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1. INTRODUCTION 

The following theorem arose from my correspondence with Dr. Peter Neumann of Queen's 
College, Oxford, concerning the number of ways of writing an integer of the form FnFn ...Fn as 
a sum of two squares. 
Theorem LI: If m>3, then with the exception of m = 6 and m = \2, Fm is divisible by some 
primep which does not divide any Fk9 k<m. 

Theorem 1.1 is similar to a theorem proved by K. Zsigmondy in 1892 (see [4]), which states 
that, for any natural number a and any m, there is a prime that divides am - 1 but does not divide 
ak - 1 for k < m with a small number of explicitly stated exceptions. A summary of Zsigmondy's 
article can be found in [2, Vol. 1, p. 195]. Since the arithmetic behavior of the sequence of Fibo-
nacci numbers Fn is very similar to that of the sequences an -hn (for fixed a and h\ Theorem 1.1 
can be regarded as an analog of Zsigmondy's theorem for the Fibonacci sequence. 

2. PRELIMINARY LEMMAS 

This section includes a few lemmas that are required for the proof of Theorem 1.1. 

Lemma 2.1: Let m, n be positive integers and let (a, b) denote the highest common factor of a 
and h. Then 

F 
37 ' n m. 

Proof: First, we prove by induction on m that 
F 
A mn _ M./ |7 \m-\ p - ^ i r (modFJ. 

The result holds for m = 1. Suppose the result holds for m = k. Then 

^^Wn-if-1 (modi*,). 

Now 
(see [1] or [3]), (1) 

so^+i)„=iW(„-i ) + i = ̂ V i + i w A - Therefore, 
b(k+l)n _FknT7 „ ,(Jf .k-u 

K n 
-kiF^+F^ (modFJ. 
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Using (1) again, 
Fkn+l = F(k-l)nFn + F(k-l)n+lFn+l s ^* - l )»4 - l^+ l ( m 0 d Fn) 

= F(k-i)n+\Fn-i (modFJ. 
Similarly, F(k_l)n+l » F^^F^ (modF„) giving us 

4 f i = ̂ (^1)^1^-1 s ^(^2)w+i(^-i)2 = • •' = (^-i)* (mod F J . 
Therefore, 

^^^KF^HF^i)k^{^lXF^ (modFJ. 

This completes the inductive step. 
Let us define 

d = ^,F„y (m(F„_ir1 + tF„, F„), 

where t is some integer. Then we have d\Fn and d\m{Fn_))m~l. However, {Fn,Fn_^) = 1, so d 
divides m and the lemma is proved. • 
Lemma 2.2: 

P\ Pi ~-Pn 
P P- P-

n<*l jfi na„ _ fcodd ^h^h-'-^k 
Pi Pi —Fn - ^axa2 ^an ' 

kevm "h"h '"Pik 

where the numerator is the product of all numbers of the form ffipfi2 ..-PS* divided by an odd 
number of distinct primes and the denominator is the product of all numbers of the form Pilp%2... 
p®n divided by an even nonzero number of distinct primes. 

Proof; The exponent of pr on the left-hand side is ar. The exponent of pr in the numerator 
of the right-hand side is 

£«*)-(*--!)> 
as there are (1) ways of choosing il9 ...9ik and, if is - r for some s, there are (j[_j) ways of choos-
ing the other ij. Similarly, the exponent of pr in the denominator of the right-hand side is 

£M0-(r-i)> 
so the exponent of pr on the right-hand side is 

= ar(l - (1 -1)")-(1-1)""1 = ar 
as required. • 

Lemma 2.3: If 0 < a < 1, then rC,( l - a") > (1 - a)&. 

2001] 387 



A RESULT ABOUT THE PRIMES DIVIDING FIBONACCI NUMBERS 

Proof; Equivalently, we must prove that 

f>(l-a«)>MiziO. 
«=i l a 

If |xI< 1, then the Taylor series expansion for Inx about x = 1 is ln(l + jnr) = jc--y-+-y----«. Thus, 

Therefore, 

f,Hl-an) = -^hak +a2k +a3k + - ) 

_ y l f ak V f i r a M = l n ( l - a ) 

Lemma 2.4: If a = (V5 -1) / (V5 +1), then 

no-o/no-^K2-wodd / weven 
w£l / ??>2 

Proof: Note that 1-x2 <1 and so, for x < l , we have 1 + X < ( 1 - J C ) l. Thus, 

no-^/no-«,i)<a+a)/n(i-«") 
wodd / weven / w=2 
w£l / n*2 

= {l-a2) f[(l-an)<{l-a2){l-a)^ <2, 
/ w=l 

where the penultimate inequality follows from Lemma 2.3, and the final inequality holds for the 
value of a given. D 

Lemma 2.5: Ifm = p^p®1 -.p%n, then the only solutions m,m>3, to the inequality 

/(w) = (1y5-J *2 f l . . . A = s0it) (2) 

are at = 3,4,5,6,10,12,14, and 30. 
We first prove the following three easy facts: 

(i) If f(m) > Cg(m); C> 1, and nt is formed from m by replacing pi in the prime factorization 
"of m by $ , where ^ > pt and ^ ^ pk for any A, then f(nf) > Cg{m'). 
(ii) If f(m) > g(m) and/?is an odd prime, then f(pm) > g(pm). 

(Hi) If f(m) > g(m) and m \s even, then f(2m) > g(2m). If f(m) > 2g(m) and m is odd, then 
f(2m)>g(2my 

Proof of (i): f(m) > Cg(m) > 4C so, in particular, f(m) > exp(l). Now 

ft >Pi=>%Pi -Pi>%Pt " f t = > f 3 ? > f " ? 

SO 
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f(m') > / ( « ) # > f(my = f(m)(/(m)r~l > /(m)exp| & - 1 
.Pi 

Since exp(x -1) > x for x > 1, we have 

f{mf) >[j/jf(m) > ̂ y&> = C^<> 
Proof of (ii): Note that /? > 2 and g(m) > 4 so 

Proof of (Hi): If m is even and /(m) > g(#f), then film) > f(m) > g(m) = g(2m). If m is 
odd and f(m) > 2g(m), then f(2m) = f(m) > 2g(m) = g(2m). 

Proof of Lemma 2.5: We call m "good" if f(m)> 2g(m) or if m is even and /(m) > ^(^i). 
Note that, by (ii) and (iii), if m is good, then no multiple of m may satisfy inequality (2). 

Standard calculations show that m = 11 is good. It then follows from (i) that every prime 
greater than 11 is good, so any solution m of (2) must only have 2, 3, 5, and 7 as prime divisors. 

It is easy to show that m = 32 and m = (3)(7) are good. So, by (i), except for m = (3)(5), 
m = j?2 and wi = /?,-/^ are good for odd primes pi9 pj. Hence, the only odd numbers whose multi-
ples may satisfy inequality (2) are 3, 5, 7, and 15. 

Now m = 23 is good, as is m = 22(5). Thus, m = 22(pi) is good for odd primes pi9 p >5. 
Therefore, the only possible solutions to inequality (2) are 2, 3, 5, 7, (3)(5), (2)(3), (2)(5), (2)(7), 
(2)(3)(5), 22, and 22(3). Of these, 7 and (3)(5) are not solutions and 2 < 3, so we obtain the list 
as stated in the lemma. D 

3. PROOF OF THE MAIN THEOREM 
Suppose we choose a Fibonacci number Fm, with m > 3 and m = Pilp%2 ---P%ny such that all 

prime factors of Fm divide some previous Fibonacci number. 
Then every prime dividing Fm must divide one of Fm[l],Fml2],-.-,Fm[n], where m[i] = m/pi, 

making use of the well-known fact that (Fm,Fn) = Fimny Now Fm< p&2...pJ?m{l]Fm[2]...Fm[n], 
for the left-hand side divides the right-hand side, using Lemma 2.1. However, some of the factors 
of Fm are being double counted, such as Fpai-\pa2-\ ^n% which divides both Fm^ and Fm[2y 

To remove repeats, the same Inclusion-Exclusion Principle idea of Lemma 2.2 can be used. 
This gives 

1 1 ^m[iui2*-»ik] 

^ , ^ f t A - P » - w - 5 , (3) 
1 1 rm[iui2l...Jk] 

A: even 

where m[il9 i2,...,ik] = m/ptp^ ...pik and the ij are all distinct. In fact, the left-hand side divides 
the right-hand side, but the inequality is sufficient for our purposes. 

It is now necessary to simplify (3) to obtain a weaker inequality that is easier to handle. 
Multiplying by the denominator in (3), 

n^^M-An^,^ (4> 
fceven A: odd 

where we have absorbed Fm into the product on the left-hand side. 
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Let us define F„ to equal 

By Binefs formula, 

\m -ffl) so, as n - » oo, i ^ - » /? ' . Furthermore, Fn>F£ for w odd and Fn<F„ for w even. 
All the Fibonacci numbers on the left-hand side of (4) are of the form Fmlk, k a product of an 

even number of distinct primes, and they are all distinct since, if Fmlk = FmIk,, then k = kf or a t / * 
and mlk' are 1 and 2 in some order, contradicting the fact that k and kf are both products of an 
even number of distinct primes. Let us define yx to equal 

n(£ 
where the product is taken over all even integers.n. The left-hand side of (4) would therefore be 
made even smaller, if all the Fn in it were replaced by F£ and the result were multiplied by y x . 
Similarly, the right-hand side of (4) would be made even larger if all the Fn in it were replaced by 
F£ and the result were multiplied by y 2 , where y 2 is equal to 

nfl 
nodd\ xn 

Thus, if we define s = y 2 ly\, we obtain from (4) the weaker inequality, 

f t F+h.h.-.h\ * £PlP2 ''Pn HFki.h.-.ikY <5> 
k even, £0 k odd 

The number of terms in the product on the left-hand side of (5) is In-C^ + CD*'" and on the 
right-hand side is (") + (3) + (5)+• • •, and these numbers are equal as their difference is (1 -1)" = 0. 
Therefore, the 1/ 45 factors ofF£ will cancel on both sides, leaving 

(i-iXi-i)-(i-i) 

m on rearranging. Since m = Pixp"2 —P%"> this simplifies to give 

( 2 J **PiPi~Pn- (6) 

Now, setting a = (S-1) / (V5 +1), 

r.-n^)-nf<1+i»-fc^)-no-^ 
n even \ n J n even \ l 1 T * J ; J n even 

Similarly, 

r.-nfe)-n(ffl±^^a)-no-^ 
nodd\rnJ noM\ (I + V3J 7 WOCM 
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Therefore, by Lemma 2.4, 
s = r2/ri<2. 

Now Lemma 2.5 gives us a list of possible m which may satisfy inequality (6). Thus, it only 
remains for us to check which of these m give rise to Fm, all of whose prime factors divide some 
previous Fibonacci number. The possible solutions, m, to (6), with m> 3, are 3, 4, 5, 6, 10, 12, 
14, and 30. 

Note that 2\F3, 3|F4, 5\F5, 11|F10, 29|F14, and 31\F30 and the respective primes do not 
divide any previous Fibonacci numbers. Thus, the only exceptions to the result are F6 = 8 and 
Fl2 = 144. Therefore, Theorem 1.1 is proved. • 

A similar result can also be proved for the Lucas numbers. 
Corollary 3.1: If m > 2, then, with the exception of m = 3 and m = 6, Lm is divisible by some 
prime p that does not divide any Lk, 0 < k < m. 

Proof: Suppose m>2 and m does not equal 3 or 6. Then, since 2m>3 and 2m does not 
equal 6 or 12, Theorem 1.1 implies the existence of a prime p such that/? divides F2m, but does 
not divide any smaller Fibonacci number. Now F2m = FmLm (see [3]), so p must divide Lm. We 
claim that|? does not divide any Lk for k < m, for p\Lk would imply p\F2k, and since 2k <2m, 
this contradicts our choice of p. Hence, the corollary. '• 

We end with the following conjecture for the general Fibonacci-type sequence. 
Conjecture 3.2: Suppose that Kt and K^ are positive integers and that Kn is defined recursively 
for n > 3 by Kn = Kn_x

:+Kn_2. Then, for all sufficiently large m9 there exists a primep that divides 
Km but does not divide any Kr,r < m. 
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