2. Po Naur et al, "Revised Report on the Algorithmic Language ALGOL $60^{\prime \prime}$, Communications of the ACM, Vol. 6, No. 1 (January 1963), pp. 1-17.
3. S. L. Basin and V. E. Hoggatt, Jr., "The First 571 Fibonacci Numbers", Recreational Mathematics, No. 11 (October 1962), pp. 19-30. (Continued on pager 153.)
(Continued from page 116.)

$$
u_{k}-b=u_{k-1} u_{k-2} \cdots u_{k-(k-1)}\left[u_{k-(k-1)}-b\right]
$$

Hence

$$
u_{k_{1}}=\left(u_{0}-b\right) \quad \sum_{i=0}^{i=k_{1}-1} \quad u_{i}+b
$$

Choose $k_{2}<k_{1}$ without loss of generality and the conclusion is apparent.

We now consider equation (1) in several special cases. If $b=0$ the equation is easily solved but in this case the theorem holds trivivially. Let $b=2$. Then we have

$$
u_{k+1}=u_{k}^{2}-2 u_{k}+2
$$

which can be written in the form

$$
u_{k+1}-1=\left(u_{k}-1\right)^{2}
$$

The solution of this equation is clearly

$$
\begin{equation*}
u_{k}=A^{2^{k}}+1 \tag{2}
\end{equation*}
$$

Hence the sequence with elements $A^{2}+1$, for integral A, is relatively prime except possibly for the common divisor 2. The exception is obviously removed when A is an even integer. When $A=2$, we have the Fermat numbers mentioned previously.
(Continued on page 164.)

