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1. INTRODUCTION

For arbitrary positive integer 7, numbers of the form D, = (a”- ")/ (a - ) are called the
Lucas numbers, where o and B are distinct roots of the polynomial f(z)=2z2—Lz+M, and L
and M are integers that are nonzero. The Lucas sequence (D): D,, D, D, ... is called real when
a and B are real. Throughout this paper, we assume that L and M are coprime. Each D, is an
integer. A prime p is called a primitive divisor of D, if p divides D, but does not divide D,, for
O0<m<n. Carmichael [2] calls it a characteristic factor and Ward [9] an intrinsic divisor. As
Durst [4] observed, in the study of primitive divisors, it suffices to take L >0. Therefore, we
assume L > O in this paper.

In 1913, Carmichael [2] established the following.

Theorem 1 (Carmichael): If o and f are real and n# 1,2, 6, then D, contains at least one primi-
tive divisor except when n=12, L =1, M =-1,

In 1974, Schinzel [6] proved that if the roots of f are complex and their quotient is not a root
of unity and if 7 is sufficiently large then the n™ term in the associated Lucas sequence has a
primitive divisor. In 1976, Stewart [7] proved that if #=5 or n> 6 there are only finitely many
Lucas sequences that do not have a primitive divisor, and they may be determined. In 1995,
Voutier [8] determined all the exceptional Lucas sequences with 7 at most 30. Finally, Bilu,
Hanrot, and Voutier [1] have recently shown that there are no other exceptional sequences that
do not have a primitive divisor for the n term with » larger than 30.

The aim of this paper is to give an elementary and simple proof of Theorem 1. To prove that
Theorem 1 is true for all real Lucas sequences, it is sufficient to discuss the two special sequences,
namely, the Fibonacci sequence and the so-called Fermat sequence.

2. A SUFFICIENT CONDITION THAT D, HAS A PRIMITIVE DIVISOR

Let n>1 be an integer. Following Ward [9], we call the numbers

Ql =1, Qn = Qn(a) ﬁ) = H(a _e2m‘r/nﬁ) for n>2

1srsn
(r,m)=1
the cyclotomic numbers associated with the Lucas sequence, where «, f are the roots of the
polynomial f(z) =z*>- Lz+ M and the product is extended over all positive integers less than 7
and prime to n. Each Q, is an integer, and D, =I1;, 0,, where the product is extended over all
divisors d of n. Hence, p is a primitive divisor of D, if and only if p is a primitive divisor of 0,.
Lemma 1 below was shown by several authors (Carmichael, Durst, Ward, and others).
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Lemma 1: Let p be prime and let & be the least positive value of the index 7 such that p divides
D,. Ifn#1,2,6 and if p divides 0, and some Q,, with 0 <m <n, then p? does not divide O, and
n=p'k withr>1.

Now suppose that » has a prime-power factorization n = pJ'p ... p/*, where p,, p,, ..., p, are
distinct primes and e, e,, ..., ¢, are positive integers. Lemma 1 leads us to the following lemma
(cf. Halton [5], Ward [9]).

Lemma 2: Let n#1,2,6. A sufficient condition that D, contains at least one primitive divisor is
that |0, |> pip, ... 1.

Proof: We prove the contraposition. Suppose that D, has no primitive divisors. If p is an
arbitrary prime factor of 0,, then p divides some Q,, with 0<m <n. Therefore, p divides » and
p? does not divide O,. Hence, 0, divides pip,...p;, s0 |0,|< pip,...p;. O

Our proof of Carmichael's theorem is based on the following.

Theorem 2: If n#1,2, 6 and if both the ' cyclotomic number associated with z>—z—1 and that
associated with z> -3z +2 are greater than the product of all prime factors of n, then, for every
real Lucas sequence, D, contains at least one primitive divisor.

Now assume that 7 is an integer greater than 2 and that & and f are real, that is, I* —4M is
positive. As Ward observed,

Oi(@, p) =Tla-{"Ba-¢7"P) )
=I((a+p)*-ap(2+{ +¢7), @
where ¢ = e*"/" and the products are extended over all positive integers less than 7/2 and prime

ton. Since ¢+ =L and off = M, by putting 8, =2+¢" +¢7, we have

0, =0,(a, p)=TI(L* - MP,). ®)
Fix an arbitrary n>2. Then (J, can be considered as the function of variables L and M. We shall
discuss for what values of L and M the n cyclotomic number O, has its least value.

Lemma 3: Let n>2 be an arbitrary fixed integer. If & and S are real, then O, has its least value
either when L=1and M =-1orwhen L=3 and M =2.

Proof: Take an arbitrary 6, and fix it. Since n>2, we have 0< 6, <4. Thus, if M < 0, we
have 12— M@, >1+8,, with equality holding only in the case L=1, M =—1. When M >0, con-
sider the cases M =1, M >1. In the first case we have L >3, so that

[*-M6,29-6.>9-26,.
Now assume M >1. Then, since 1> >4M +1, we have
[*-M6,24M +1-M6,=9-26,+(M-2)(4-6,)>9-20,

with equality holding only in the case M =2, L =3. Hence, by formula (3), we have completed
the proof. O

Combining Lemma 2 with Lemma 3, we complete the proof of Theorem 2.
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3. CARMICHAEL'S THEOREM

We call the Lucas sequence generated by z2—z—1 the Fibonacci sequence and that gener-
ated by z?—3z+2 the Fermat sequence. Theorem 2 implies that to prove Carmichael's theorem
it is sufficient to discuss the Fibonacci sequence and the Fermat sequence.

Now we suppose that n has a prime-power factorization n=pfipS...pf, and let @, (x)
denote the n cyclotomic polynomial.

Lemma 4: If n>2 and if a is real with |a| < 1/2, then ®,(a) >1-|a|-|a|*.

Proof: We have
@, (@) =]](1-a")*®,

d|n

where 1 denotes the Mobius function and the product is extended over all divisors d of n. Since
la|<1/2 and (1-a"®)HD >1— |a|™@

@, (a) 2Ij(l— laf)= (- |a))(- |aP-|af-|al*~-)

- (= lap)1- 2 - 1 al - .

Here we have used the fact that if 0<x<1 and 0<y <1 then (1-x)(1-y)>1-x-y. We have
thus proved the lemma. O

Theorem 3: If n#1,2,6,12, then the n™ term of the Fibonacci sequence contains at least one
primitive divisor.

Proof: Assume n>2. We shall determine for what » the inequality |Q,| > pp, ... p; is satis-
fied, where Q, is the n™ cyclotomic number associated with the Fibonacci sequence. The roots of
the polynomial z2—z—1 are & = (1++/5)/2 and f=(1-+/5)/2. Since |B/a|=(3-/5)/2<1/2,
Lemma 4 gives

@,(8/a2)21-|B/a|-|Blaf=245-4>2/5.
In addition, since a >3/2, we have
0,(a, )= a*® (B/a)>(2/5)(3/2)¥™,

where ¢(n) denotes the Euler function: ¢(n) = I, p#~(p,-1). Thus, |Q,|> pp, ... p; is true for
n satisfying
2/53/2)*” > pp,...p,. ©))

We first suppose p, > 7 without loss of generality. Then (2/5)(3/2) #P) > 2p, is true, and conse-
quently (2/5)(3/2)*” > p,p, ... p,. Here we have used the fact that if x, y are real with x>y >3
and if m is integral with m>2 then x™'>my. We next suppose pf! =2* 3° 5%, or 7* without

loss of generality. Therefore, (2/5)(3/2)%®" >2p, is true, and consequently (2/5)(3/2)%" >
D p,..-p,- Hence, inequality (4) is true unless 7 is of the form

n=23b5°77, o)
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where 0<a<3, 0<b<2, 0<c<1, and 0<d <1. By substituting (5) into (4), we verify that
inequality (4) is true for n#1,2,3,4,5,6,7,8,9,10,12,14,15,18,30. However, by direct compu-

tation, we have
Q2=1’ Q3=2a Q4=3a Q5=5) Q6:4’
Q7 :13’ Q8:7’ Q9 :17’ Q10=11’ Q12 =6:
04=29, O=61, Q=19, 0=3L

Hence, |Q,| > pip, ... p; holds for n#1,2,3,5,6,12. It follows from Lemma 2 that if n# 1,2, 3, 5,
6,12 then the n™ Fibonacci number F, contains at least one primitive divisor. In addition, since
F=1,F=1,F=2 F=3, =5, F,=2% F,=2%3% the numbers F;, and F; have a primi-
tive divisor, and F, F,, Fg, and F{, donot. O

Theorem 4: If n#1,2, 6, then the n term of the Fermat sequence contains at least one primitive
divisor.
Proof: The roots of the polynomial z2—3z+2 are « =2 and f#=1. By Lemma 4,
@, (B/a)21-|Blal-|B/a*=1/4.
Therefore,
0,(a, B)=a’™® (B/a) > (1/4)-2%7.

Now the inequality (1/4)-2%" > (2/5)(3/2)%™ is true for all n>2. As shown in the proof of
Theorem 3, the inequality (2/5)(3/2)*™ > p,p,...p, is true for n=1,2,3,4,5,6,7,8,9,10,12,14,
15,18,30. Moreover, by direct computation, we observe that (1/4)-2%" > pp, ... p, is true for
n=17,89, 14,15, 18,30, and furthermore, we have

=17, O=5 05=31, 0s=3, Q) =1], O, =13

Hence, |Q,| > pip,...p, holds for n#1,2,6. It follows from Lemma 2 that if »#1,2, 6 then the
n™ term of the Fermat sequence contains at least one primitive divisor. [

Now we are ready to prove Carmichael's theorem.

Proof of Carmichael's Theorem: As observed previously, for n#1,2,3,5,6,12, both the
n™ cyclotomic number associated with the Fibonacci sequence and that associated with the
Fermat sequence are greater than p,p,...p,. It follows from Theorem 2 that if n#1,2,3,5,6,12
then D, contains at least one primitive divisor. In addition, O, = L— M >3 except when L =1,
M =-1. Moreover, since Os=5 and (;, =6 when L=1, M =-1, and ;=31 and Q,, =13
when L =3, M =2, Lemma 3 gives O; >5 and (,, > 6 except for the Fibonacci sequence.

Therefore, by Lemma 2, if n#1,2,6 then D, contains at least one primitive divisor except
when L =1, M =—-1. Combining with Theorem 3, we complete the proof. O

4. APPENDIX
In 1955, Ward [9] proved the theorem below for the Lehmer numbers defined by

p= (@"-p")/(a—p), nodd,
(" -B"/(a®-p?, neven,

n
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where & and § are distinct roots of the polynomial z? ~/Lz+ M, and L and M are coprime inte-
gers with L positive and M nonzero. Here a sufficient condition 7+ 6 was pointed out by Durst

[3].

Theorem 5 (Ward): If o and f are real and n#1,2,6, then P, contains at least one primitive
divisor except when n=12, L=1, M=-1and whenn=12, L=5, M =1.

We can also give an elementary proof of this theorem. It parallels the proof of Carmichael's
theorem. The essential observation is that if ##1,2,6 and if both the n" cyclotomic number
associated with z2—z—1 and that associated with z2 —~/5z +1 are greater than the product of all
prime factors of n then, for all real Lehmer sequences, P, contains at least one primitive divisor.
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