}\right)=-1
\end{array}\right.
$$

where I is the 2×2 identity matrix and $(\dot{\bar{p}})$ denotes the Legendre symbol.
Proof: Let $u_{-1}=0, u_{0}=1$, and $u_{n+1}=(a+d) u_{n}-(a d-b c) u_{n-1}(n=0,1,2, \ldots)$. Then $u_{n}=$ $u_{n}(-a-d, a d-b c)$. Since the characteristic polynomial of $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ is $x^{2}-(a+d) x+a d-b c$, using Theorem 3.2 we see that

$$
\left(\begin{array}{ll}
a & b \tag{3.3}\\
c & d
\end{array}\right)^{n}=u_{n-1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(u_{n}-(a+d) u_{n-1}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
u_{n}-d u_{n-1} & b u_{n-1} \\
c u_{n-1} & u_{n}-a u_{n-1}
\end{array}\right) .
$$

Clearly, $\Delta=(a+d)^{2}-4(a d-b c)$. Thus, by [10, pp. 46-47],

$$
u_{p-1-\left(\frac{\Delta}{p}\right)} \equiv 0(\bmod p), \quad u_{p-1} \equiv\left(\frac{\Delta}{p}\right)(\bmod p) .
$$

Putting the above together yields

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{p-\left(\frac{1}{p}\right)} \equiv u_{p-\left(\frac{\Lambda}{p}\right)} I(\bmod p)
$$

If $\left(\frac{\Delta}{p}\right)=1$ then $u_{p-\left(\frac{\Delta}{p}\right)}=u_{p-1} \equiv\left(\frac{\Delta}{p}\right)=1(\bmod p) . \quad$ If $\left(\frac{\Delta}{p}\right)=-1$, then $u_{p-1} \equiv-1(\bmod p)$ and $u_{p} \equiv 0(\bmod p)$. Thus, $u_{p-\left(\frac{\Delta}{p}\right)}=u_{p+1}=(a+d) u_{p}-(a d-b c) u_{p-1} \equiv a d-b c(\bmod p)$.

If $\left(\frac{\Delta}{p}\right)=0$, then $p \mid \Delta$. Using Fermat's little theorem, we see that

$$
\begin{aligned}
u_{p-\left(\frac{\Delta}{p}\right)} & =u_{p}=\frac{1}{\sqrt{\Delta}}\left\{\left(\frac{a+d+\sqrt{\Delta}}{2}\right)^{p+1}-\left(\frac{a+d-\sqrt{\Delta}}{2}\right)^{p+1}\right\} \\
& =\frac{2}{2^{p+1}} \sum_{2 k k}\binom{p+1}{k}(a+d)^{p+1-k}(\sqrt{\Delta})^{k-1} \\
& \equiv \frac{2}{2^{p+1}}(p+1)(a+d)^{p} \equiv \frac{a+d}{2}(\bmod p) .
\end{aligned}
$$

Combining the above produces the desired result.

4. AN IDENTITTY FOR $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$

Using Theorems 3.1 and 3.2 , one can prove the following identity.
Theorem 4.1: Let a_{1}, \ldots, a_{m} be complex numbers with $a_{m} \neq 0, a_{0}=1$, and $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$. Then, for $n, l \in \mathbb{Z}$ and $k \in \mathbb{Z}^{+}$, we have

$$
u_{k n+l}=\sum_{k_{0}+k_{1}+\cdots+k_{m-1}=k} \frac{k!}{k_{0}!k_{1}!\cdots k_{m-1}!\prod_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right)^{k_{r}} \sum_{r=0}^{u_{m-1} r k_{r}+l}{ }^{l} . . .}
$$

Proof: Let A, D, and M_{n} denote the matrices as in the proof of Theorem 3.1. It is clear that the characteristic polynomial of A is $x^{m}+a_{1} x^{m-1}+\cdots+a_{m}$. So, by Theorem 3.2,

$$
A^{n}=\sum_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right) A^{r} .
$$

From this and the multinomial theorem for square matrices, it follows that

$$
\begin{aligned}
A^{k n+l} & =\left(\sum_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right) A^{r}\right)^{k} A^{l} \\
& =\sum_{k_{0}+k_{1}+\cdots+k_{m-1}=k} \frac{k!}{k_{0}!k_{1}!\cdots k_{m-1}!} \prod_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right)^{k_{r}} A^{m=0} \sum_{r=0}^{m-1} r k_{r}+l
\end{aligned}
$$

Multiplying both sides on the left by D^{-1} and then applying Theorem 3.1, we see that

Now, comparing the elements in row 1 and column 1 of the matrices on both sides yields the result.

Corollary 4.1: Let a_{1} and a_{2} be complex numbers with $a_{2} \neq 0$. If $\left\{U_{r}\right\}$ is the Lucas sequence given by $U_{0}=0, U_{1}=1$, and $U_{r}+a_{1} U_{r-1}+a_{2} U_{r-2}=0(r=0, \pm 1, \pm 2, \ldots)$, then

$$
\begin{equation*}
U_{k n+l}=\sum_{i=0}^{k}\binom{k}{i}\left(-a_{2} U_{n-1}\right)^{k-i} U_{n}^{i} U_{l+i}, \tag{4.1}
\end{equation*}
$$

where $n, l \in \mathbb{Z}$ and $k \in \mathbb{Z}^{+}$.

Proof: Note that $U_{r}=u_{r-1}\left(a_{1}, a_{2}\right)$. By taking $m=2$ in Theorem 4.1 and then replacing l by $l-1$, we obtain the result.

Remark 4.1: When $n, l \geq 0$ and $a_{1}=a_{2}=-1$, the result of Corollary 4.1 was established by my brother Zhi-Wei Sun [14]. (In the case $l=0$, the result is due to Siebeck [2, p. 394].) Here I give the following general identity,

$$
\begin{equation*}
U_{s}^{k} U_{k n+l}^{\prime}=\sum_{i=0}^{k}\binom{k}{i} U_{n}^{i}\left(-a_{2}^{s} U_{n-s}\right)^{k-i} U_{l+i s}^{\prime}, \tag{4.2}
\end{equation*}
$$

where $\left\{U_{r}^{\prime}\right\}$ satisfies the recurrence relation $U_{r}^{\prime}+a_{1} U_{r-1}^{\prime}+a_{2} U_{r-2}^{\prime}=0(n=0, \pm 1, \pm 2, \ldots)$. This can be proved easily by using the relation $U_{r}^{\prime}=U_{1}^{\prime} U_{r}-a_{2} U_{0}^{\prime} U_{r-1}$ and the known formula

$$
U_{r}=\frac{1}{\sqrt{a_{1}^{2}-4 a_{2}}}\left\{\left(\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{2}}}{2}\right)^{r}-\left(\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{2}}}{2}\right)^{r}\right\} .
$$

Corollary 4.2: Let a_{1}, \ldots, a_{m} be complex numbers with $a_{m} \neq 0, a_{0}=1$, and $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$. For $n, l \in \mathbb{Z}$, we have

$$
u_{n+l}=\sum_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right) u_{r+l} .
$$

Proof: Putting $k=1$ in Theorem 4.1 yields the result.
Corollary 4.3: Let p be a prime, $a_{1}, \ldots, a_{m} \in \mathbb{Z}, p \nmid a_{m}, l, n \in \mathbb{Z}, a_{0}=1$, and $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$. Then

$$
u_{n p+l} \equiv \sum_{r=0}^{m-1} \sum_{s=r}^{m-1} a_{s-r} u_{n-s} u_{r p+l}(\bmod p) .
$$

Proof: If $k_{0}+\cdots+k_{m-1}=p$, then

$$
\frac{p!}{k_{0}!\cdots k_{m-1}!} \equiv \begin{cases}1(\bmod p) & \text { if } p=k_{r}, \text { for some } r \in\{0, \ldots, m-1\} \\ 0(\bmod p) & \text { otherwise }\end{cases}
$$

This, together with Theorem 4.1 and Fermat's little theorem, gives

$$
\begin{aligned}
u_{n p+l} & \equiv \sum_{r=0}^{m-1}\left(\sum_{s=r}^{m-1} a_{s-r} u_{n-s}\right)^{p} u_{r p+l} \\
& \equiv \sum_{r=0}^{m-1} \sum_{s=r}^{m-1} a_{s-r} u_{n-s} u_{r p+l}(\bmod p),
\end{aligned}
$$

which is the result.

REFERENCES

1. R. A. Brualdi. Introductory Combinatorics, pp. 99-125. New York, Oxford, Amsterdam: Elsevier North-Holland, Inc., and North-Holland Publishing Company, 1977.
2. L. E. Dickson. History of the Theory of Numbers. Vol. I, Ch. XVII. New York: Chelsea, 1952.
3. H. T. Engstrom. "Periodicity in Sequences Defined by Linear Recurrence Relations." Proc. Nat. Acad. Sci. U.S.A. 16 (1930):663-65.
4. D. H. Lehmer. Annals of Math. 31. 2 (1930):419-48.
5. R. Lidl \& H. Niederreiter. Finite Fields, pp. 394-469. London and Amsterdam: AddisonWesley, 1983.
6. E. Lucas. "Théorie des fonctions numériques simplement périodiques." Amer. J. Math. $\mathbb{1}$ (1878):184-240.
7. W. Mantel. "Residues of Recurring Series." (Dutch) Nieuw Arch. Wisk. 1 (1894):172-84.
8. M. d'Ocagne. "Mémoire sur les suites réecurrentes." J. de l'Ecole Polytechnique 64 (1894): 151-224.
9. G. Pólya \& G. Szegö. Problems and Theorems in Analysis. Vol. II, Ch. VII, 11.1, 32. New York: Springer-Verlag, 1972.
10. P. Ribenboim. The Book of Prime Number Records. 2nd ed., pp. 44-50. Berlin: SpringerVerlag World Publishing Corp., 1989.
11. E. S. Selmer. Linear Recurrence Relations over Finite Fields. University of Bergen, 1966.
12. L. Somer. "Periodicity Properties of $k^{\text {th }}$-Order Linear Recurrences Whose Characteristic Polynomial Splits Completely over a Finite Field I." In Finite Fields: Theory, Applications, and Algorithms, pp. 327-339. MR95k:11018. Las Vegas, Nevada, 1993.
13. L. Somer. Finite Fields and Applications, pp. 333-347. MR97m:11022. Glasgow, 1995.
14. Z. W. Sun. "Reduction of Unknowns in Diophantine Representations." Science in China (Ser. A) 35 (1992):1-13.
15. C. G. Wagner. "Generalized Stirling and Lah Numbers." Discrete Mathematics 160 (1996): 199-218.
16. M. Ward. "Some Arithmetical Properties of Sequences Satisfying a Linear Recursion Relation." Ann. of Math. 32 (1931):734-38.
17. M. Ward. "The Arithmetical Theory of Linear Recurring Series." Trans. Amer. Math. Soc. 35 (1933):600-28.
18. N. Zierler. "Linear Recurring Sequences." J. Soc. Indust. Appl. Math. 7 (1959):31-48.

AMS Classification Numbers: 11B39, 11B50, 11C20

F_{81839} Is Prime

David Broadhurst and Bouk de Water have recently proved that F_{81839} is prime.

