
AN EXPRESSION FOR GENERALIZED FIBONACCI NUMBERS 
David Es Ferguson, Prog ram ma tics In corpora ted , Los Angeles, Ca l i f . 

An interesting expression for the Fibonacci numbers is presented here 
which relies on the modulo three value of the subscript. 
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This is a special case of a more general expression for the generalized Fibonacci 
numbers [ 1] . 

(2a) V ^ m = 1 (m = -n + l f . . . , 0 ) 

n 
(2b) V = Y V , 
K ' n5m La n,m-k 

fc=i 

It is seen that F m = V2 m -2* 

It is interesting to note that these numbers arise in the analysis of polyphase 
merge-sorting with n + 1 tapes. The Vn m represent the total number of 
strings on all the tapes and also the length of strings (assuming initial length 
of 1) at each step of the polyphase merge process. A description of the poly-
phase merge-sort can be found in [2 ] , 

The general expression can be written ass 

<*> Vn,a(n+l)+b = 1 + ^ 
a / i n + a + b - l \ 
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i= o \ a " * / 
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Let 

f (x) = Y V x m 
nx l *-* n?m 

m=o 

It follows immediately that 
(1 - x - x2 xn)fn(x) = 1 + (n - l)x + (n - 2)x2 + • • • + x11"1 

Therefore 
1 + (n - l)x + (n - 2)x2 + »• • + x11""1 

1 - x - x2 - • •• - x" nv , _„ _.2 __n 

(4) 

If 

1 + (n - '2)x - x2 - ••• - x n 

1 - 2x + xn + 1 

1 - x 1 - 2x + x n + 1 

i °° 

— — = y w x
m 

1 - 2x + xn+l ^ n,m 
the sequence W is defined by: 

n,m J 

(5a) W n ? m
 = ° (m < 0) 

(5b) Wn j m = 1 (m = 0) 

(5c) W = 2W - W (m > 0) 
x ' n ,m n,m-i n,m-n-i l ; 

From Eq. (4) V^m = 1 + (n - 1)W ^ (m > 0) 

Theorem: 

<6> W n a ( n + 0 + b = £ J
 2b+(n+ l ) j ^ a - j 

n,a(n+i)+b j = 0 \ ( n + 1 ) j + b / 

(This formula immediately yields the identity '(3).) 
Proof: 1 °° 

— L " = E (2x - x n + n m 

1 - 2x + xn + 1 m=o 

OO CO 

E E ( i 9 k / -jxm-k (n+i)m-nk 
m=o k = o \ k / z {~1} x 
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Rearranging this sum in terms of powers of x, let (n + l)a + b = (n + l)m -
nk. It follows that k = b (mod (n +1)), so k = (n+ l)j + b for some j > Q* 
Changing the sum on m and k into a sum on a? b and j s and noting that 
m = a + b + nj, results in: 

OO OO 

£ £ x(n+i)a+b £ / a + b + n 3 | 2 ( n + 1 » + b (-i)a-J 
a=o b=o j=o \ (n + 1) j + b / 

This completes the proof. A similar method was used by Polya [3 ] to solve 
another recurrence relation. 

Another interesting expression which arises from this analysis is the general 
expression for the numbers defined by: 

(7a) U n ? m - 0 (m = -n + l , - - - f - l ) 

(7b) U - 1 (m = 0) 
v ' n.m v ' 

m 
(7c) U = T u . (m > 0) 
v ' n.m £-> n.m-i x ' 

5 i=l y 

It is seen that F = U? rn_1 . 

These numbers also arise in the analysis of polyphase merge-^sorting; 
they represent the number of strings produced at each step of the process. 

The general expression is : 

a ( / i n + a + b \ / i n + a + b - l \ ) 

w-^K...)+(..,-x )r e ' 
(b = (),••• ,n) , (a + b > 0) 

The proof is similar to the above and is omitted* 
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FIBONACCI YET AGAIN 

J. A. He Hunter 

Consider a triangle such that the square of one side equals the product of 
the other two sides. 

Then we have sides: X, \/XY? and Y; say X > Y. 
Eliminating an common factor we may set X = a2, Y = b2, so that the 

"reduced" sides become a2
? ab? b2. 

Then, for a triangle, we must have ab + b2 > a2 which requires (\^T— 
l) /2 < b /a < (\/5 + l ) /2 . 

Hence a sufficient condition for a triangle that meets the requirements is 

F 2 n „ 1 / F 2 n < b /a < F 2 n / F 2 n „ 1 with X = ka2, Y = kb2 . 

• * • • • 
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