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I. Consider the following r e c u r s i v e formula for generat ing s e -
quences , where A is a given posit ive number: 

(1.1) x = x - Ax 
' n+1 n-1 n 

It is well known that any sequence so generated is of the form 

(1. 2) x = C,R^ + C0R^ , 
n 1 1 2 2 

where C, and C ? a r e constants , and R and R a r e the roots of 

(1.3) x 2 = 1 - Ax . 

Let R, be the posit ive root which is less than one, and let R_ be 
the root that is less than minus one. Then this sequence converges 
if and only if C ? = 0; and when it does converge, it converges to ze ro . 
So given two posit ive numbers x , and x n , this sequence converges 
if and only if x / x = R . F u r t h e r m o r e , if A is an in teger , then 
R is i r r a t i ona l . 

It should be noted that sequences genera ted by a r e c u r s i v e form-
ula such as (1. 1) may be continued in the opposite d i rec t ion . If A= 1, 
then the r e c u r s i v e formula obtained for going in the opposite d i r e c -
tion is the formula used for generat ing Fibonacci n u m b e r s . 

Let P be a homeomorph i sm of |?0,oc ) onto itself. In other 
words , P(0) = 0 and P is a continuous, unbounded, s t r i c t ly i n c r e a s -
ing function of non-negat ive r e a l n u m b e r s . Then the quest ion a r i s e s 
as to the convergence of the sequence s tar t ing from two posit ive num-
b e r s x , and x n and genera ted by the formula 

(1.4). x ,. = x 1 - P(x ) . 
n+i n-1 ir 

Although the p rope r t i e s to be d i scussed will depend on the na ture 
of P on (_0,oo) only, to facil i tate the d i scuss ion it will be a s sumed 
that P is a homeomorph ism of the ent i re r ea l l ine. But for this 
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exception, the word homeomorphism as used in this paper will refer to 

a homeomorphism of pO, oo) onto itself. Given two horneomorphisms 

h and g, their sum and products are defined as those horneomorphisms 

respectively satisfying 

( 1 . 5 ) (h ••+ g)(t) = h(t) + g(t) 

(hg)(t) = h [g(t)] and 

(gh)(t) = g[h(t)] for all t > 0. 

The inverse h of h is that homeomorphism such that 

(1. 6) hh"1 = h_1h = I , 

where I is the identity homeomorphism. The relation h < g is de-

fined to mean that h(t) < g(t) for all t > 0. Similarly, h < g means 

that h(t) < g(t) for ail t > 0. Note that h < g if and only if h~ > g~ 

and that h <_ g if and only if h > g 

Given two homeomorphisms h and g, define h(Jg as that 

homeomorphism such that (hljg)(t) is the largest of the two numbers 

h(t) and g(t) for all t > 0. Define hf)g as that homeomorphism 

such that 

(1.7) hHg +hUg- h + g . 

In other words, hflg is the minimum of g and h. Note that for any 

h and g, 

(1.8) hHg = gHh < h < hUg = gUh . 

Also note that for any homeomorphism h, 

(1. 9) hDh'1 < I < hUh"1 . 

The remainder of this first section of this paper is devoted to 
proving the following five interrelated theorems: 

Theorem 1: There exists a unique homeomorphism h such 
that 

( 1 . 1 0 ) h = P + h 



1966 H O M E O M O R P H I C I D E N T I T I E S , A N D I N D U C T I V E L Y 3 
D E F I N E D C O M P L E M E N T A R Y S E Q U E N C E S 

T h e o r e m 2: Le t h and g be two h o m e o m o r p h i s m s s u c h t h a t 

( 1 . 11) h = P + g " 1 and 

g = P + h _ 1 . 

T h e n h = g = t he h o m e o m o r p h i s m of T h e o r e m 1* 

T h e o r e m 3: Le t g, be a n y h o m e o m o r p h i s m . T h e n the s e -
q u e n c e of h o m e o m o r p h i s m s | g I d e f i ned i n d u c t i v e l y by 

( 1 . 1 2 ) g _,_ = p + g " 1 

x ' Bn+1 & n 

c o n v e r g e s u n i f o r m l y on e v e r y b o u n d e d s u b s e t of [ 0 , oo) to the h o m e o -

m o r p h i s m h of T h e o r e m 1. 

T h e o r e m 4: The s e q u e n c e g e n e r a t e d by ( 1 . 4 ) f r o m two p o s i -

t i v e n u m b e r s x , and x c o n v e r g e s if and on ly if x = h(x ), w h e r e 

h i s the h o m e o m o r p h i s m of T h e o r e m 1. A l s o , w h e n e v e r t h i s s e -

q u e n c e c o n v e r g e s , i t c o n v e r g e s to z e r o . 

If h ( x n ) > x , t h e n a i l of the e l e m e n t s of the s e q u e n c e w i t h 

e v e n s u b s c r i p t s a r e p o s i t i v e , bu t a l l but a f in i te n u m b e r of t he e l e -

m e n t s w i t h odd s u b s c r i p t s a r e n e g a t i v e . 

If h (x ) < x , t h e n a l l of the odd s u b s c r i p t e d e l e m e n t s a r e 

p o s i t i v e a n d a l l but a f in i te n u m b e r of t h e e v e n s u b s c r i p t e d e l e m e n t s 

a r e n e g a t i v e . 

T h e o r e m 5: If P m a p s i n t e g e r s in to i n t e g e r s , t h e n the h of 

T h e o r e m 1 w i l l no t m a p a n y p o s i t i v e i n t e g e r in to a n i n t e g e r . 

P r o o f s : L e t h1 be a h o m e o m o r p h i s m s u c h t h a t h.. < P . By 

i n d u c t i o n , fo r n a p o s i t i v e i n t e g e r , de f ine 

( 1 . 13) h , . = P + h " 1 . 
v ; n+1 n 

T h e n n > 1 i m p l i e s t h a t 

( 1 . 1 4 ) h , < P < P + h " 1 . = h . 
1 n - 1 n 

By i n d u c t i o n on m , if 0 < m < n a n d m i s e v e n , t h e n 
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(1.15) h = P + h" 1 . •> P• + h " 1 , = h . 
m m - 1 • n-1 n 

and s imi la r ly , if m > 3 is odd, then 

(1 . 16) h = P + h"'1 , < P + 1 T 1 . ±'h . 
m m - 1 n-1 n 

So the inc reas ing sequence of homeomorph i sms With odd subsc r ip t s 

•(1. 17) h, < h . <: h_ < h_ < h n < 
I D D ( 7 

is bounded from above by the decreasing sequence 

(1.18) h 2 > h 4 > h 6 > h 8 > > 1 0 > — . 

Also, the dec reas ing sequence 

(1.19) h" 1 > h ' 1 > h~X> h~*> - - -

is bounded from below by the inc reas ing sequence 

(1.20) h " 1 < h" 1 < h" 1 < hg 1 < - - . 

Therefore , these four sequences mus t be pointwise convergent . 

Let us now prove that the homeomorph i sms h for n > 1 a r e 
uniformly equicontinuous on every bounded subset of [0 , oo). For any 
r > 0, [0 , r ] is compact and so for any t > 0, there exists ' a 8 > 0 
such that 0 < P ^ ) < P(tu) < r and P(t^) - P ( t . ) < 8 imply that 

Let t, , t ? and n > 1 be such that 

(1 . 21) 0 < h (t, ) < h (tv) < r and 
. *- n 1 ' n 2 ' - • . 

(1.22) h ( t j - h ( t . ) < 8 . 
. n 2 n 1 

Then 

(1.23) 0 < P ( t x ) < P( t 2 ) < P( t 2 ) + \ 5 1 ( t z ) = h n ( t 2 ) < r 
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Also 

(1.24) P( t 2 ) - P( t x ) < P ( t 2 ) - P ( t 1 ) + h " | 1 ( t 2 ) , - h ^ ( t 1 ) 

Therefore t. < t_ < t. + fe . Consequently the h a r e uniformly 
1 Z 1 x n J 

equicontinuous on any set |~0, r j . 
Since the pointwise convergent sequences (10 1 9) and (1.20) a r e 

uniformly equicontinuous on every bounded set | 0, r |, they con-
verge uniformly to continuous functions. However, sequences (1 . 17) 
and (1.18) a r e re la ted to (1 . 19) and (1 . 20) by (1 .13) . Therefore , these 
sequences a lso converge uniformly to continuous functions. But if a 
s e r i e s of homeomorph i sms and their i nve r se s both converge to con-
tinuous functions, then these continuous functions m u s t be homeo-
m o r p h i s m s . Therefore , there exist homeomorph i sms h and g such 
t h a t h , g, h"1. and g"1 ' a r e the l imits of (1 . 17), (1 . 18), (1.19), and 
(1.20) respec t ive ly . Also, (1.13) impl ies (1,11) . 

Let h and g be any pair of homeomorph i sms which satisfy 
(1 . 11). That at leas t one such pair exis ts has just been proven. Let 
x n be a posit ive r ea l number and let x . = h(x_). Then let the s e -
quence 

\l , c.0) X , , X _ , X . . , X _ , X-2, X , , - ' 

be defined inductively by (1.4)c Then it will be shown by induction 
that for n 2 0 

(1.26) x 2 n = ( h ^ g - 1 ) (x0) and 

-1 - l . n 

( l . ? 7 ) x ^ j = h ( h g ) (x0) 

. Equations (1.26) and (1.27) a r e obviously sat isf ied for n = 0 
since (h g ) is defined as I. If they a r e t rue for a given ,n, then 
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( 1 - 2 8 ) X2(n+1)-1 = X 2 n - l " P ( x2n> 

^Mh^g-V-Pth^g" 1 ) 1 1 ]^) 

= ( h - P X h ^ g - 1 ) (x0) 

-1 -1 -1 n 
= g > lg ') (xQ) 

-Hh'g-1) <xo> • 

and a lso 

( 1 ' 2 9 ) X 2 ( n + l ) = X 2 n - ^ ( n - H ) - ! * 

-1 -1 n -1*-1 n + 1 

= (h l
e
 l) (x0) - Ph(h x

g
 l) (x0) 

- l - l n + 1 

= (g-P)h(h V ) (xQ) 
- 1 - 1 n + 1 

= (h g l) (xQ) . 
However, (1.11) impl ies that 

(1.30) h " ^ " " 1 < h ' ^ P + g"1) = h"Xh = I .-

-1 -1 n 
Therefore , (h g ) (xn) converges to ze ro as n tends to infinity. 
Consequently, (1.25) a l so converges to z e r o . 

Let x , y , x and y be any posi t ive n u m b e r s such that 
x 0 = y 0 and y . - x , = $ > 0. Define the sequence j x J inductively 
by (1.4) and l ikewise the sequence j.y } inductively by 

<x-31> yn + i = y n - i - P < V • 

Equations (1.4) and (1. 31) yield 

(1.32) Y l - xx = y_x - P(yQ) - x ^ + P(xQ) = y ^ - x_x = £ . 

Then by induction, for n > 0, 
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( 1 . 3 3 ) 
/ 

a n d 

( 1 . 3 4 ) 

y~ - x_ 7 2 n 2n 

= y - x 0 - P ( y 0 , ) + P (x„ . ' 2 n - 2 2n~2 w 2 n - l 2 n - 1 

< y ' - x < 0 7 2 n - 2 2 n - 2 — 

y 2 n + l " X 2n+1 

= y0 , - x 9 , - P ( y , ) + P ( x - ) 7 2 n - l 2 n - l w 2 n ; v 2n ' 

> y 2 n - l •" X 2 n - 1 > B 8 

If x , = h(x~) , t h e n the y~ t e r m s d e c r e a s e to l e s s t h a n ' - 1 v 0 ' ' 2 n 
( 1 . 35) l i m x 0 = 0 

2n 
n~* oo 

bu t t h e v^ , , t e r m s a r e b o u n d e d a b o v e J 2n+l 
( 1 . 36) l i m x_ J_1 + 8 = e . 

2n+l 
n—» oo 

C o n v e r s e l y , if y = h ( y n ) , t h e n the x~ t e r m s s t a y a b o v e z e r o bu t 

the x~ , , t e r m s d e c r e a s e b e l o w - P . 2n+ l 
In v i e w of the s y m m e t r i c r o l e s of h and g in ( 1 . 1 1 ) , i t m a y 

be s i m i l a r l y s h o w n t h a t t h e s e q u e n c e de f i ned by ( 1 . 4 ) c o n v e r g e s if 

a n d on ly if x = g ( x n ) . S i n c e t h i s i s t r u e for a n y x > 0, i t f o l lows 

t h a t w h e n e v e r h and g s a t i s f y ( 1 . 11) t h e y a r e the s a m e . T h e r e f o r e , 

e x c e p t for the u n i q u e n e s s of h , T h e o r e m s 1 and 2 h a v e b e e n p r o v e n , 

But t he u n i q u e n e s s of h i s a l s o s i m i l a r l y p r o v e n s i n c e i t m a y l i k e -

w i s e be s h o w n t h a t if 
A A _ i 

( 1 . 3 7 ) h = P + h 
A 

for s o m e h o m e o m o r p h i s m h, t h e n (1„ 25) c o n v e r g e s if and on ly if 
A 

x _ l = h ( x o ) e 

Le t g, be a n y h o m e o m o r p h i s m fo r w h i c h T h e o r e m 3 i s to be 
t e s t e d , and c h o o s e 

( 1 . 3 8 ) \ = glng2np . 
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Then h < g implies by induction that for n > 0, 

(1. 39) g0 = P + g^1 i < P + h^1 i = ho 
x ' 6Zn 62n-l ~ 2n-l 2n 
and 

(1. 40) g, ^ ^ P + g ^ P + L ^ L ± 1 o 
v ' to2n+l s2n — 2n 2n+l 

Therefore, the sequence /g n . ,1 is bounded from below by<h0 . . I ' 4 ^ 2 n + l / / , y\ 2x1+1/ 
and <g_ > is bounded from above by < h~ > . However, h. < g^ sim-f 2 n / M 2n/ 1* 52 , 
ilarlyimplies that )g? . I is bounded from above by <h > and <g \ 

is bounded from below by Jh~ n 1 . h. < P implies that both { h_ ._> 
' \ 2n - l / 1 - r V 2n+lf 

and /h~ l converge uniformly to h on every bounded subset of i~0, oo). 
\ Znf ( ) 

Therefore, /g V also converges uniformly to h on every bounded sub-
r ' n ' ( "I \ 

set of |_0,oo). Identity (1.12) then implies that <|g > also converges 
uniformly on every such bounded subset. 

To prove Theorem 5, note that if P maps integers into integers 

and that if x and x . are positive integers such that h(x ) = x 1 , 

then the sequence defined inductively by (1. 4) must consist of integers. 

But 
-1 n 

(1.41) x^ = (h L) (x ) for n > 0 . 

implies a slow convergence of < x I which contradicts the assertion 

that the elements of the sequence are integers. 

II. Sequences defined by 

(2. 1) x , . = P(x ) - x 
x ' n+1 n n-1 

are considered in this section of the paper. The homeomorphic identity 

(2. 2) h + h"1 = P 

associated with (2.1) is also discussed here. In order to establish 

theorems concerning the unique convergence of sequences generated by 

(2.1) and concerning the existence of solutions • to (2.2), additional 

properties of P will need to be assumed. 
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Lemma 1: Let h and g be any two h o m e o m o r p h i s m s . Then 

(2.3) (hug)" 1 = h - 1 n g " 1 

and 

(2.4) (hHg)"1 = h - ^ u g " 1 •• 

Proof; To prove (2. 3), it is sufficient to show that (h(jg)(x) = y 
impl ies (h f)g )(y) = x. Whenever 

(2.5) g(x) < h(x) = y , 

then 

(2. 6) h _ 1 (y) = x = g_ 1g(x) < g_ 1h(x) = g ' V ) 

and so 

(2.7) (h" 1 n g " 1 ) (y ) .= h - 1 ( y ) = x . 

S imi lar ly , whenever 

(2.8) h(x) < g(x) = y , 

then (2. 6) and (2. 7) follow when h is rep laced by g and g is r e -
placed by h. Hence, {2. 3) ha s been proved,, 

Replacing h by h" and g by g and applying (2. 3) proves 
(2 .4) . 

Lemma 2: Let h and g be two homeomorph i sms such that 

(2.9) h + h _ 1 = g + g"1 . 

Then 

(2.10) hUg + (hUg)"1 = h + h " 1 

and 

(2.11) hHg + (hflg)"1 = h + I T 1 

Proof: The hypothesis (2. 9) impl ies that for eve ry x, 
• 1 ^ - l w \ , - 1 , (hUg)(x) = h(x) if and only if (h Dg )(x) = h (x). Therefore , 
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(2. 12) h + h " 1 

= (h + h^yn tg + g~1) 

<.hUg + h^Dg"" 1 

<(h + h " 1 ) U ( g H-g"1) 

= h + h~X . 

Since the middle t e r m of (2. 12) equals h + h , applicat ion of Lemma 
1 to it yields (2. 10). If h is rep laced by h and g by g , then 
(2. 9) r ema ins invar iant . Therefore , if these subst i tut ions a r e applied 
to (2. 10), the r e su l t is a l so valid. But in view of Lemma 1, this is 
equivalent to (2. 11). 

Lemma 3: Let h and g be any two homeomorph i sms such 
that h_> g > I. Then for any x > 0, 

x x 
(2. 13) j [h(t) + h_1(t)] dt> j [g(t) + g"*(t)] dt 

0 0 

and (2. 13) becomes an equality if and only if 

(2.14) g(t) = h(t) for all h ' ^ x ) ^ t < x . 

Proof: The set of al l points (s, t) such that 

(2.15) 0 < s < x , 

h~ ( s ) < t < g" ( s)" 

is the same as the set such that 

(2. 16) 0 < s <x , 

g(t) < s < h(t) and 

0 < t <g~l(x) 

Therefore (see F i g u r e s 1 and 2) 
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x x 
(2. 17) j [h(t) + h_1(t)] dt -J [g(t) + g_1(t)] dt 

0 0 

x x 
= f [h(t) - g(t)] dt - j [g_1(s) - h_1(S)] ds 

g~V) 
- f [h(t) - g(t)] dt - f [min(x, h(t)) - g(t)] dt 

0 0 

g (x) x . 

= r [h(t> - x] dt + c [h(t) - g(t)] dt > o 
h _ 1 (x) g_ 1(x) 

with equali ty if and only if h (x) = g" (x) and h(t) = g(t) for 
g" (x) < t < x. But these las t two conditions together a r e equivalent 
to (2 .14) . h 

F igure 1: I [h(t) - g(t)] dt for two typical homeomorph i sms h and 

0 
g such that h > g > I and h(x) > g(x). 
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x 

/
-1 -1 

[g (t) - h (t)] dt for two typical homeomorph i sms h 
0 

and g such that h_> g > I and h(x) > g(x). 
Theorem 6: Let h and g be any h o m e o m o r p h i s m s . Then 

(2.9) h + l T 1 = g + g"1 

if, and only if, 

(2.18) g(x) = e i ther h(x) or h (x) for a l l x > 0 . 

Proof: Define 

(2.19). fj = ( h U h ' ^ U g U g " 1 ) and 

f2= (huh'^nfgug"1) . 

Then (1 . 9) impl ies that 

(2 .20) . fn > f_ > I . 



1966 HOMEOMORPHIC IDENTITIES, AND INDUCTIVELY 13 
DEFINED COMPLEMENTARY SEQUENCES 

"Whenever (2. 9) holds. Lemma 2 may be applied four t imes to yield 

(2.21) fx + f"1 = f + £~z
l = h + h" 1 . 

But in tegrat ing (2.21) and applying Lemma 3 to L and f proves 
that f = f~. Therefore 

(2.22) hUh"1 = gUg^1 . 

Now Lemma 1 may be applied to obtain 

(2.23) h O h - 1 = (hUh" 1 )" 1 = (gUg"1)""1 = gHg"1 . 

But (2.22) and (2. 23) together imply (2. 18). 

To prove the converse , note that (2. 18) impl ies that h(x) = x 
if and only if g(x) = x. Therefore , the set jxlh(x) / x | i s the same 
set as | x | g ( x ) y x l . Since g and h a r e both homeomorph i sms , 
each component of this set is mapped homeomorphica l ly onto itself by 
h and a lso by g. F u r t h e r m o r e , nei ther h- I nor g-I changes sign 
on any such component. So (2. 18) impl ies that, on each component, 

- 1 - 1 -1 -1 
e i ther g = h and g = h or e lse g = h and g = h. T h e r e -
fore, (2.9) holds on each such component. But (2. 9) a l so holds wher -
ever h(x) = g(x) = x. 

Corol la ry : Given any homeomorph i sm h, there exis ts one 
and only one homeomorph i sm g such that g 2 /1 and (2. 9) 

= g + g • 

Theorem 7: Let h be any homeomorph i sm. Then for each 
x > 0, 

x 
2 (2.24) J [h(t) + h"X(t)] dt> x 

and (2. 24) becomes an equality if and only if 
(2.25) h(x) = x . 

Proof: Lemma 2 impl ies that 

(2.26) hUh"1 + ( h U i r V 1 = h + h"1 
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Inequality (1.9) impl ies that the two homeomorph i sms hUh and I 
satisfy the conditions of Lemma 3. Therefore , (2. 24) is es tabl ished, 
and (2. 24) becomes an equality if and only if 

(2.27) (hUn_1)(t) = t for all (hUh)"'1(x) < t <^x . 

But (2.27) is equivalent to (2 .25) . 

Definition: Given two functions f and g, let e i ther f jg or 
g^f be defined to mean that 

(2.28) f(t2) - f(t r) > g(t2) - g(tx) 

for al l t, and t on the domains of f and g such that t > t . 
Note that if f and g both have continuous de r iva t ives , then this is 
equivalent to 

(2. 29) g^f(t) > ^ - g(t) for a l l t . 

Remark : Let a be a posi t ive r ea l number and let f be a con-
tinuous function of [0,°°) . Then f(0) =? 0 and f fa I i f andon ly i f f is 
a homeomorph i sm and f J^a I. 

Theorem 8: Let a > 2 and P f a l . Define the sequence of 
homeomorph i sms j h | inductively by h = I and 

(2. 30) h -= P - h""1 n > 1 . 
n+1 n 

Then the sequence | h } converges to a homeomorph i sm h such 
that 

(2.2) h + h " 1 = P 

and 

(2.31) h t | a + Va2 + 4 | t 

F u r t h e r m o r e , the convergence is uniform on every bounded sub-
set of [0 , oo). 

Proof: Define by induction, r , = 1 and r ,. = a - r . Then 
— J 1 n+1 n 

h, I r , I and by induction, 
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(2.32) h ' U r " 1 I 
n n 

and 

(2.33) h ,, = P - h ' 1 f a I - r " 1 I = r ± 1 I 
n+1 n ' n n+1 

and the h a r e all h o m e o m o r p h i s m s , n r 

Also, 

(2.34) h 2 = P - I > I = hx 

and so by induction, 

(2. 35) h , 7 = P - h"J_. > P - h"1 = h , _ . 
n+2 n+1 n n+1 

Since for each x > 0, h (x) is a monotonic non-dec reas ing sequence 
of n u m b er s bounded above by P(x), the sequence j h J is pointwise 
convergent . Since the r a r e increas ing , (2. 32) impl ies that the 

-1 n 
h a r e uniformly equicontinuous on every bounded subset of [0,oo). 
But this combined with (2. 30) impl ies that the h a r e a l so uniformly 
equicontinuous on each such subset . Therefore , the sequence j h \ 
converges uniformly on every bounded subset of f0,oo) to some 
homeomorph i sm h. 

Since j r } is inc reas ing but bounded by a, it mus t converge to 
some number r such that 1 < r < a. By continuity, r = a - r 
Therefore , h f r I which is the same as (2.31). 

Theorem 9: In addition to the hypothesis to Theorem 8, let 
P-i- pi where p is some rea l number > a. 

Then 

(2.36) a ( j L ± ^ ± ± ) I ; 

where h is the homeomorph i sm to which the sequence of homeomor-
ph i sms of Theorem 8 converge . 

Proof: Define v, = 1 and by induction 

(2.37) V U ' P - ^ 1 • 
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T h e n by i n d u c t i o n 

( 2 . 3 8 ) h , . ^ P - h"14,(31 - v " 1 I = v ,_ I . 
n + 1 ^ n ^ n n+1 

T h e r e f o r e , h ^ v I , w h e r e 

(2.39) v = I i m v n = ( P + V f ^ - ) 

Corol lary: Let P = a L Then 

(2.40) ^/aWTTlV m 

L e m m a 4: Le t 

( 2 . 2 ) h + h " 1 = P 

a n d l e t x and x be two p o s i t i v e r e a l n u m b e r s s u c h t h a t 

( 2 . 4 1 ) x Q < h(x Q ) = x _ r 

T h e n the s e q u e n c e j x } de f i ned i n d u c t i v e l y by 

(2 . 1) x , 1 .= P ( x ) - x 
N ' n+1 n n - 1 

w i l l c o n v e r g e m o n o t o n i c a l l y to y, w h e r e y i s the l a r g e s t r e a l n u m b e r 

s u c h t h a t 

( 2 . 4 2 ) h(y) =? y ^ x Q . 

H o w e v e r , for no n > 0 i s x = y . 

P r o o f : F o r n = - | / o r 0, we h a v e t h a t x = h (xn)> w h e r e 
h i s de f ined a s I. T h e r e f o r e , by i n d u c t i o n , for n > 0, 

( 2 . 4 3 ) x , . = P ( x ) - x . . 
n+1 n n - 1 

'= h (x ) + h ' ^ x ) - x . x n ' x n ' n - 1 

, - n + l , v , , - n - l , . , - n + l . x = h (xQ) + h (X()) - h (xQ) 

= h (xQ) . 



1966 HOMEOMORPHIC IDENTITIES, AND INDUCTIVELY 17 
DEFINED COMPLEMENTARY SEQUENCES 

Since h (x ) <* x~, the sequence j x I mus t converge to y as de-
sc r ibed . 

Theorem 10: Let h be any homeomorph i sm such that h + h~ 
maps posit ive in tegers into i n t ege r s . Then h will never map any 
posi t ive in teger p into an in teger unless h(p) = p. 

Proof: If the theorem is false, then there exist posit ive in te-
gers p and q such that 

(2.44) h U h ' ^ p ) = q > p . 

Lemma 2 impl ies that 

(2.45) h U h ' 1 + (hUh"1)""1 = h + h" 1 . 

Define x n as p and x . as q and define the sequence j x }• induc-
tively by 

( 2 . 4 6 ) x ^ = h(x ) + h _ 1 ( x ) - x . . v ' n+1 n n n-1 

Then applying Lemma 4 to hUh , one may see that I x I mus t 
slowly converge as desc r ibed in the l emma. However, this con t ra -
dicts the fact, which m a y b e eas i ly verif ied by induction, that the s e -
quence j x I cons is t s of i n t e g e r s . 

Theorem 11: Let P f 2 I and P > 21 on (0,oo). Let xQ and 
x , be two posit ive r ea l n u m b e r s . 

Then a n e c e s s a r y and sufficient condition that the sequence de -
fined inductively by 

(2. 1) x ,, = P(x ) - x , 
x ' n+1 n' n-1 
converges is that h(x ) = x , where h is the unique homeomorph i sm 
such that h_> I and 

(2. 2) h + h" 1 = P . 

The sequence will contain a non-posi t ive e lement if and only if 
< x , . Also, x , _ > x for some -1 n+1 n 

h(x ) > x , , and this holds if and only if 

h(x^) < x , . Also, x ,_ > x for some element if and only if 0 -1 n+1 n 
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( 2 -47) lim x = + oo . 
n—* oo 

Proof: The exis tence and uniqueness of h is given by Theorem 
8 and the co ro l l a ry to Theorem 6. P > 21 and (2. 2) imply that h > I. 
If x , = h(x ), then Lemma 4 impl ies that x converges monotonical ly 
to z e r o . 

Let x , y , x , and y be posit ive numbers such that x = y 
and y , - x , = £ > 0. Define j x | inductively by (2. 1) and likewise 

<2-48> yn +i = p ^ n > - v i • 

If n = - 1 , then 

(2. 49) x - y > n e 
n yn — 

and 

(2.50) (x ,. - y ,_) - (x - y ) > £ . 
x n+1 ; n + r s n J n' - c 

Therefore , by induction, for n > 0, 

(2.50) (x ,. - y , . ) - (x - y ) 
n+1 'n+1 n n 

= P(x ) - P(y ) - (x - y ) - (x . - y . ) x n' w n n J n' n~1 7 n - l 

> (x - y y - ( x , - y , ) > £ 
n n n-1 7 n - l 

and 

x - y n n 

= ( x - y ) - ( x i - y T ) + ( x i - y i ) 
x n 3n' n-1 7 n -1 n-1 7 n - l ' 

> £+ (x , - y , ) — v n-1 ' n - l ' 

> e + ( n - i ) e = n e . 

If y 1 = h(y ), then (2.49) impl ies that x is always posi t ive for 
n > 0 and it converges to infinity. If x ,.= h(x ), then (2.49) impl ies 
that y is monotonic and will a t ta in negative va lues . 
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III. Let a and b be monotonic inc reas ing mappings of posit ive 
in tegers into posit ive i n t ege r s . Then the sequences { a(nj } and { b(n) } 
a r e said to be complementa ry if and only if each posit ive in teger is 
r ep re sen t ed in one and only one of these sequences . 

Given a r ea l number r, define f r l as the in teger pa r t of r, 
namely f r l is that in teger such that 

(3. 1) [ r ] < r < [ r ] + 1 0 

Define |~rl* as that in teger such that 

(3.2) [ r ] * < r < [ r ] * + 1 , 

or equivalently 

(3.3) [ r j * = -1 - [ - r ] . 

A r e su l t of S. Beatty, see Reference [ l J» is e ssen t i a l ly that 
given a posit ive i r r a t i o n a l number x, then the sequences |~(1 + x) n ] 

r -1 
and (_(1 + x ) n j a r e complementa ry . This r e su l t has since turned 
up many t imes in the l i t e r a tu r e , often in the form that if a and (3 

x - 1 - 1 
a r e two posit ive i r r a t i ona l number s such that a + (3 = 1, then the 
two sequences j an l and [Pn] a r e complementa ry . 

A genera l iza t ion of this r e su l t by Lambek and Moser s ta tes 
that the sequences |a(n) | and | b(n) \ a r e complementa ry if and only 
if for each pair of posit ive in tegers m and n, e i ther a(m) - m < n 
or e lse b(n) - n < m but never both. This r e su l t combined with Lem-
ma 5 may a lso be used to prove Theorem 12 instead of the proof given. 

Lemma 5: Let f and g be homeomorph i sms such that 

(3.4) f"1 + g"1 = I . 

Then f - I and g - I a r e homeomorph i sms and 

(3.5) <f - I) (g - I) = I . 

Conversely , let h be any homeomorph i sm. Then 

(3.6) (I + h ) _ 1 + (I + 1T 1 ) " 1 = I . 
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P r o o f : 

( 3 . 7 ) f - I = (I - f " 1 ) f = g " 1 f a n d 

g - I = (I - g" ) g = f" g . 

But g f and f g a r e h o m e o m o r p h i s m s w h i c h a r e i n v e r s e s of e a c h 

o t h e r . 

( 3 . 8 ) (I + h ) " 1 + (I + h " 1 ) " 1 

= (I + h ) " 1 + (I + h " 1 ) " " 1 (h + I) h~l h (I 4 - h ) " 1 

= (I + h ) " 1 + (I + h " 1 ) " 1 (I + h " 1 ) h (I + h ) " 1 

= (I + h ) " 1 + h (I + h f 1 

= (I + h) (I + h ) " 1 = I . 

T h e o r e m 12: L e t f and g be two h o m e o m o r p h i s m s s u c h t h a t 

( 3 . 4 ) f"1 + g " 1 = I . 

T h e n t h e two s e q u e n c e s { [~f(n)l J- a n d { [ " g ( n ) ] * | a r e c o m p l e m e n t a r y . 

P r o o f : G i v e n a n o n - n e g a t i v e i n t e g e r m , l e t n ] be the n u m -

b e r of e l e m e n t s of j [ f ( n ) l } w h i c h a r e l e s s t h a n o r e q u a l to m , a n d l e t 

n be t h e n u m b e r of s u c h e l e m e n t s of {["gin)"]*.} T h e n 

( 3 . 9) f (n ) < m + 1 <_f (n + 1) a n d 

g ; (n 2 ) < m + 1 < g ( n 2 + 1) . 

A p p l y i n g f and g to ( 3 . 9) y i e l d s 

( 3 . 10) nL = f"1 f (n x ) < f"1 (m + 1) < f" l f ( i ^ + 1) = i ^ + 1 

-1 - 1 -1 
n 2 = g g ^ - g ( m + X) < g g ( n 2 + 1) = n 2 + 1 . 

A d d i n g the two p a r t s of ( 3 . 10) t o g e t h e r y i e l d s 

(.3. 11) n + n , <; m + 1 < n + n + 2 . 
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Since n , n and m a r e al l i n t ege r s , it follows that 

(3.12) n, 4- n = m 

Therefore , each posit ive in teger is r ep re sen ted once and only once 
by the sequences , but only posit ive in tege r s a r e r ep re sen t ed . 

Corol la ry : Let h be any homeomorph i sm. Then the s e -
quences n + [h (n)]* and n + [h (n)] a r e complementa ry . 

Proof: Apply Lemma 5 to the theo rem. 
The ana lys i s of Wythoff's game (see Reference f 4"J) involves 

complementa ry sequences | a(n) I and | b(n) | such that 

(3. 13) b(n) = a(n) + n . 

In a la ter paper , a genera l iza t ion of Wythoff's game will be given for 
which the analys is will involve complementa ry sequences such that 

(3. 14) b(n) = a(n) + (k + 1) n , 

where k. is some non-negat ive in teger which defines the game. 
Beat ty ' s r e su l t is eas i ly used to show that the complemen ta ry s e -
quences satisfying (3. 14) a r e 

(3.15) a(n) 

b(n) = 

V k+ V(k+1) +4 

sh 3+k+ V(k+1) +4 
) -

a n d 

Theorem 13 may be thought of as a genera l iza t ion of this r e su l t . 

Theorem 13: Let P map in tegers into i n t e g e r s . Let the se-
quences be defined inductively as follows: 

(3.16) a( l ) = 1 

(3.17) b(n) = a(n) + P(n) n > 0 

a(n+l) = sma l l e s t in teger not 
r e p r e s e n t e d by e i ther a(i) 

(3.18) or b(i) for some i < n 
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Then 

(3.19) a(n) = n + [h"1(n)" | and 

b(n) = n + [h(n)"] ,. 

whe re h is the unique homeomorph i sm such that 

( i . io) h = p + h~l . 

Proof: Theorem. 5 impl ies that 

(3.20) [h(n)J* = [h(n)] . 

So the co ro l l a ry to Theorem 12 shows that the sequences defined by 
(3. 19) a r e complementa ry . Since (1 . 10) impl ies that h > h , (3. 18) 
and (3. 16), which is a special case of (3. 18), a r e sat isf ied. Equation 
(3.17) follows from (1.10) and (3.19) and the fact that the P(n) a r e 
i n t e g e r s . 

In Reference (~4J is p re sen ted the following resu l t : Let k be an 
in teger g r e a t e r than 4. Then the sequences defined by 

(3.21) a( 

b(n) = 

' k -
< 
•M 

\I7. 
2 

^ 

-4k 

-4k 

a n d 

a r e the sequences such that for n any posi t ive in teger , 

(3.22) a(n) + b(n) = nk-1 

and such that a(n) is the sma l l e s t posi t ive in teger not r e p r e s e n t e d by 
any a(i) or b(i) with i < n. 

The following theorem and i ts co ro l l a ry may be thought of as 
genera l iza t ions of this r e su l t s ince they imply it with the help of the 
co ro l l a ry to Theorem 9. 

Theorem 14: Let P map in tegers into i n t e g e r s . Let the re 
exis t a homeomorph i sm h satisfying 

(2.2) h + h"1 = P . 
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Let the sequences j a(n) | and | b(n) | be defined inductively as fol-
lows: a(n) is the sma l l e s t posit ive in teger not r ep re sen t ed by e a r l i e r 
e lements of a and b, and 

(3.23) b(n) = P(n) + 2n- l - a (n ) . 

Then no posit ive in teger will be r ep re sen ted twice by the two 
sequences and for each n ^ 0, 

(3. 24) a(n) = n + [ h ' ^ n ) ] * and 

b(n) - n + [h(n)] , 

where h is the unique homeomorph i sm such that h > I and (2.2) is 
valid. 

Pjrjoof: The sequences defined by (3. 24) a r e complementa ry by 
the co ro l l a ry to Theorem 12. Since h sat isf ies (2.2), the sequences 
defined by (3. 24) satisfy (3. 23). Finally, monotonici ty of the s e -
quences , their being complementa ry and the fact that h £ h imply 
that a(n) is the f i rs t such integer not previous ly r e p r e s e n t e d . 

Corol lary: Let P(n) / 2n for any integer n > 0. Then 

(3. 25) a(n) = n + [ h _ 1 ( n ) ] . 

Proof: Theorem 10 impl ies that [h (n)~]*=[~h (n)"| . 

Theorem 15: Let { a(n) } and j b(n) | be the sequences of 
Theorem 13. Let x and x be any two posit ive i n t e g e r s . Let 
the sequence j x I be inductively defined by 

(1.4) x x l = x . - P(x ) 
x ' n+1 n-1 n 

Then the f i rs t e lement of this sequence of in tegers to be non-
posi t ive will have an even subscr ip t if and only if 

(3.26) xQ £ a f x ^ ) - x ^ 

which in turn is equivalent to 

( 3 . 2 7 ) x _ 1 > b(xQ) - x Q . 
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Proof: Theorem 5 impl ies that h(x ) ^ x . Hence (3.19) i m -
pl ies that (3. 26) and (3. 27) a r e both equivalent to x > h(x ). The 
proof is now completed by applying Theorem 4. 

This theorem may a l so be proven by the r e su l t s of Lambek and 
Moser (Reference [6J)„ 

Theorem 16: Let P map in tegers into in tegers and P ^ 2 I and 
P > 21 on fO, oo) and let a(n) and b(n) be the sequences of Theorem 
14. Let x and x , be any two posi t ive i n t e g e r s . Let the sequence 

x be inductively defined by n J J 

(2.1) x = P(x ) - x . 
n+1 n n-1 

Then the following four s ta tements a r e logically equivalent; 

(3.26) xQ < a(x_1) - x 1 

( 3 . 2 7 ) x _ x > b ( x Q ) - x Q 

(3.28) | x \ contains a non-posi t ive e lement 

j x {-is monotonic dec reas ing 

Proof: Theorem 10 impl ies that h(x ) / x . Hence (3. 24) 
impl ies that (3. 26) and (3.27) a r e both equivalent to x , > h(x ). The 
proof is now completed by applicat ion of Theorem 11. 

IV. In this section, r ep resen ta t ions a r e sought for homeomorph i sms 
and cor responding complementa ry sequences assoc ia ted with P ' s such 
that 

(4. 1) P(n) = 2an + 2(3 

for n a posi t ive in teger . The number s 2a and 2(3 a r e a s sumed to 
be in teger cons tan ts . The r equ i r emen t that P be a homeomorph i sm 
leads to the conditions that a > 0 and 

(4.2) a + p - I P( l ) > 0. 

Example 1: For this example , let the function F be defined as 

(4. 3) F(x) = ( Va2+1 - a) x - (3 + ( Va^f l - 1) (3/a . 
The inve r se of this function is 
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(4. 4) F - 1 ( x ) = ( Va 2 +1 + a) x + p + ( V ? + l - 1) p / a . 

Define 

(4.5) h~X(x) = xF( l ) 0 < x < 1 

h _ 1 (x) - F(x) x > 1 

For h to be a homeomorph i sm, it is n e c e s s a r y that F( l ) > 0. 
With some a lgebra ic manipulat ion, it is readi ly seen that this r e q u i r e -
ment is equivalent to 

(4.6) (a + 2p)( l-p)>: ap or 

. ta•+ p)( l-?P) > -P . 

By uti l izing (4. 2), it is seen that (4. 6) is sat isf ied if and only if p _< l / 2 . 
Condition (4. 2) and the r equ i r emen t that a > 0 imply tha t h (1) < 1. 
Therefore , 

(4. 7) h(x) = F _ 1 (x ) x > 1 

and so for n a posit ive in teger , 

(4.8) h(n) = 2an + 2p + h _ 1 (n) . 

So Theorems 5 and 13 give that the sequences 

(4, 9) a(n) = n + [ F ( n ) ] and 

b(n) = n + [ F _ 1 ( n ) ] 

a r e complemen ta ry and satisfy 

(4.10) b(n) = 2an + 2p + a(n) > a(n) 

un less p > 1. In the case where p > 1, other r ep resen ta t ions a r e 
needed. Setting P = 0 and a = (k+l) /2 yields (3. 15). 

For the next two examples , a homeomorph i sm h > I is sought 
such that for n a posi t ive in teger 

(4.11) h(n) + h ' V ) = 2an + 2p . 

However, in some c a s e s of Example 3, a homeomorph i sm is found 
that only genera tes the complemen ta ry sequences that would be gen-
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e ra t ed by a homeomorph i sm satisfying (4. 11). In these c a s e s , a r e -
p resen ta t ion of these sequences is obtained. 

Theorem 7 impl ies that a > 1. Since the sum of two unequal 
posi t ive in tegers is at leas t t h ree , Theorem 14 impl ies that 

(4. 12) a + p = ( [h ( l ) ] + [ h _ 1 ( l ) ] * + l ) / 2 > 1 

Example 2: For this example , let |3 < 0 and let the function 
F be defined as 

(4.13) F(x) = (a V a 2 - 1 ) x + (3 - (3 V a 2 - l / ( a - l ) . 

If a = 1, then P = 0 and let the las t t e r m of (4. 13), which would be 
inde te rmina te , be a s s u m e d to vanish. The inve r se of this function is 

(4.14) F 4 ( x ) = (a + V - l ) x + p + P V - l / ( a - l ) . 

Let h be defined according to (4.5) with this F being used ins tead 
of the F of Example 1 „ The conditions on a and (3 imply that 

(4. 15) 0 < F(x) < x x > 1 
Therefore , for x j> 1, h(x) = F (x) and so (4. 11) is sat isf ied for any 
posi t ive integer n. 

If a > 1 and (3 = 0, then applicat ion of the co ro l l a ry to Theorem 
14 yields Ky F a n ' s r e su l t s u m m a r i z e d by (3.21) and (3 .22) . If a = 1 
and p = 0, then h = I and the resu l t ing complemen ta ry sequences a r e 
r e p r e s e n t e d by 

(4. 16) a(n) = 2n - 1 and 

b(n) = 2n . 

Example 3: For this example , let P > 1/2 and let the function 
F be defined for x > 1 as 

(4. 17) F(x) = ax + P - ^ ( ax+p) 2 - (x -p) 2 - £ 

= ax + p - y ( a + l ) ( a x 2 - x 2 + 2|3x) - £ 

where £ is a constant to be appropr ia t e ly chosen. The inve r se to this 
function is often two-valued. Consider ing only the l a rge s t of these two 
values yields 
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(4. 18) F ' ^ x ) = ax +..(3 + ^ ( a x + ( 3 ) 2 - ( x - P ) 2 - £ 

It m a y b e . s h o w n t h a t d F ( x ) / d x > 0 if and on ly if 

( 4 . 1 9 ) (x+p) i ( a - l ) x + pa + p j > a 2 £ / ( a + l ) . 

F u r t h e r m o r e , if £ = 0, t h e n F(x) i s p o s i t i v e for a l l x > p . So for 

t he c a s e w h e r e p = •=-, s e t £ = 0 and de f ine h w i t h t h i s F a c -

c o r d i n g to (4. 5 ) . 

F o r t h i s c a s e , 0 < F ( l ) < 1. T h e r e f o r e 

(4. 20) h(x) = F _ 1 ( x ) x > 1 . 

A p p l i c a t i o n of T h e o r e m 1 4 a n d i t s c o r o l l a r y i m p l y t h a t the s e q u e n c e s 

de f ined by : 

(4 . 21) a(n) - [ ( a + l ) n + i- - \ ( a 2 - l ) n 2 + ( a + l ) n ] and 

b(n) = [ ( a + l ) n + \ + f ( a 2 - l ) n 2 + ( a + l ) n ] 
2 

a r e c o m p l e m e n t a r y a n d t h a t 

( 4 . 2 2 ) a(n) < b(n) = 2 ( a + l ) n - a(n) . 

In the p a p e r t h a t w i l l g e n e r a l i z e Wythof f ' s g a m e , r e l a t e d g a m e s w i l l 

be p r e s e n t e d w h o s e a n a l y s i s u t i l i z e s t h e s e two c o m p l e m e n t a r y s e -

q u e n c e s , 

F o r p = 1, c h o o s e £ > 0 bu t s u f f i c i e n t l y s m a l l t h a t 

( 4 . 2 3 ) 0 < F ( l ) < F(2) < 1 

a n d t h a t , ( 4 . 19) i s s a t i s f i e d for x > 2 . 

Def ine 

( 4 . 2 4 ) h - 1 ( x ) = x F ( x ) 0 ^ x < l 

h " 1 ( x ) = ( 2 - x ) F ( l ) + ( x - l ) F ( 2 ) 1 < x < 2 

h " 1 ( x ) = .F (x ) x > 2 . 

T h e n h(x) = F (x) for x > 1, C o n s e q u e n t l y , h w i l l s a t i s f y (4. 11) 
for t h i s c a s e . 
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If (3 > 1 4, then F( l ) > 0 impl ies that £ < ((3-1) . It may be 
shown that this in tu rn impl ies that F( l ) > F(2p~l) . Consequently, 
t he re does not exis t anyhomeomorph i sm which equals F for posi t ive 
i n t e g e r s . However, for ce r t a in c a s e s , homeomorph i sms will be de -
fined such that 

(4.25) [ h ' V ) ] * = [ F ( n ) ] * = [F(n)] and 

h(n) = F ' V ) . 
So in these c a s e s , the sequences defined by (4. 9) a r e complemen ta ry 
and satisfy 

(4.26) a(n) < b(n) = 2(a+l)n + 2p - 1 - a(n) . 

If 2p > 3 is odd, then the r equ i r emen t that F(P ± y) be posi t ive 
impl ies that 8 > - l / 4 . If 2p > 4 is even, then posi t ivi ty of F(p) 
impl ies that £ > 0. For the sequences defined by (4. 9) to be monotonic 
and complementary , it is n e c e s s a r y that 

( 4 . 2 7 ) [ F ( l ) ] = a ( l ) - 1 = 0 ' . 

The r equ i r emen t that F ( l ) < 1 is equivalent to 

(4.28) 2(CL+1) - (p -2) 2 > 8 . 

If 2p is odd, then the left side of (4.28) equals 3/4 modulo one, but 
if 2p is even, the left side is an in teger . Therefore , a n e c e s s a r y 
condition for the a t ta inment of the p r e s e n t objectives is that 

(4.29) 2(a+l) > (p-2) 2 

This condition will a l so turn out to be sufficient. F u r t h e r m o r e , to a t -
tain these objectives when (4. 29) is valid, it is sufficient that 

(4.30) 0 < £ < i . 

Condition (4. 30) impl ies that (4. 19) is sat isf ied whenever 
x > p +.-=•• Also , (4. 30) may be shown to imply that 

(4.31) F(p+1) < 1 . 
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Define 

(4.32) ' h" 1 ^ ) = xF([P+l])/[p+l] 0 < x < [ p + l ] 

h_1(x) = F(x) x> [p+ll . 

Then h ' is a homeomorphism, and since 

(4.33) h_1([p+l])< 1 , 

it follows that 

(4. 34) h(x) = F_1(x) x > 1 

Condition (4. 30) implies that F(n) can never be a multiple of •=-
-1 for any integer n. For any 1 < x < [(3+11, both h (x) and F(x) 

are between zero and one. Therefore, (4. 25) is satisfied for all 

positive integers as desired. 

V. The purpose of this section is to generalize the results of the 

first section. Whereas the proof of Theorem 17 uses ideas not found 

in the first section, the remainder of this section utilizes mostly 

straightforward generalizations of the techniques of Section I plus ap-

plications of Theorem 17. In this section, jtf always refers to a posi-

tive real number and Al to its reciprocal. 

Theorem 17: Let /I < 1 and let h and g be two homeomor-

phisms such that 

( 5 . 1 ) h + JLfg"1 = g + / / h _ 1 . 

Le t h(x) 4 g ( x ) f o r some x > 0. Then h(t) > t for all t > x. 

Proof: Given any point t > 0, if h(t) > g(t), then 

(5.2) h"lh(t) = g^gft) < g^Mt) 

which by (5. 1) implies that 

(5.3) hh(t) > gh(t) 

Similarly, h(t) < g(t) implies (5.3) with the inequality reversed. 
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If the theorem is false , then for some point x, h(x) ^ g(x) and 
e i ther 

(5.4) h(x) <_x 

or e lse 

(5.5) x < h(x) < xQ = h(xQ) 

for some point x . Define x as e i ther x or h(x), whichever s a t i s -
fies 

(5.6) h ( X l ) < g( X l ) . 

Fo r n > 1, define x as h (x, ). Then in case of (5.4) , the s e -
quence < x i is monotonic non- inc reas ing and bounded below by ze ro . 
In case of (5. 5), <x I is monotonic inc reas ing and bounded above by x . 

The f i r s t pa r ag raph of this proof impl ies that for n > 0, 

(5.7) h ( x 2n - l> < ^ Z n - l * a n d 

h ( x 2 n ) > g(x2 n) . 

m s x . n Let (y , z ) be the component of <t |h(t) ^ g(t) / w h i c h conta 
Then the f i rs t pa rag raph of this proof impl ies that the open in te rva l s 
(y , z ) a r e a l l disjoint and that for n > 0 w n n J 

(5.8) y n + 1 = h(yn) = g t y j and 

z n + l = . h ( z n ) = g ( z n ) ' 

When (5.4) holds, then 

( 5 . 9 ) z , , < y < x < z 
x ' n+1 7n n n 
and when (5.5) holds, then 

(5. 10) y < x < z < y 

Integrat ion by p a r t s and (5. 8) imply that 
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/ n + 1
( i 

(5.11) (-ju)n J g(t) - h(t) dt 
^n+1 

Zn+1 
(-^n y* jtdg(t) - tdh(t) j 

y n+l 

which replacing g(t) by u- and h(t) by v 

z z 
n n (-Uf if g~V)du - f h'^vjdv ! 

y y 

z n 
= (-/u)n_1 y jg(t) - h(t) j dt 

which by induction on n 

Z l 

/ J g(t) - h(t) j dt > 0 . 
*1 ' 

In case of (5.4) , define x 0 as z ] . Then for e i ther case , 

}"\ i 
(5. 12) J hUg - hHg (t) dt 

0 ' ' 
z n 

oo f | 

> Z J hUg" hng (t) dt 

n=ly 

1 1 
£ / i 1 _ n f j g(t) " h(t) { dt = oc 
n=l y i 

1 
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which is imposs ib le . 

Corol lary : Let Jl >. 1 and let h and g satisfy (5 .1) . Then 
h(x) ^ g(x) impl ies that h(t) < t for al l t > x. 

Proof: Replace h by h , g by g and /j by JJ and 
apply the t heo rem. 

Theorem 18: Let h and g be two-homeomorph i sms such that 

(5.13) h + g"1 = g +h" X . 

Then h = g. 

Proof: Use Theorem 17 and i ts co ro l l a ry . 

Theorem 19: Let h, be a homeomorph i sm such that h] £ P . 
Define by induction for n > 0, 

(5. 14) h ,. = P +/i h" 1 . 
n+1 n 

Then on each bounded subset of fO,00), <h„ . [ and { h0 > converge 
L ' I 2 n - l ) ( 2n I & 

uniformly to homeomorph i sms h and g respec t ive ly . F u r t h e r m o r e , 
h < g and 
(5. 15) h = P + fj g"1 and 

g = P + Vh~l . 

Proof: The a rgumen t s of (1 . 13) through (1 . 24) and the next p a r -
agraph r ema in unchanged except that h , is rep laced by /Lf h and 
h , is rep laced by o h . . m - 1 M m - 1 

Theorem 20: Let M £ 1 a n (3 x
n be a posi t ive number . Then 

the re cannot exis t m o r e than one posi t ive number x , suGh that the 
sequence x defined inductively by 

(5. 16) x , . = ~lx . - nlP(yi ) 
' n+1 /* n-1 ** n 

converges . 

Proof: Let yn , x . , £ and y be posi t ive number s such that 
yQ = xQ and y ^ - x ^ = 8 . 
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Define / y i inductively by 

< 5 - 1 7 ) y n + i = ^ ^ n - i - tf'lp<yn> 

Then analogous to (1 . 32), (1.33) and (1.34) a r e the s imi l a r l y obtained 
r e su l t s 

(5.18) Y l - X j = M _ 1 e 

and 

( 5" 1 9 ) ^Zn ' X2n < " " ^ Z n - Z " XZn-2> < ° 
and 

(5- 20) y2n+1 - x2n+1 > ^ " V ^ . ! - x2n_j) > /, - " ^ £ > e . 

So at m o s t one of the sequences may converge, 

Theorem 21: Let h and g b e t w o h o m e o m o r p h i s m s such tha t 

(5.21) h = P +/j- h." 1 

and 

(5.22) . g = P + / l g " 1 • 

Then h = g. 

Proof: Identi t ies (5. 21) and (5. 22) imply (5. 1). If /I > 1, then 
(5.21) impl ies that h > h . Therefore , h > I and the co ro l l a ry to 
Theorem 17 finishes the proof for fJ > 1. 

If /J < 1, then for any x > 0, e i ther h(x) <̂  x or g(x) < x or 
e lse h(x) > x and g(x) > x. In the f i rs t two cases Theorem 17 i m -
plies that h(x) = g(x)0 In the las t case , the sequences | x J = i h (x) } 
and i y 1 = I g (x)i a r e both convergent . But these sequences satisfy 
(5. 16) and (5. 17). Since x = y = x, Theorem 20 impl ies that 

(5.23) h(x) = x_x = y ^ = g(x) . 

Theorem 22: Let JJ < 1 and P + I > I. Let g be any 
homeomorph i sm. Then the sequence of homeomorph i sms defined 
inductively by 
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(5.24) g n + 1 = P + * g ^ 

converges uniformly on every bounded subset of j 0,oo) to a unique 
homeomorph ism h such that 

(5.21) h = P + Mh""1 . 

Proof: Choose 

(5.25) hx = ^ g l n g 2 ( M i ) n p . 

Then Theorem 19 is appl icable . For any x > 0, g(x) > x for if not, 
h(x) <. g(x) < x which impl ies that h (x) > x and hence that 

(5.26) g(x) = P(x) +/i h"X(x) > P ( x ) + / i x > - x . 

Therefore , 

(5.27) hg = (P +/i g"X)g = Pg + / l l > P +/i I > I . 

But hg > I impl ies that h > g which in tu rn impl ies that gh > I. 
For any point x„ > 0, define x as h(x ). Let the sequence 

{ x j be d lefined inductively by (5 0 l6 ) . Then a rgumen t s analogous to 
(1.28) and (1.29) imply (1.26) and (1 .27) . Since 

(5.28) h ^ g " 1 = (gh)"1 < I , 

the sequence y x \ converges to z e r o . By s imi l a r a rgumen t s , if x , 
is defined as g(x ), the sequence <x / will s t i l l converge . Theorem 
20 therefore impl ies that g(xn) = h(x )„ Since h = g, the convergence 
for g. , i n s e r t /j into the p rope r posi t ions of (1.39) and (1.40), and 
continue the a rgument of the p a r a g r a p h containing (1.39) and (1 .40) . 
Uniqueness of h is obtained from Theorem 21 . 

Corol la ry : Let h and g be two homeomorph i sms such that 

(5. 15) h = P + ^ g " 1 and 

P + Uh"1 

Let U < 1 and P + /I I > I. Then h 
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T h e o r e m 2 3 : L e t /l 4 1 and P +JJ I > I. T h e n a s e q u e n c e 

g e n e r a t e d by (5 . 16) w i l l c o n v e r g e if and on ly if x = h(x ) w h e r e 

h i s the h o m e o m o r p h i s m of T h e o r e m 22 . F u r t h e r m o r e , if i t d o e s 

c o n v e r g e , i t w i l l c o n v e r g e to z e r o . 

If h(x ) > x , , t h e n a l l of t he e v e n l y s u b s c r i p t e d e l e m e n t s of the 

s e q u e n c e a r e p o s i t i v e , but a l l bu t a f in i te n u m b e r of t he e l e m e n t s 

w i t h odd s u b s c r i p t s a r e n e g a t i v e . 

If h(x ) < x . , t h e n a l l of the odd s u b s c r i p t e d e l e m e n t s a r e 

p o s i t i v e a n d a l l bu t a f in i te n u m b e r of t he e v e n s u b s c r i p t e d e l e m e n t s 

a r e n e g a t i v e . 

P r o o f : P +u I > I a n d (5 . 21) i m p l y t h a t h > I. If h(xQ) = x , 

t h e n < x \ = s h (x n ) 1 and the s e q u e n c e c o n v e r g e s to z e r o . When 

h(x ) / x , , t h e n (5 . 19) and (5 . 20) m a y r e p l a c e ( 1 . 33) and ( 1 . 34) in 

o r d e r to c o n t i n u e the a r g u m e n t s of the p a r a g r a p h s c o n t a i n i n g ( 1 . 33) 

t h r o u g h ( 1 . 36) . 

T h e o r e m 24: L e t /* be a n i n t e g e r , l e t P m a p i n t e g e r s 

in to i n t e g e r m u l t i p l e s of \X a n d le t P +/I I > I. T h e n t he h s a t i s -

fying 

(5 . 21) h = P +/I h " 1 

w i l l n e v e r m a p a p o s i t i v e i n t e g e r i n to a n i n t e g e r . 

P r o o f : U s e the p r o o f p r e s e n t e d in the l a s t p a r a g r a p h of S e c -

t i o n I. 
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