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1. HAPPY NUMBERS 

Let S2 : Z+ -> Z+ denote the function that takes a positive integer to the sum of the squares 
of its digits. More generally, for e > 2 and 0 < at < 9, define Se by 

( n \ n 

V/=o / /=o 
A positive integer a is a happy number if, when 82 is applied to a iteratively, the resulting 

sequence of integers (which we will call the S2-sequence of a) eventually reaches 1. Thus a is a 
happy number if and only if there exists some m>0 such that S2(a) = 1. For example, 13 is a 
happy number since *Sf (13) = 1. 

Notice that 4 is not a happy number. Its S2 -sequence is periodic with 5f (4) = 4. It is simple 
to verify that every positive integer less than 100 either is a happy number or has an $2-sequence 
that enters the cyclic £2-sequence of 4. It can further be shown that, for each positive integer 
a> 100, S2(a) <a. This leads to the following well-known theorem. (See [2] for a complete 
proof.) 

Theorem 1: Given a e Z+, there exists n > 0 such that S2(a) = 1 or 4. 

Generalizing the concept of a happy number, we say that a positive integer a is a cubic happy 
number if its ^-sequence eventually reaches 1. We note that a positive integer can be a cubic 
happy number only if it is congruent to 1 modulo 3. This follows immediately from the following 
lemma. 

Lemma 2: Given a e Z+, for all m, $3
m(a) = a (mod 3). 

Proof: Let a - Zf=0a|.10/, 0 < at < 9. Using the fact that, for each i, af = at (mod 3) and 
Iff = 1 (mod 3), we get 

V=o J /=o /=o /=o 
Thus, by a simple induction argument, we get that, for all M G Z + , S™(a) = a (mod 3). • 

The fixed points and cycles of S3 are characterized in Theorem 3, which can be found without 
proof in [1]. 

Theorem 3: The fixed points of ^3 are 1, 153, 370, 371, and 407; the cycles are 136 -> 244 -» 
136, 919-> 1459 -> 919, 55 -> 250 -> 133 -> 55, and 160-» 217 -> 352 ->160. Further, for any 
positive integer a: 
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• If a s 0 (mod 3), then there exists an m such that S™(a) = 153. 
• If a = 1 (mod 3), then there exists an m such that S™(a) = 1,55,136,160,370, or 919. 
• If a = 2 (mod 3), then there exists an m such that ^ ( a ) = 371 or 407. 

Note that the second part of the theorem follows from the first half and Lemma 2. Rather 
than prove the first part here, we state and prove a generalization of Theorems 1 and 3 in the 
following section. 

2. VARIATIONS OF BASE 
By expressing numbers in different bases, we can generalize happy numbers even further. 
Fix h>2. Let a = ZU^ with 0<a,<b~l. Let e>2. We then define the function 

^ : Z + ~ » Z + b y 

V/=o J /=o 
If an Se^b sequence reaches 1, we call a an e-power Chappy number. 

Theorem. 4: For all e > 2, every positive integer is an e-power 2-happy number. 

Proof: Fix e. Let a - Zf=0 at2\ 0 < at < 1, an > 0. Then 

/=o J = 0 /=0 1=0 /=0 

Note that none of the terms can be negative. Thus, if «>1 , a-Sea{a)>Q. So, for a * l , 
$e,i^a)<a- w i t h tWs fact> il: i s easy to prove by induction that every positive integer is an 
e-power 2-happy number. D 

Again, we ask: What are the fixed points and cycles generated when these functions are 
iterated? We give the answers for S2tb, 2 < b < 10, in Table 1 and for SXb9 2 < b < 10, in Table 2. 

TABLE 1. Fixed points und cycles of S2$b$2<b< 10 
Base 

2 
3 

4 
5 

6 

i 7 

8 

9 

10 

Fixed Points and Cycles | 
1 1 
1, 12, 22 
2 - 4 11 -4 2 
1 
1, 23, 33 
4 -4 31 -4 20 -4 4 
1 
32 -4 21 -* 5 -4 41 -4 25 -4 45 -4 105 -4 42-4 32 
1, 13, 34, 44, 63 
2 - 4 4 - 4 2 2 - 4 1 1 - 4 2 
16 -> 52 -4 41 -4 23 -4 16 
1, 24, 64 
4 -4 20 -4 4 
5 -4 31 -4 12 -4 5 
15 -4 32 -4 15 
1, 45, 55 
58 -4 108 -4 72-* 58 
82 -4 75 -4 82 
1 
4 -4 16 -4 37 -4 58 - i 89 -4 145 -4 42 -4 20 -4 4 
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TABLE 2. Fixed points and cycles of S3jb$2<b< 10 

| Base | Fixed Points and Cycles 
~2 
3 

4 i 
5 

6 

7 

8 

9 

10 

1 1 
1, 122 
2 -> 22 -> 121 -> 101 -» 2 
1, 20, 21, 203, 313, 130, 131, 223, 332 
1, 103, 433 
14 -* 230 -> 120 -^ 14 
1, 243, 514, 1055 
13 -» 44 -» 332 -> 142 -+ 201 -+ 13 
1, 12, 22, 250, 251, 305, 505 
2 -> 11 -» 2 
13 -> 40 -> 121 -» 13 
23 -> 50 -+ 236 -> 506 -» 665 -» 1424 -4 254 -+ 401 -> 122 -* 23 
51 -» 240 -» 132 -» 51 
160 -» 430 -• 160 
161 -• 431 -• 161 
466 -• 1306 -* 466 
516 -> 666 -» 1614 -» 552 -> 516 
1, 134, 205, 463, 660, 661 
662 -+ 670 -> 1057 -> 725 -> 734 -» 662 
1,3.0,31, 150, 151,. 570, 571, 1388 
38 -> 658 -> 1147 -> 504 -• 230 -• 38 
152 -¥ 158 -* 778 -> 1571 -» 572 -> 578 -+ 1308 -> 660 -+ 530 -> 

178 -» 1151 -¥ 152 
638 -> 1028 -f 638 
818 -» 1358 -+ 818 
| 1, 153, 371, 407, 370 
55 -» 250 -* 133 -> 55 
136 -> 244 -» 136 
160 -» 217 -» 352 -> 160 
919 -> 1459 -» 919 

It is easy to verify that each entry in the tables above is, indeed, a fixed point or cycle. Theorem 5 
asserts that the tables are, in fact, complete. 

Theorem 5: Tables 1 and 2 give all of the fixed points and cycles of S2fb and S3J), respectively, 
for2<6<10. 

The proof of Theorem 5 uses the same techniques as the proof of Theorem 1 given in [2]. 
First, we find a value Nfor which Setb(a) < a for all a > N. This implies that, for each a e Z+, 
there exists some MGZ+ such that S%b(a) < N. Then a direct calculation for each a < N com-
pletes the process and Theorem 5 is proven. Lemma 6 provides an Nfoi e = 2 and all bases b > 2 
while Lemma 8 does the same for e = 3. 

Lemma 6: Ifb>2 and a>b2, then S2 b(a)< a. 

Proof: Let a = Z?=0 off. We have 

i=0 1=0 /=0 

Every term in the final sum is positive with the possible exception of the / = 0 term which is at 
least (b -1)(1 -(b-1)). It is not difficult to show that the i = n term is minimal if an = 1. From 
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a>b2 = I00(b), It follows that n>2. So the i = n term Is at least 1 (ft2~ 1). Thus, a-S2 b(a)> 
b2-l + (b-l)(l-(b-l))=3b-3>0y$mc®b>2. Hence, forall a>ft2, Sxb(a) <a. D 

Using Induction, Corollary 7 is Immediate. 

Corollary 7: For each a e Z*, there is an m e Z+ such that S£ft(a) < *2 • 

This completes the argument for e = 2. Now we consider e = 3. 

Lemmm 8: If b > 2 and a > 2b3, then 5 ^ (a) < a. 

Proof: The proof of Theorem 4 gives an even stronger result for b = 2, so we will assume 
b > 2. Using the notation from above, we have 

j=0 1=0 J = 0 

The / = 0 term is at least (b -1)(1 - (ft -1)2) and the i = 1 term is at least (b -l)(ft - (b -1)2). 
The remaining terms are all nonnegative. Since a > 2b3 = 2000(^, n > 3 and if n = 3, then a3 > 2. 
So, if w = 3, the an term is at least 2(ft3-4). If w>3, then the an term is at least 
ft4-l>2(ft3-4). Thus, 

a - ^ & ( a ) ^ ^ ( ^ - a g ) + o i ( f t - ^ ) + a b ( l - f l g ) 
>2(i3~4) + (*-l)(&-(*-l)2) + (A~l)( l~(i- l)2) 
= 7ft2-6ft--7>0 

since 5 > 2. Hence, for all a > 2ft3, 5^ 6(a) < a. D 

Corollary* 9: For each a e Z+, there Is an m e Z* such that S™b(a) < 2h3. 

Theorem 5 now follows from a direct calculation of the 52^-sequences for all a <b2 and the 
£3> 4-sequences for all a < 2b3. These calculations are easily completed with a computer. 

• We conclude with two general theorems concerning congruences. If, for given e9 ft, and 4 
S™b(a) s a (mod d) for all a and m, then, as in Lemma -2, all e-power ft-happy numbers must be 
congruent to 1 modulo d. Thus, the following theorems yield a great deal of information con-
cerning generalized happy numbers. In particular, bounds on the densities of the numbers are 
immediate. 

Theorem 10: Let/? be prime and let ft s 1 (mod/?). Then, for any a e Z* and m e Z4", Sptb(a) s 
a (mod/?). 

Proof: Let a = Zfs0<*$• % Format, af s a, (mod/?) for all i. Thus, 

\ /SQ / /«o /«o /«o 

Using Induction, we see that, for all m e Z4", Sptb(a) a a (mod/?). • 

Corollary 11: If a is a (2-power) ft-happy number with ft odd, then a must be odd. In general, if 
a Is a/y-power ft-happy number with ft s 1 (mod/?) for some prime/?, then a s 1 (mod/?). 

2001] 465 



GENERALIZED HAPPY NUMBERS 

Theorem 12: Let b = l (mod gcd(6,6-l)). Then, for any A G Z + and / M G Z + , Sgb(a) = a 
(mod gcd(6, * - ! ) ) . 

Proof: Let a = EJLo aff and <i = gcd(6, b -1). If rf = 1, then the theorem is vacuous. For 
d = 2, note that a3 = a (mod 2). Since & = 1 (mod 2), we have 

<M«)= s3JiaA=z ̂  * i > * 2><*j=a ( m o d 2>> 
Vi=o y i=o /=o i=o 

and induction completes the argument. The case d = 3 is immediate from Theorem 10. Finally, 
d = 6 follows from the cases d = 2 and d = 3. • 
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