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I. Consider the following recursive formula for generating se-

quences, where A is a given positive number:
(1.1) X = x - AX

It is well known that any sequence so generated is of the form

n n

(1.2) X, = ClRl + CZRZ s

where C1 and C2 are constants, and R1 and R2 are the roots of
(1.3) XZ = 1 - ax

Let R1 be the positive root which is less than one, and let RZ be
the root that is less than minus one. Then this sequence converges
if and only if C2 = 0; and when it does converge, it converges to zero.
So giventwo positive numbers X and X0 this sequence converges

if and only if XO/X—I = Rl' Furthermore, if A is an integer, then

R1 is irrational.

It should be noted that sequences generated bya recursive form-
ula suchas (1. 1) may be continued in the opposite direction. If A=1,
then the recursive formula obtained for going in the opposite direc-
tion is the formula used for generating Fibonacci numbers.

Let P be a homeomorphism of [0,x) onto itself. In other
words, P(0) = 0 and P 1isa continuous, unbounded, strictly increas-
ing function of non-negative real numbers. Then the question arises
as to the convergence of the sequence starting from two positive num-

bers x and x, and generated by the formula

0

(1.4) X1 T Xpo1 T P(Xn)

Although the properties to be discussed will depend on the nature
of P on I:0,00) only, to facilitate the discussion it will be assumed

that P is a homeomorphism of the entire real line. But for this
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exception, the word homeomorphismas used in this paper will refer to
a homeomorphism of [0,) onto itself. Given two homeomorphisms
h and g, their sum and products are defined as those homeomorphisms

respectively satisfying

(1.5) (h'+ g)(t) = h(t) + g(t)
(hg)(t) =h[g(t)] and

(gh)(t) = g[h(t)] forall t2> 0.

1

The inverse h_l of h is that homeomorphism such that

(1.6) hh™ =h "h=1 P

where 1 is the identity homeomorphism. The relation h < g 1is de-
ﬂned to meanthat h(t) < g(t) for all t > 0. Similarly, b < g means
that h(t) < g(t) forall t> 0. Notethat h < g ifandonlyif h™'» g '
and that h < g if and only if h'1_>- g'l.

Given two homeomorphisms h and g, define hUg as that
homeomorphism such that (hUg)(t) is the largest of the two numbers
h(t) and g(t) for all t> 0. Define hNg as that homeomorphism

such that

(1.7) hNg +hUg =h + g

In other words, hNg 1is the minimum of g and h. Note that for any
h and g,

(1.8) hitg = gNh < h < hUg = gUh .

Also note that for any homeomorphism h,

1 1

(1.9) hNh™" £ 1 < hUh™

The remainder of this first section of this paper is devoted to

proving the following five interrelated theorems:

Theorem 1: There exists a unique homeomorphism h  such
that

(1.10) h=P+h
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Theorem 2: Let h and g betwohomeomorphisms such that
-1
(1.11) h=P+g and
g=P+ h-1

Then h = g = the homeomorphism of Theorem 1.

Theorem 3: Let g be any homeomorphism. Then the se-

quence of homeomorphisms { g, } defined inductively by

1

. =P +g_
(1.12) P+g_

gn+1

converges uniformly onevery bounded subset of [O, ©) to the homeo-

morphism h of Theorem 1.

Theorem 4: The sequence generated by (1. 4) from two posi-

tive numbers X 4 and x, converges ifand onlyif x 1

h is the homeomorphism of Theorem 1. Also, whenever this se-

= h(xo) , where

quence converges, it converges to zero.

If h(xO) > X s then all of the elements of the sequence with
even subscripts are positive, but all but a finite number of the ele-
ments with odd subscripts are negative.

If h(xo) < x_ then all of the odd subscripted elements are

1}
positive and all but a finite number of the even subscripted elements

are negative.

Theorem 5: If P mapsintegersinto integers, then the h of

Theorem 1 will not map any positive integer into an integer.

Proofs: Let h1 be a homeomorphism suchthat h1 < P. By

induction, for n a positive integer, define

-1
(1.13) h ,, =P+h
Then n > 1 implies that
-1
(1.14) hy SP<P+h " =h

By induction on m, if 0 <m < n and m is even, then
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(1.15) h =P+h ' >P+h’l =h
m m-1 n-1 n

and similarly, if m > 3 1is odd, then

(1.16) h =P+h > <P+h’t =h .
m m-1 n-1 n

So the increasing sequence of homeomorphisms with odd subscripts

(1.17) hl<h3<h5< h7<h9<---

is bounded from above by the decreasing sequence

> ; > -
(1.18) h2> h4 h6>h8> h10
Also, the decreasing sequence
-1 -1 -1 -1
> - Y
(1.19) h3 > h5 h7 > h9 >

is bounded from below by the increasing sequence

-1 -1 -1 -1
(1.20) h2 <h4 <h6 <h8 < .-

Therefore, these four sequences must be pointwise convergent.

. -1
Let us now prove thatthe homeomorphisms hn for n > 1 are
uniformly equicontinuous on every bounded subset of [0, ®). For any
r > 0, [O, r] is compact and so for any 8> 0, there existsa 8 > 0

such that 0 =< P(tl) < P(tz) <r and P(tz) - P(tl) < 8§ imply that

tZ < t1 + g.
Let tl’ t?_ and n > 1 be such that
(1.21) 0 ihn(tl) < hn(tz) <r and
(1.22) hn(tz) - hn(tl) < 3.
Then

(1.23) 0 <P(t)) <P(t,) <Pt + h;:l(tz) =h (t) <7 B
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Also

1

(1.24)  Plt,) - Plt)) < P(t,) - P(e) +h 1 (1) - m2L ()

= hn(tz) - hn(tl) < 8 .

‘Therefore t, < t2 <ty + €. Consequently the hr-11 are uniformly

equicontinuous on any set [0, r].

Since the pointwise convergent sequences (1.19) and (1. 20) are
uniformly equicontinuous on every bounded set [O, r], they con-
verge uniformly to continuous functions. However, sequences (1.17)
and (l.18)arerelatedto(l.19)and (1.20)by (1.13). Therefore, these
sequences also converge uniformly to continuous functions. But if a
series of homeomorphisms and their inverses both converge to con-
tinuous functions, then these continuous functions must be homeo-
morphisms. Therefore, there existhomeomorphisms h and g such
that h, g h™' and g} arethe limitsof (1.17), (1.18), (1.19), and
(1.20) respectively. Also, (1.13) implies (1.11).

Let h and g be any pair of homeomorphisms which satisfy
(1.11). That atleast one such pair exists has just been proven. Let

x, be a positive real number and let x

0
quence

L7 h(xo). Then let the se-

(1.25) X 15 Xgr Xps Xy, g Xyr =7

be defined inductively by (l1.4). Then it will be shown by induction
that for n> 0

(1.26) x, = (0 g ) (x

(1.27) x, =hh g ) (x

Equations (1.26) and (1.27) are obviously satisfied for n =0
since (h—lg-l)O isdefinedas I. Iftheyare true for a given .n, then
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(1.28) - P(

*2(n+1)-1 = *2n-1 Xom)

_[(algTH - P(h-lg-l)n] ()

n
=m-P)h g &

=g Y ()

n+l
- h(h_lg—l) (x

and also

(1.29) =x - P (x

*2(n+1) T ®2n 2(n+1)-1)

R ~ln+l

Y ) - Pa T eTh ()

= (b~

n+l
= (P g™ (xy)

n+l
=g )

However, (l1.11) implies that

(1.30) h'lg'l <h‘1(P+g’1)=h‘lh=1 .

11’1

- X converges to zero as n tends to infinity.
g 0 g y

Therefore, (h—
Consequently, (l.25) also converges to zero.

Let Xy Yo ¥4 and vy 1 be any positive numbers such that

X =Yy and y_ ;- x_| = & > 0. Definethe sequence {xn} inductively
by (1. 4) and likewise the sequence {yn} inductively by

(1.31) Vnt1 = Ypo1 - Ply)

Equations (1. 4) and (1. 31) yield

-(1.32) yl - Xl = Y—l - P(yo) - X—l +P(x0) = Y—l - X-l =8 .

Then by induction, for n > 0,
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(1.33) Yan = ¥on

= Yon-2 " ¥an-z " P, q) PG, )

< Yon-2 ~ X2r1,—2.i 0
and
(1.34) Yon+l ~ *2n+l
" Y2n-1 "~ *2n-1 " P(YZn) * P(in)
> Y2n-1 7 ¥2n-1 2 8¢
If X 4= h(xo), then the Yon terms decrease to less than
(1.35) lim x, =10

2n

T ~» 00

but the Vo4l terms are bounded above

{1.36) lim X5 41 +e=¢€.

n— o
Conversely, if V.1 = h(yo), then the x, ~terms stay above zero but
the X541 terms decrease below -¢g.

In view of the symmetric roles of h and g in (1.11), it may
be similarly shown that the sequence defined by (l.4) converges if

and only if X _q = g(xo). Since this is true for any x 0, it follows

0>
that whenever h and g satisfy(l.1l1l)theyarethe same. Therefore,
except for the uniqueness of h, Theorems 1 and 2 have been proven.
But the uniqueness of h is also similarly proven since it may like-

wise be shown that if

A A1
(1.37) h=P+h
A
for some homeomorphism h, then (l.25) converges if and only if

= (x,).
Let g, be any homeomorphism for which Theorem 3 is to be

1

tested, and choose

(1.38) h1 = glﬂgzﬂP
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Then h1 < g, implies by induction that for n > 0,

1
-1 1
(1.39) 8n = Pt eon SP YRy g = by
and
-1 -1
(1.40) Comi1 TP T2 P hy =hy

Therefore, the sequence {gznﬂ} is bounded from below by{h2n+l}

and €1 is bounded from above by {th} . However, h, < gz sim-

1
{an-l-l} is bounded from above by {th} and {an

is bounded from below by th—l . h1 < P implies that both {h2n+l

and }th converge uniformlyto h oneverybounded subset of [0,00).

ilarlyimpiies that

Therefore, g, alsoconverges uniformlyto h onevery bounded sub-
set of [0,00). Identity (1.12) then implies that {g;ll } also converges
uniformly on every such bounded subset.

Toprove Theorem 5, note that if P maps integers into integers
and that if X and X 3 RE
then the sequence definedinductivelyby(l.4) must consist of integers.
But

are positive integers such that h(xO) =x

(1.41) x =t (x

>
- 0) for n2 0

implies a slow convergence of {Xn which contradicts the assertion
that the elements of the sequence are integers.
II. Sequences defined by

(2.1) x

are considered in this section of the paper. The homeomorphic identity

(2.2) h+h™ =P

associated with (2.1) is also discussed here. In order to establish
theorems concerning the unique convergence of sequences generated by
(2.1) and concerning the existence of solutions to (2.2), additional

properties of P will need to be assumed.
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Lemma 1: Let h and g beanytwohomeomorphisms. Then
-1 - -
(2.3) (hUg) " =h lﬂg 1
and
-1 -1 -1
(2. 4) (kNg) " =h "Ug

Proof: To prove (2. 3), itis sufficientto show that (hyug)(x) =y
implies (h-lﬂg-l)(y) = x. Whenever

(2.5) g(x) € hix) = y ,

then

(2. 6) h ) = x= 57 gx) < g7 hix) = ¢ Hy)
and so

(2.7) g Hy) =n iy = x

Similarly, whenever
(2.8) h(x) c glx)=vy

then (2.6) and (2.7) follow when h is replaced by g and g is re-
placed by h. Hence, (2.3) has been proved.

Replacing h by h_1 and g by g_l and applying (2. 3) proves
(2.4).

Lemma 2: Let h and g be two homeomorphisms such that
-1 -1
(2.9) h+h =g+¢g
Then
-1 -1
(2.10) hUg + (hUg) " =h +h
and
-1 -1
(2.11) hNg + (hNg) " =h +h

Proof: The hypothesis (2.9) implies that for every x,
(hUg)(x) = h(x) if and only if (h—lﬂg-l)(x) = h_l(x). Therefore,
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(2.12) h+nt

=(h+h e e h

<hUg +h gt

<h+n Hug+egh

=h+h!

Since the middle term of (2.12) equals h +h_l, application of Lemma
1 to it yields (2.10). If h is replaced by h_1 and g by gql, then
(2.9) remains invariant. Therefore, if these substitutions are applied
to (2.10), the result is also valid. But in view of Lemma 1, this is

equivalent to (2.11).

Lemma 3: Let h and g be any two homeomorphisms such

that h> g> I. Then for any x> 0,

X

) .
(2.13) f [h(t) +h™1(5)] a2 f [at) + g7 ()] at
0 0

and (2.13) becomes an equality if and only if

(2. 14) g(t) = h(t) forall b (x)< t < x

Proof: The set of all points (s, t) such that
(2.15) 0 <s <x ,

nls) <t < g )

is the same as the set such that
(2.16) 0 <s <x,
g(t) < s <h(t) and

0<t <g tx)

Therefore (see Figures 1 and 2)
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xX x
(2.17) f [h(t) +h 1 (t)] at f [et) + g (1] at
0 0
xX xX
=f [h(t) - gt)] at f [el(s) - nl(s)] as
0 0
x g (%)
= f [h(t) - g(t)] dt -f [min(x, h(t)) - g(t)] dt
0 0
g (%) x
:f [B(t) - x] dt +f [h(t) - g(t)] dt > 0
-1 -1
h " (x) g (x)

with equality if and only if h™ (x) = g '(x) and h(t) = g(t) for

11

g "(x) £t < x. Butthese last two conditions together are equivalent

to (2.14).

X

Figure 1: f [h(t) - g(t)] dt for twotypicalhomeomorphisms h and

0
g suchthat h> g > 1 and h(x) > g(x).
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I
X
Figure 2: f (g-l(t) - h-l(t)] dt fortwotypical homeomorphisms h
0
and g suchthat h> g > I and h(x) > g(x).
Theorem 6: Let h and g be any homeomorphisms. Then
(2.9) h+h.l-—-g+g_l
if, and only if,
(2.18) g(x) = either h(x) or h-l(x) for all x> 0
Proof: Define
) -1 -1
(2.19) fl = (hUh ")u(gug ) and

£, = (Ub™H)N(gug ™)

Then (1.9) implies that

(2. 20) £> £, > 1
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Whenever (2. 9) holds, Lemma 2 may be applied four times to yield

(2.21) £+t o 4! 1

1t h 2 Tf =h+h

But integrating (2.21) and applying Lemma 3 to f
that f1 = fZ' Therefore

1 ‘and fz proves

(2.22) hUR™! = gUg’l

Now Lemma 1 may be applied to obtain

1 -1

-1 -1.- -1.-
(2.23) pnb™ = (hun™H 7! = (gug™h ! = gng

But (2.22) and (2. 23) together imply (2.18).

To prove the converse, note that (2.18) implies that h(x) = x
if and only if g(x) = x. Therefore, the set {xlh(x) # x}is the same
set as {x,g(x) #x} . Since g and h are both homeomorphisms,
each component of this set is mapped homeomorphically onto itself by
h and also by g. Furthermore, neither h-I nor g-I changes sign
on any such component. So (2.18) implies that, on each component,
either g=h and g_l = h_1 or else g= h_1 and g_l = h. There-
fore, (2.9) holds on each such component. But(2.9)alsoholds wher-

ever h(x) = g(x) = x.

Corollary: Given any homeomorphism h, there exists one
and only one homeomorphism g such that g2 I and (2.9)
h+h!= g+g-1.
Theorem 7: Let h be any homeomorphism. Then for each
x>0,
X
-1 . 2.
(2.24) [h(t) +h™7(t)] dt2 x’
0
and (2. 24) becomes an equality if and only if
(2.25) h(x) = x
Proof: Lemma 2 implies that

(2. 26) huh ! + (hUh ™) = h e n!
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Inequality (1.9) implies that the two homeomorphisms hUh"1 and- I
satisfy the conditions of Lemma 3. Therefore, (2.24) is established,

and (2.24) becomes an equality if and only if

(2.27) (hUh™1)(t) = t forall (RUR) ‘(x) <t < x
But (2.27) is equivalent to (2. 25),

Definition:  Given two functions f and g, let either ffg or

glf be defined to mean that
(2.28) (t,) - £(t)) 2 glt,) - glt))

for all t and tz on the domains of f and g such that tz > tl.

Note that if f and g both have continuous derivatives, then this is

equivalent to

d d
= > =
(2.29) It f(t) > I g(t) forall t .
Remark: Let a bea positive realnumber and let f be a con-

tinuous function of [0,00). Then £(0) =0 and f?a 1 ifand onlyif fis

a homéomorphism and f l,a_l I.

Theorem 8: Let a> 2 and P%al. Define the sequence of

homeomorphisms {hn} inductively by h1 =1 and

(2.30) h ,=P-h n>1 .

Thenthe sequence } h convergesto a homeomorphism h such
q n g

that
2.2) h+hl=p
and B
a +‘/ z + 4
(2.31) hT{__g-—__} I.

Furthermore, the convergenceis uniform on every bounded sub-
set of [O, ®).

Proof: Define by induction, r, =1 and r =a -r_l. Then
_—_— 1 n+l n

hl']\ rll and by induction,
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(2. 32) niyeln
n n
and
(2.33) h o =P-hlfar-rti=r 1
n+l n n n+1
and the hn are all homeomorphisms.
Also,
(2.34) h2=P—IZI=h1
and so by induction,
(2. 35) h =P-hl >p-nlt-n
: nt+2 = n+tl = n ~ ntl

Since foreach x> 0, hn(x) is a monotonic non-decreasing sequence
of numbelfs bounded above by P(x), the sequence {hn } is pointwise
convergent. Since the r ~are increasing, (2.32) implies that the
h™" are uniformly equicontinuous on every bounded subset of [O, ).
But this combined with (2. 30) implies that the hn are also uniformly
equicontinuous on each such subset. Therefore, the sequence {hn}
converges uniformly on every bounded subset of [0,00) to some
homeomorphism h.

Since {rn } is increasing but bounded by a, it must converge go
some number r such that 1 <r <a. By continuity, r=a -1 .

Therefore, hfr I which is the same as (2. 31).

Theorem 9: In addition to the hypothesis to Theorem 8, let
P} Bl where B is some real number 2 a.
Then

(2.36) h{

B

(),

where h isthe homeomorphism towhich the sequence of homeomor-

phisms of Theorem 8 converge.

Proof: Define vy = 1 and by induction

(2.37) v . =B-v
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Then by induction

-1 -1
(2.38) hn_HJ,'E—hn YBI - v I=v 1.

Therefore, hyv I, where

o _(6+VBZ+4)
v lim v —_—

(2.39) = >
n -3

Corollary: Let P=al. Then

(2. 40)
Lemma 4': Let

(2.2) h+h =P

and let X and X_y be two positive real numbers such that

(2.41) X, < h(xo) =x_,

0
Then the sequence {xn } defined inductively by

(2.1) X = P(Xn) - X1

n+l

will converge monotonicallyto y, where y is the largest real number

such that

(2. 42) h(y) =y <%, -

However, for no n > 0 is X =Y.

Proof: For n= -} or 0, we have that x = h—n(xo), where

/
hO is defined as 1. Therefore, by induction, for n > 0,

(2.43) X = P(xn) - X

nt+l n-1
= h(x ) + b x )
=Ry Zn! T Fn-1
_ . -ntl -n-1 -n+l
=h (XO) +h (xo) - h (XO)
- h‘n'l(xo) .
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Since h~ (xo) < x4, the sequence {Xn } must converge to y as de-

scribed.

Theorem 10: Let h beanyhomeomorphism suchthat h +n7t

maps positive integers into integers. Then h will never map any

positive integer p into an integer unless h(p) = p.

Proof: If the theorem is false, then there exist positive inte-

gers p and q such that

1

(2. 44) hUh "(p) =q > p
Lemma 2 implies that
(2. 45) huh !+ un™ )yt =k 4t
Define X, as p and x_, as ¢ and define the sequence {Xn} induc-
tively by
-1
(2.46) X 11 = h(xn) +h (Xn) - X

Then applying Lemma 4 to hUh—l, one may see that {xn} must
slowly converge as described in the lemma. However, this contra-
dicts the fact, which maybe easilyverified by induction, that the se-

quence {x } consists of integers.
n

Theorem 11: Let P12I and P> 2I on (0,o). Let X and

x be two positive real numbers.

-1
Then anecessaryand sufficient condition that the sequence de-

fined inductively by

(2.1) X 4 = P(xn) - %X
converges is that h(xo) =X where h 1isthe unique homeomorphism
such that h2 I and
-1
(2.2) h+h " =P

The sequence will contain a non-positive element if and only if

h(x <x_ Also, x > Xn for some element if and only if

O) 1° n+l

h(xo) > X _qs and this holds if and only if
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(2.47) lim x_ =+ .
, n
n— oo
Proof: The existence and uniqueness of h 1is given by Theorem

8 and the corollary to Theorem 6, P > 21 and (2.2) imply that h > 1.
If X = h(xo), then Lemma 4 implies that x ~converges monotonically
to zero.

Let x and Y4 be positive numbers suchthat x

0° Yor *o1 o~ Yo
and y_; -x_; =€ > 0. Define {x | inductivelyby (2.1) and likewise
{Yatby

(2. 48) Yoa = PO - v,

If n= -1, then

(2.49) x -V, 2 n €
and

Therefore, by induction, for n 2 O,

(2.50) (Xn+l - Yn+l) B (Xn B yn)

Plx ) - Py ) - (x_ - y) - oy - v )
2o -y - Y, )2 8

and

= (Xn - Yn) - (Xn—l - Yn—l) + (Xn—l - Yn—l)
2 et (Xn»-l h Yn—l)
>+ (n-1)€ =n € .

If Y1 = h(yo), then (2.49) implies that X is always positive for
n > 0 and it converges to infinity. If X = h(xo), then (2. 49) implies

that Yy is monotonic and will attain negative values.
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I11. Let a and b be monotonic increasing mappings of positive
integers into positive integers. Thenthe sequences {a(n) } and {b(n) %
are said to be complementary if and only if each positive integer is
represented in one and only one of these sequences.

Given a real number r, define [r] as the integer part of r,

namely [r] is that integer such that

(3.1) [r]sr <[r]+1
Define [ r]* as that integer such that

(3.2) [r] <r s[cpr+1,
or equivalently

(3.3) [r]*=-1-[-r]

A result of S. Beatty, see Reference [1], is essentially that
given a positive irrationalnumber x, then the sequences [(1 + x) n]
and {_(l + x-l) n:i are complementary. This result has since turned
up many times in the literature, often in the form that if a and §
are twoposi;ive irrational numbers such that o * + B—l =1, then the
two sequences [an] and [fn] are complementary.

A generalization of this result by Lambek and Moser states
that the sequences {a(n) } and {b(n) } are complementary if and only
if for each pair of positive integers m and n, either a(m) - m <n
orelse b(n) - n < m butnever both. This resultcombined with Lem-

ma 5 mayalsobe used to prove Theorem 12 instead of the proof given,
Lemma 5: Let f and g be homeomorphisms such that

(3. 4) T eg =1,

Then f{-1 and g -1 are homeomorphisms and

(3.5) (f-0)(g-1)=1

Conversely, let h be any homeomorphism. Then

-1 -1.-1

(3. 6) - (I+h)"™" +(I+h) I.
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Proof:
(3.7) f-I=(I-f")f=g "~ f and

g-I1=(1-g )g=1f g

But g—l f and f-l g are homeomorphisms whichareinverses of each

other.
(3. 8) a+n) s a+nh?

—a+ntragen et e gent

= (I+ h)'1 + (I + h’l)'1 (I +h'1) h (I+ h)'l

=(I+ h)‘1 +h (I +h)'1

S(I+h) (I+h) =1

Theorem 12: Let f and g be twohomeomorphisms such that

(3. 4) legtar

Then the two sequences {[f(n)] } and {[g(n)]*} are complementary.

Proof: Given a non-negative integer m, let n; be the num-

ber of elements of {[f(n)] } which are less than or equal to m, and let

n., be the number of such elements of {fg(n)]*.} Then

2

(3.9) f(n1)<m+1 <__f(nl+l) and

g_(n2)§m+1 <g(n2+l)

Applying f_l and g—l to (3.9) yields

1

(3.10) n f'lf(nl) <! (m +1) gf_lf(nl+l):n1 +1

1

-1 -1 -1
n,=g g(n) <g (m+l)<g gl +1l)=n,+1

Adding the two parts of (3.10) together yields

(_3.11) n+n2<m+l<nl+n2+2

1



1966 HOMEOMORPHIC IDENTITIES, AND INDUCTIVELY 21

DEFINED COMPLEMENTARY SEQUENCES
Since nl, n2 and m are all integers, it follows that

(3.12) n, +n, =m

Therefore, each positive integer is represented once and only once

by the sequences, but only positive integers are represented.

Corollary: Let h be any homeomorphism. Then the se-

.

quences n + [h-l (n)]* and n+[h(n)] are complementary.

Proof: Apply Lemma 5 to the theorem.
The analysis of Wythoff's game (see Reference [ 4]) involves

complementary sequences {a(n)} and {b(n) } such that

(3.13) b(n) = a(n) +n .

In a later paper, a generalization of Wythoff's game will be given for
which the analysis will involve complementary sequences such that

(3.14) b(n) = a(n) + (k + 1) n,

where k 1is some non-negative integer which defines the game.
Beatty's result is easily used to show that the complementary se-

quences satisfying (3.14) are

[( 1-k+ V(k+1)2+4> n] nd

(3.15) a(n) e

[(3+k+m> n]

b(n) >

Theorem 13 may be thought of as a generalization of this result.

Theorem 13: Let P mapintegersinto integers. Let the se-

quences be defined inductively as follows:

(3.16) a(l) = 1
(3.17) b(n) = a(n) + P(n) n >0

a(nt+l) = smallest integer not

represented by either af(i)

(3.18) or b(i) for some i< n
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Then
(3.19) a(n) = n + {h'l(n)j and

b(n) = n + [h(n)] .

where h 1is the unique homeomorphism such that

(1.10) h=P+h |
Proof: Theorem.5 implies that
(3.20) [h(n)]* = [h(n)] .

So the corollary to Theorem 12 shows that the sequences defined by
(3.19) are complementary. Since (1.10) implies that h > h—l, (3.18)
and (3.16), which is a special case of (3.18), are satisfied. Equation
(3.17) follows from (1.10) and (3.19) and the fact that the P(n) are
integers.

In Reference [4] is presented the following result: Let k be an

integer greater than 4. Then the sequences defined by

(-E5))

(3.21) a(n)

2

b(n) = [(——————H\/Zk—zj*;)n]

are the sequences such that for n any positive integer,
(3.22) a(n) + b(n) = nk-1
and such that a(n) is the smallest positive integer not represented by

any af(i) or b(i) with i < n.

The following theorem and its corollary may be thought of as
generalizations of this result since they imply it with the help of the

corollary to Theorem 9.

Theorem 14: Let P map integers into integers. Let there

exist a homeomorphism h satisfying

(2.2) h+h =P .
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Let the sequences <ta(n) }and {b(n) } be defined inductively as fol-
lows: a(n) isthe smallestpositive integer not represented by earlier

elements of a and b, and
(3.23) b(n) = P(n) + 2n-1-a(n) .

Then no positive integer will be represented twice by the two

sequences and for each n> 0,

(3.24) a(n) =n + [h'l(n)]* and

b(n) = n + [h(n):% s

\

where h is the unique homeomorphism such that h > I and (2.2) is

valid.

Proof: The sequences defined by (3. 24) are complementary by
the corollaryto Theorem 12. Since h satisfies (2.2), the sequences
defined by (3.24) satisfy (3.23). Finally, monotonicity of the se-
quences, their being complementaryand the fact that h~1 <~ h imply

that a(n) is the first such integer not previously represented.

Corollary: Let P(n) # 2n for any integer n > 0. Then

(3.25) a(n) = n + fh_l(n)_]

Prootf: Theorem 10 implies that j:h-l(n)J % :[h_l(n)] .

Theorem 15: Let {a(n)} and {b(n)% be the sequences of

Theorem 13. Let X0 and X

the sequence { x } be inductively defined by

be any two positive integers. Let

(1.4) X =x

Then the first element of this sequence of integers to be non-

positive will have an even subscript if and only if

< -
(3.26) X, < a(x_l) X,
which in turn is equivalent to
(3.27) X b(xo) - X -
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Proof: Theorem 5 implies that h(XO) # X - Hence (3.19) im-

plies that (3.26) and (3.27) are both equivalent to x > h(x The

1 O)'

proof is now completed by applying Theorem 4.
This theorem may also be proven by the results of Lambek and
Moser (Reference [6]).

Theorem 16: Let P mapintegersintointegers and P21 and
P> 21 on [O, o) andlet a(n) and b(n) bethesequences of Theorem
14. Let x, and x_

0 1
X be inductively defined by

be any two positive integers. Let the sequence

(2.1) x = P(xn) - x

n+l n-1

Then the following four statements are logically equivalent:

(3.26) X < a(x_l) - %)
(3.27) x_ 1> b(xo) - X
(3.28) {xn } contains a non-positive element

{xn} is monotonic decreasing

Proof: Theorem 10 implies that h(XO) #x_l. Hence (3.24)

implies that(3.26)and (3.27) are both equivalent to x , > h(xo). The

1
proof is now completed by application of Theorem 11.

Iv. In this section, representations are sought for homeomorphisms
and corresponding complementary sequences associated with P's such

that
(4. 1) P(n) = 2an + 2P

for n a positive integer. The numbers 2a and 2P are assumed to
be integer constants. The requirement that P be a homeomorphism
leads to the conditions that a> 0 and

(4.2) 0.+[3:%P(1)> 0.

Example 1: For this example, letthe function F be defined as

(4. 3) Feo) = (Va®4l - a) x - B + (Va®+l - 1) B/a

The inverse of this function is
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(4. 4) Flog = (Va241l +a) x + B + (Valtl - 1) B/a .
Define
(4.5) h‘l(x)sz(l) 0<x <l

h'l(x) = F(x) x> 1

-1
For h to be a homeomorphism, itis necessarythat F(1) > 0.
With some algebraic manipulation, itis readily seen that this require-

ment is equivalent to
(4. 6) (@ +2B)(1-B)> B or
@t B(1-2B) > -p

Byutilizing (4. 2), itis seenthat (4. 6)is satisfied if and onlyif B < 1/2.
Condition (4. 2) and the requirementthat a > 0 implythat h_l(l) < 1.

Therefore,

(4.7) hix) = F -l (x) x2 1
and so for n a positive integer,

(4. 8) h(n) = 2an + 28 +h '(n) .

So Theorems 5 and 13 give that the sequences

(4.9) a(n) =n + [F(n)} and
b(n) = n + [F Hm)]

are complementary and satisfy

(4.10) b(n) = 2an + 2@ + a(n) > a(n)

unless P2 1. In the case where B2 1, other representations are
needed. Setting P =0 and a= (k+l)/2 yields (3.15).
For the next two examples, a homeomorphism h > I is sought

such that for n a positive integer

(4.11) hin) + b (n) = 2an + 28

However, in some cases of Example 3, a homeomorphism is found

that only generates the complementary sequences that would be gen-
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erated by a homeomorphism satisfying (4.11). In these cases, a re-
presentation of these sequences is obtained.
Theorem 7 implies that a > 1. Since the sum of two unequal
positive integers is at least three, Theorem 14 implies that
) ,
(

(4.12) atp=(hO)]+[h ()]x+1)/221

Example 2: For this example, let B < 0 and let the function
F be defined as '

(4.13) F(x) = (a \jaz—l) x+p-8 Vo.z—l/(o.—l)

If a=1, then B =0 and let the last term of (4.13), which would be

indeterminate, be assumed to vanish. The inverse of this function is

(4.14) F o0 = (@ + VaZ-1)x + B + B Va2-1/(a-1) .

Let h—l be defined according to (4.5) withthis F being used instead
of the F of Example 1. The conditions on a and $ imply that

(4.15) 0 < F(x) £ x x2 1
Therefore, for x> 1, h(x) = F_l(x) and so (4.11) is satisfied for any
positive integer n.

If a> 1 and B =0, thenapplication of the corollary to Theorem
14 yields Ky Fan's result summarized by (3.21) and (3.22). If a=1
and B =0, then h =1 and the resulting complementary sequences are

represented by

(4.16) a(n) =2n -1 and
b(n) = 2n
Example 3: For this example, let B > 1/2 and let the function

F be defined for x> 1 as

(4.17) F(x) = ax +p - \[(axﬂi)z - (x-ﬁ)2 -€

i

i

ax + B - V(cd-l)(axz - xz + 2Bx) - €

where € isaconstanttobeappropriately chosen. The inverse to this
function is often two-valued. Considering only the largest of these two

values yields
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(4.18) Fl(x) = ax +p +J(ax+@)2 - (x-B)° - €

It may be shown that dF(x)/dx > 0 if and only if

(4.19) (x+B) {(o.—l)x + Ba + s} > a%e /(at1)

Furthermore, if €= 0, then F(x) is positive for all x > B. So for

, set € = 0 and define h-1 with this F ac-

| =

the case where B =
cording to (4.5).
For this case, 0 < F(1) < 1. Therefore

(4.20) hix) = F "(x) x2>1

Application of Theorem 14 and its corollary imply that the sequences
defined by '

(4.21)  afn) = [(a+l)n + 3 Y (2-1)n? + (at1)n] and
1 2 2
b(n) = [ (at+l)n + 5 +J(a -1)n” + (atl)n]

are complementary and that
(4.22) a(n) < b(n) = 2(atl)n - a(n)

In the paper that will generalize Wythoff's game, related games will
be presented whose analysis utilizes these two complementary se-
quences.

For B =1, choose € > 0 but sufficiently small that
(4.23) 0 < F(l) < F(2) <1

and that (4.19) is satisfied for x > 2.

Define

(4. 24) h " (x) = xF(x) 0

IA
X

A
—

Then h(x) = F_l(x) for x > 1. Consequently, h will satisfy (4.11)

for this case.
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If g1 %, then F(l1) > 0 implies that € <(ﬁ-l)2. It may be
shown that this in turn implies that F(l) > F(2pf-1). Consequently,
there does not exist anyhomeomorphism which equals F for positive
integers. However, for certain cases, homeomorphisms will be de-

fined such that

(4.25) [b7 (m)]* = [F@)]* = [F(n)] and

h(n) = F~}(n).

So in these cases, the sequences defined by (4.9) are complementary

and satisfy
(4.26) a(n) < b(n) = 2(at+l)n + 2B - 1 - a(n)

If 2B > 3 is odd, thenthe requirementthat F(B % %) be positive
implies that € > - 1/4, If 2B2 4 is even, then positivity of F(B)
implies that € > 0. Forthe sequencesdefined by (4. 9) to be monotonic

and complementary, it is necessary that
(4.27) [F(1)]==a(l)-1=0 .

The requirement that F(l1) < 1 is equivalent to

(4.28) 2(atl) - (B-2)% > ¢ .

If 2B is odd, then the left side of (4.28) equals 3/4 modulo one, but
if 2B is even, the left side is an integer. Therefore, a necessary

condition for the attainment of the present objectives is that
(4.29) 2(a+1) > (p-2)°

This condition will also turn out to be sufficient. Furthermore, to at-

tain these objectives when (4. 29) is valid, it is sufficient that

(4. 30) 0 <€«

| =

Condition (4. 30) implies that (4.19) is satisfied whenever
x> B+ % Also, (4.30) may be shown to imply that

(4.31) F(B+l) < 1
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Define

(4. 32) R ) = xF([BHLT/[BH] 0 x < [BH]

nlx) = Fx) x> [BH1] .

-1 . . .
Then h is a homeomorphism, and since

(4.33) nie]e<n

it follows that

(4. 34) hix) = F -l (x) x2 1

Condition (4. 30) implies that F(n) can never be a multiple of%

for any integer n. For any 1 < x < [B+l], both h-l(x) and F(x)
are between zero and one. Therefore, (4.25) is satisfied for all

positive integers as desired.

V. The purpose of this section is to generalize the results of the
first section. Whereas the proof of Theorem 17 uses ideas not found
in the first section, the remainder of this section utilizes mostly
straightforward generalizations of the techniques of Section I plus ap-
plications of Theorem 17. In this section, M always referstoa posi-

-1 . .
tive real number and M to its reciprocal.

Theorem 17: Let <1 andlet h and g betwohomeomor-

phisms such that

-1 -1
(5.1) htpg l=giunt .
Let h(x) # g(x) for some x > 0. Then h(t) >t for all t> x.

Proof: Given any point t > 0, if h(t) > g(t), then
-1 -1 -1
(5.2) h "h(t) = g "g(t) < g "h(t)
which by (5.1) implies that

(5. 3) hh(t) > gh(t)

Similarly, h(t) < g{(t) implies (5. 3) with the inequality reversed,
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If the theorem is false, then for some point x, h(x) ¥ g(x) and

either

(5. 4) h(x) < x

or else

(5.5) x < h(x) < X = h(xO)

for some point X0 Define x, as either x or h(x), whichever satis-
fies

(5. 6) hix)) < glx) -

For n > 1, define x as hn—l(xl). Then in case of (5.4), the se-
quence { Xn} is monotonic non-increasing and bounded below by zero.
Incase of (5. 5), {Xn

The first paragraph of this proof implies that for n > 0,

is monotonic increasing and bounded above by Xge

(5.7) h(x, 1) <glx, ;) and

h(x, ) > glx, ) -

Let (yn, zn) be the component of {tlh(t) 7 g(t) }which contains X .
Then the first paragraph of this proof implies that the open intervals

(yn, Zn) are all disjoint and that for n > 0

(5.8) Vo4 = Bly)) =ely ) and

1

“n+l h(Zn) g(zn) :

When (5. 4) holds, then
(5.9) 2o S Y, <X <2z

and when (5.5) holds, then

(5.10) V. <X <z

1A

Integration by parts and (5.8) imply that
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“n+l
(5.11) (- ™ f ; g(t) - h(t)
Yn+l
Zn+l
=- (-w" f gtdgm - tdh(t) f
Yn+1

which replacing g(t) by u- and h(t) by v

Zn Zl’l

= - (-m" {f g_l(u)du - f h‘l(v)dv}
Yn Yn
Zn

1l
T
h S
B
1
—
)0}
1
[an
=
———
[eN)
=

which by induction on n

f gg(t)— t)?dt>0

In case of‘,(5.4), define x, as z

0 1 Then for either case,

X

0

(5.12) f ;hUg - hNg ((t) dt
0

i |
%hug - hmg( (t) dt
ly

=1

g(t) - h(t) ( dt

S

I
8

31
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which is impossible.

Corollary: Let g4 > 1 and let h and g satisfy (5.1). Then
h{x) # g(x) implies that h(t) <t for all t> x.

Prooi: Replace h by h_l, g by g—l and g by u -1 and
apply the theorem.

Theorem 18: Let h and g be two-homeomorphisms such that
(5.13) hntgl=g+nt
Then h = g.

Proof: Use Theorem 17 and its corollary.

Theorem 19: Let h1 be a homeomorphism such that hl < P.

Define by induction for n > 0,

_ -1
(5.14) B, = P+Mh

Then on each bounded subset of [0,00), &h ‘ and {h converge
2n-1 2n

uniformlyto homeomorphisms h and g respectively. Furthermore,

h <€ g and

(5.15) h=P+pug ' and

P+uh'l

g

Proof: The arguments of (1. 13) through (1. 24) and the next par-

is replaced by p h;ll and

agraph remain unchanged except that h;ﬁ L

1

- . -1
hrn- is replaced by y hm

1 -1

Thearem 20: Let # € 1 and x, bea positive number. Then

0
there cannot exist more than one positive number X_q such that the
sequence x defined inductively by
(5.16) X = _1x - —1P(x )
' n+l M n-1 b n

converges.

Proof: Let Voo %_1° € and Y1 be positive numbers such that
Yo = %o and R € .
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Define {yn} inductively by

1 1

Yn-1 ~ M P(Yn)

(5.17) Yol = m

Thenanalogous to (1. 32), (1.33) and (1. 34) are the similarly obtained

results
(5.18) __—

. Yy - X1 =¥ €
and

-1

(5-19) Yon " ¥zn <M Uzpnop = %op.2) <0
and
(5.20) - x > - x ) > -n-1

: Vont1 " ¥ant1 7 M a1 " Fpp) 2 E 28
So at most one of the sequences may converge.

Theorem 21: Let h and g betwohomeomorphisms suchthat

(5.21) h=P +pu hot
and
(5.22) g=P+;lg-l
Then h = g.

Proof: Identities (5.21)and (5.22)imply(5.1). If u 2 1, then
(5.21) implies that h > h-l. Therefore, h > I and the corollary to
Theorem 17 finishes the proof for M > 1,

If M <1, then for any x > 0, either h(x) < x or g(x) < x or
else h(x)> x and g(x)> x. In the first two cases Theorem 17 im-
plies that h(x) = g(x). Inthelastcase, the sequences [ Xn} = {h—n(x)
and {Yn = g-n(x) are both convergent., Butthese sequences satisfy

(5.16) and (5.17). Since X0 = Vg T % Theorem 20 implies that

(5.23) h(x) =x_; =vy_; =g
Theorem 22: Let y <1 and P+ I> 1. Let g be any
homeomorphism. Then the sequence of homeomorphisms defined

inductively by
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-1
(5.24) g = P+ugn

n+l

converges uniformly on every bounded subset of ‘E_0,00) to a unique

homeomorphism h such that

(5.21) h=pP+Mn L,

Proof: Choose
(5. 25) hl :‘glmgz(ul)ﬂP .

Then Theorem 19 is applicable. For any x > 0, g(x) » x for if not,

h(x) < g(x) < x which implies that h—l(x) > x and hence that

(5.26) g(x) = P(x) +u h_l(x)z P(x) tux >x
Therefore,
(5.27) hg:(p+ug“1)g=pg+u1> P+HI > 1

But hg > I implies that h > g—l which in turn implies that gh > I. °

For any point x, > 0, define x as h(x Let the sequence

).
0 1 0
{Xn be defined inductively by (5.16). Then arguments analogous to

(1.28) and (1.29) imply (1.26) and (1.27). Since

(5. 28) N

the sequence { Xn} converges to zero.\l By similar arguments, if X
is defined as g(xo), the sequence {an will still converge. Theorem
20 therefore implies that g(xo) = h(XO)" Since h = g, the convergence
for g insert p into the proper positions of (1.39) and (1. 40), and
continue the argument of the paragraph containing (1.39) and (1. 40).

Uniqueness of h is obtained from Theorem 21.
Corollary: Let h and g be two homeomorphisms such that

(5.15) h=p+”g'1 and

g:P+uh'1 .

Let M <1 and P +uI1 >1, Then h=g.
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Theorem 23: Let M £1 and P +p1 >1. Then a sequence
generated by (5.16) will converge if and only if X = h(xo)

h is the homeomorphism of Theorem 22. Furthermore, if it does

where

converge, it will converge to zero.

If h(xo) > X_1s thenall of the evenly subscripted elements of the
sequence are positive, but all but a finite number of the elements
with odd subscripts are negative.

If h(x0)< X_1s then all of the odd subscripted elements are
positive and all but a finite number of the even subscripted elements

are negative.

Proof: P +pul >1I and(5.21)implythat h > I. If h(xo) = X_l;
then{xn} = h~n(XO) and the sequence converges to zero. When
h(xo) # X_1s then (5.19) and (5. 20) may replace (1.33) and (1. 34) in
order to continue the arguments of the paragraphs containing (1. 33)
through (1. 36).

Theorem 24: Let M -1 be an integer, let P map integers
into integer multiples of M and let P +u I >I. Then the h satis-
fying

(5.21) h=P +uh
will never map a positive integer into an integer.

Proof: Use the proof presented in the last paragraph of Sec-

tion I.
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Please notify the Managing Editor AT ONCE of any address change.
The Post Office Department, rather than forwarding magazines mailed
third class, sends them directly to the dead-letter office. Unless the
addressee specifically requests the Fibonacci Quarterly be forwarded
at first class rates to the new address, he will not receive it. (This
will usually cost about 30 cents for first-class postage.) If possible,
please notify us AT LEAST THREE WEEKS PRIOR to publication
dates: February 15, April 15, October 15, and December 15.



