in the k^{0} vertical column. Complex expressions involving various powers of k can be very much simplified by reference to the se tables.

REFERENCE

Robert S. Beard, "The Golden Section and Fibonacci Numbers", Scripta Mathematica, Vol. 16, Mar. - June, 1950 pp. 116-119.
$X X X X X X X X X X X X X X X$
(hikles and Chast Cere on pagges 165,166 and 167)
(Continued from page 152.)
In general we may transform equation (l) by writing

$$
\begin{equation*}
u_{k}=F\left(V_{k}\right) \tag{3}
\end{equation*}
$$

Suppose that furthermore we require that F satisfy the functional equation

$$
\begin{equation*}
F^{2}(s)-b F(s)+b=F(2 s) \tag{4}
\end{equation*}
$$

Then our equation becomes $F\left(\mathrm{~V}_{\mathrm{k}+1}\right)=F\left(2 \mathrm{~V}_{\mathrm{k}}\right)$, a solution of which is given by $V_{k}=A 2^{k}$. Hence we have

$$
\begin{equation*}
u_{k}=F\left(A 2^{k}\right) \tag{5}
\end{equation*}
$$

We now consider the functional equation (4). Let

$$
F(s)-\frac{b}{2}=2 L(s)
$$

Then equation (4) becomes

$$
\begin{equation*}
L^{2}(s)=\frac{1}{2}\left[\left(\frac{b^{2}}{8}-\frac{b}{4}\right)+L(2 s)\right] \tag{6}
\end{equation*}
$$

