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1. INTRODUCTION 

The Fibonacci sequence i s defined by the r e c u r r e n c e re la t ion 

(1) F n + 2 = F n + 1 + F n , 

together with the p a r t i c u l a r values 

F 0 = 0, Ft = 1 

whence 

F 2 = 1, F s = 2, F 4 = 3 , F 5 = 5, F 6 = 8 = 2\ F 7 = 13 

F 8 = 21 = 3 " 7, F 9 = 34 = 2 • 17, F 1 0 = 55 = 5 • 11 , • • • ; 

(2) 
and, in p a r t i c u l a r , 

F12.= 1 4 4 = 2 4 ° 3 2 , F 1 4 = 377 = 13=29, F 1 5 = 610 = 2- 5 • 61 , 

F 1 8 = 2584 = 23 -17 . 19, F2 0 = 6765 = 3 • 5 • 11 • 4 1 , 

F 2 1 = 10946 = 2° 1 3 - 4 2 1 , F 2 4 = 46368 = 2 . 5 - 3 2 - 7 - 2 3 , 

F 2 5 = 75025 = 52» 3001, F 2 8 = 317811 = 3 -13° 29 • 281 , 

F3 0 = 832040 = 23 • 5 • 11 • 31 • 61 , F 3 5 = 9227465 = 5 • 13 • 141961 , 
F 3 6 = 14930352 = 24. 33 -17 • 19 -107 , F4 2 = 267914296 = 2 3 - 1 3 - 2 9 - 2 1 1 - 4 2 1 

F7 0 = 190392490709135 = 5 • 11 • 13 - 29 • 7.1 • 911 •141961 
V 

In this p a p e r , we shall be concerned with the sub-sequence of Fibonacci 

n u m b e r s which a r e divis ible by powers of a given integer,, We shal l a l so be 

i n t e r e s t ed in the assoc ia ted p rob lem of the per iodic na tu re of the sequence of 

r e m a i n d e r s , when the Fibonacci number s a r e divided by a given in teger . 

217 
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The Fibonacci sequence is defined for all integer values of the index n0 

However, the well-known identity 

(3) F = ( - l ^ F 
% ' -n x ' n 

shows that negative indices add nothing to the divisibility properties of the 
Fibonacci numbers,, We shall consequently simplify our discussion, without 
loss of generality, by imposing the restriction that n ^ 0. 

Of the many papers dealing with our problem, perhaps the most useful 
are those of Carmichael [1] , Robinson [5] , Vinson [6] , and Wall [7]; and the 
reader can find many additional references in these. Most of the other papers 
in the field give either less complete results, or give them for more general 
sequences. 

We shall make use, in what follows, of the well-known identities:* 

(4) 

(5) 

^{(H^)"-(4^)"} : 

(6) F n " F n _iF n + 1 = (-if1 

(7> F k n + r = L 

and since F0 = 0, 

(8) F ^ = F 
h= 

k V h
F

k - h F if k > 0 
I n n-i r+h' 

n2-fL )Fn lFn-iFh 
h=l v n / 

*See, for example, equations (6), (3), (5), (67), and (34), in my earliertpaper 
[ 3] „ Equation (5) above follows from (4) by the binomial theorem. 
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Also 

n=c>L\ 
and 

::)• 
(10> p divides I J if p is prime and 0 < s < p , 

and Fermat?s theorem, that 

(11) nr = 1 (mod p) if p is prime and (m9p) = 1 

As is customary, we use (A9B,C,o o°) to represent the greatest com-
mon factor of integers A, B5 C, • e • , and [A, Bs C, • • • ] to represent their least 
common multiple. We have 

(12) n^P""1) = ( m / p ) ( m o d p) 9 

where p is an odd prime and (m/p) denotes the Legendre index, which is ±1 
if (m,p) = 1, and 0 otherwise. 

Each writer seems to have invented his own notation0 I shall adopt the 
following, which comes closest to that of Robinson in [ 5] . 

Definition 1, The least positive index a such that F is divisible by 
m1 (that i s , F = 0 (mod mn)) will be written 

(13) ar(m,n) = aim1,1) = a(mn) . 

This is variously called the "rank of apparition" (why not "appearance"?) of 
m n , or the "restricted period" of .the Fibonacci sequence modulo mn„ 

Definition 2. The least positive index p. such that both F =r 0 and 
Fjjtf-i = 1 (mod m11) will be written 
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(14) M(m,n) = M(mn,l) = M (mn) . 

This notation follows Carmichael [2], who named \x the "characteristic number" 
of the Fibonacci sequence modulo mn

c It is also called the "period" of the s e -
quence modulo mn. 

Definition 3. I shall write 

(15) jLi(m,n)/Qr(m,n) - /3(m,n) = /3(mn, 1) - /3(mn) . 

Definition 40 The greatest integer v such that F , . i s divisible by __JL & & or(m,n) J 

m.v will be written 

(16) p(msn) - i>(mn,l) = v(mP) . 

It is then clear that 

(17) or(m,n) = oj(m,n + 1) = • • • = ar(m, p(m,n)) < a(m,p(m9ii) + 1) 

or, equivalently, 

(18) v(m, i/(m,n)) = v(m,n) . 

Definition 5Q I shall call the sequence 

( 1 9 ) Fa(m, i) > F
f f(m, 2) ' " * ° ' Faf(m, n)' "° ° ' 

the divisibility sequence of m„ 

2„ PRELIMINARIES 

We shall need a number of preliminary results , whose proofs will be out-
lined for completeness,, 

Lemma 1, F , F , and F are always pairwise prime, 
Clf f divides two of the numbers, it must divide the third, by (l)c Thus, , by 
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induction along the sequence, using (1), we see that f must divide every F . 
Thus, since Fj = 1, f = 1.] 

Lemma 20 If n ^ 2, F is a strictly increasing positive function of n0 

[By (1), if F n ^ ^ 0 and F ^ * 1, F n + 1 > F Q 2> 1. By (2), F0 = 0 and 
F1 = 1, whence the lemma follows by induction/] 

Lemma 38 If n ^ 3 

(20) <*(Fn) = n. . 

fBy Lemma 2, if n ^ 3, the least index m such that F ^ F is n j 1 J . ' ' m n J 

Lemma 4„ 

(2D ( F m , F n ) = F ( m > n ) . 

[Let (m,n) = g and ( F m , F n ) = G0 There are integers x and y (not both 
negative) such that xm + yn = g0 Suppose x ^ 0; then, by (7), 

x / \ 
F = I P I ) F h F X " h F M, = 0 (mod G) , g Z-# \ h m m-i yn+h x ; ? 

h=o x n / 

since G divides F and F , and by (8), F divides F . Thus F is m n* J W J n yn g 
divisible by Ge Again, by (8), F, ^ = 0 (mod F L Thus, since g divides 
both both m and n, F divides both F and F , and so G is divisible by 

Lemma 5a F is divisible by F , if and only if either m is divisible 
by n, or n = 20 

[By Lemma 4, ( F m , F n ) = F n if and only if F ( ^ = F n ; that i s , (m,n) = 
n or n = 2B ] 

Definition 6n The remainder when F is divided by m will be written 
F^ ' and will be called the residue of F modulo m0 Clearly 

n n J 

(22) F = F ( m ) ( m o d m ) , 0 ^ F ( m ) < m 
v / n n x /5 n 
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Lemma 6C The sequence of residues F ^ m ' , modulo any integer m> 
2, is periodic with period /x(m).' That is 

(23) or 

(m) = (m) 
n+kM(m) n 

F ,, , , = F (mod m), n+l^(m) nx ' 

[The ordered pair of integers F^ , F ^ , ; can take at most m2 distinct val-
n n+i / \ / \ / \ 

ues0 Thus the m2 + 1 such consecutive pairs in F J , F\ ' , • • • , F- 2_L 
must have a duplication. By backward induction on the indices of two equal 
pairs , using (1), we see that there must be a pair F5 ' , F k + i equal to F J 
= 0, F j m ' = 1, with 2 ^ k ^ m2

0 By definition, the least such k is pt(fta), 
The periodicity now follows from (1). ] 

Lemma 7, For any integer m, we can find an F divisible by m, 
[For example, p = kju(m)9 for any integer k, by Lemma 6„] 

Lemma 8e F is divisible by m if and only if n is divisible by a(m)0 

[Since m is a factor of F , v; if n is divisible by o?(m), F is divisible 
by m, by Lemma 50 Let n = k&(m) + r , 0 < r < a(m), and let m divide 
F .' Then, by (7), F , , F = F. = 0 (mod m). Thus, sinceby Lemma 1, n » J v /» Q/(m)-i r n x ' s J * 
(FcKm)>For(m)-i) = 1 ; F. = 0 (mod m). Since r < a(m), which is minimal, 
F = 0 ; whence r = 0 and n is divisible by a(m)e] 

Lemma 9, For all integers m and r > s > 0, a(m,s) divides a(m,r)„ 
[F , v is divisible by m r and so by ms

e The result follows from Lemma L #(m,r) J J 

8.] 
Lemma 10. M(m) is divisible by a(m)Q That i s , /3(m) is an integer,, 

[Since F y , = F i m ' = 0, F" x is divisible by m0 The lemma follows 
from Lemma 8. ] 

Lemma 11, If p is an odd prime, then p divides only one of F , 
F , and F ; namely, F m , where m = p - (5/p).' 
[(p,2) = 10 Using (5), (10), and (11), we obtain that 

1/ 

(24) F p s 2P~ 
s=o x 
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Thus p divides F if and only if (5/p) = 0, by (12); that i s , when p = 5, 
By (5), (9), (10), and (11), 

4<P-i) 

(25) 2F ^ = 2PF ^ 
y l p+i p+i ^ ( \ 2 s + 1 / \ 2 s / ) 

and, by (1), (24), and (25), 

(26) 2F s 1 - 5 ^ P l) (mod p) 

The lemma now follows. We may, note that all but the dependence on (5/p) 
follows directly from (6), which yields that, if p + 5, by (11) and (24), 

F F _,_ = F2 - 1 s 0 (modp) ; p~i p+i p \ r? * 

and from (1).] 
Lemma 12, a(p) divides p - (5/p), if p is an odd prime; and if a(p) 

is itself prime and p 4= 5, a(p) < p„ 
[ The first part follows from Lemmas 8 and 11. Thus a(p) < p .+ 1. By Lem-
ma 11, if p # 5 and a(p) is prime, since p ± 1 is not prime, a(p) ^ p - 2.] 

Lemma 13, If 

\ K X 
i 2 k 

(27) m = Pi p2 ••• p k 

where the p. are distinct primes and the X. are positive integers, then 

(28) ar(m,n) = [^(p^nXi), aip2sn\2)f • • • , a<&£>*•>%)I 

and 

(29) M(m,n) = ( X p ^ n ^ ) , ii(p2,n\2), °°° 9 M(Pk9
n%)] 
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[By Lemma 8, F, is divisible by p. if and only if t is divisible by #(p., 
n \ . ) . Thus F+ is divisible by m n if and only if t is a multiple of all the 
of(p.,n\. )c Since a(m,n) is minimal, (28) follows,, By Lemma 6, F , = 
F (mod p. ) for every s if and only if t is a multiple of ^(p.,nX.)„ Thus, s i i i 
by the Chinese remainder theorem, F , = F (mod m ) for every s if and 

s+t s 
only if t is a common multiple of the M(p.,n\.)0 Since ju(m,n) i s the mini-
mal such t, (29) follows,] 

Lemma 140 For any integers m and n, 

or([m,n]) = [a(m), a(n)] 

(3.0) { and 

M([m,n]) - [iMm), M(n)] 

[This follows from Lemma 13, by expanding m and n in prime factors, ] 
Definitio] 

will be written 
Definition 7. The greatest integer n such that N is divisible by m 

(31) n = pot N 

and called the "potency" of N to base m, following Hc Guptac It is then clear 
that, in particular, 

(32) v(m,n) = pot F . . . 
x ' v ' ' v m of(m,n) 

Lemma 15a P ° t m F N = n if and only if N is divisible by cv(m,n) but 
not by a(m,n + l)c 

[ This is an immediate consequence of Lemma 8„ ] 
Lemma 16c If k and n are positive integers, then ( F - ^ / F , F ) is 

a factor of k„ 
[By (8), F ^ / F = k F ^ 1 (mod Fn).' Thus, if ( F ^ / F Fn) = g, g divides 

k-i k F . B y Lemma 1, (F ' F ) = 1; so g divides k j 
n-i J ' v n-iJ n7 ' & J 



1966] OF FIBONACCI NUMBERS 225 

Lemma 17, If k and n are both integers greater than one, then 
F|Q! / F n is a strictly increasing function of n and of k. 
[By (8), F ^ / F n = 2 h = 1 L p n

 1 F ^ F ^ Every te rm in the sum is positive, 
and increases with F , F 9 and ke The result follows from Lemma 2„ 1 n* n~i* J 

Of these results , those in Lemmas 1, 2, 4 — 7, 11, and 16 have been 
known for a long times Lemmas 8 — 10 and 12 — 15 appear, or are implicit, in 
the papers of Robinson [ 5 ] , Vinson [6 ] , and Wall [7]„[My a(m)9 /3(m), ju(m) 
are written a(m), /3(m), 5(m) by Robinson, and f(m), t(m), s(m) by Vinson,, 
respectively; and Wall writes d(m), k(m) for my a(m)9 jLt(m)0] 

30 THE DIVISIBILITY SEQUENCE 

Theorem lc If p is an odd prime and n ^ v(p), then 

(33) <*(p,n) - pn~v(p)<*(p) , 

(34) v(p,n) = n 

If p # 5, (p,ar(p)) = 1; while 

(35) Qf(5,n) = 5 n 

Further, 

(36) a(2) = 3, a(4) = 6 = a(S) 

and if n ^ 3, 

(37) or(2,n) - 2n 2a(2) = 2n""2 • 3 

Proof. By Lemma 9, cKp,n) = k&(p,n - 1), for some integer k9 Write 

Then, by (8), 
F , • , = pnA, F , . = p ^ B , F , . 4 = a 

ar(p,n) ^ ' or(p,n-i) ^ s a(p,n-i)-i 
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k / , v 

(38) pA = 2 ( )p(n"1)(h-1)BhCk-hFh . 

Thus , if EL > v(p) ^ 1, s ince (p, C) = 1, kB must be divisible by p„ Hence, 

if v(p, n - 1) = n - 1, (p,B) = 1, whence p divides k„ Since a(p5n) and 

so k, i s min imal , k = pc Now, by (10), s ince k > 2, (38) yie lds that A = 

BCr (mod p)0 Since the fac tors on the r ight a r e p r i m e to p , so i s A, 

whence v(p,n) = n0 By (18), v(p, v(p)) = y(p), so that , by induction, if n ^ 

v(p), (34)holds and ar(p,n) = p n ~ V H * ( p , v(p)). By (17), or(p, v(p» = or(p), 

yielding (33). 

By Lemma 12, a(p) divides p - (5/p). Thus , if p 4 5, (p,a(p)) = 1» 

If p = 5, then, by (2), a (5) = 5,- v(5) = 1, and, by (33), we get (35). 

Final ly , if p = 25 (38) s t i l l holds , and we s e e , as before , that k = p 

= 2 if v(2, n - 1) = n - 1. Thus 2A - 2n~1B2 + 2BC, whence (2, A) = 1 

and -v(2,n) = n, a s before , if n — 3. By (2), we have (36), whence we obtain 

(37) l ike (33). 

T h e o r e m ^ If p o t . F = n ^ 1, where p is p r i m e and p + 2 , and 
n if r — 0 and (p,t) = 1; then pot F = n + r8 If p = 2 , t m i s an odd 

p p t m 
mult iple of 3 and F, i s an odd multiple of 2 , whi le , If r > 1, pot2F 

t m 2 r t m 
r + 2e 

Proofc We repeatedly use L e m m a 15 and Theo rem 1. If n >: 1 and p 

4= 2, e i ther p i s odd and n ^ v(p), or p = 2 and n > 3; whence, by (33) 

o r (37), 

(39) or(p,n+ r) = p r a ( p , n) . 

Thus , m = ka(p9n) for some k p r i m e to p0 Hence p r t m = t k o r ( p , n + r ) , so 

that pot F = n + r0 By (36), if p n = 2, m and t m a r e divisible by 3 
p p r t m 

but not by 6, so that pot2F, = 1, and s imi la r ly by (37), pot2F = r + 2, 
. . ^ - l m 2 r t m 
if r ^ 1. 

T h e o r e m s 1 and 2 have a fairly long history,, Lucas [4] (see pages 209 — 

210) proved the s imples t formula (39) with r = 1, but failed to notice the anomaly 
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when p n = 20 Carmichael .[1] (see pages 40 — 42) proved Theorem 2 in full,* 
using the theory of cyclotomic polynomials,, Both Lucas1 and CarmichaePs r e -
sults apply to a more general sequence** than that defined by (1) and (2). 
Robinson [5] proves Theorem 1, for odd primes only, by a matrix method0 

Theorem 30 If pot F . = n ^ 1 , where p is prime and p =1= 2, and 
if r ^ 0; then there is a strictly increasing sequence of pairwise prime inte-
gers i = i (m,p)(s = 0,1,2,?**), all prime to p, such that 

s s 

(40)- • F = Pn+Thha°a ^T • 
p m 

Proof. When r = 0, we define F = p J£0, . where (p,40) = 1. By 
Theorem 2, if r ^ 1, there are integers A,B, and C, such that 

F r = P ^ A , F r _ t = p ^ - ^ B , F r _ 1 = C , 
p m p m p m-i 

and (p,A) = (p,B) = 1, while, by Lemma 1, (pB, C) = 1. Thus, by (8), 

(41) A = B E( P ) P ^ ^ ^ H B ^ C P - ^ 

where, as in the proof of Theorem 1, the sum on the right is an integer, since 
n 2: l . Thus A is divisible by Ba If we write A = i Bs it is clear that 
A = H0 £j • • • I , yielding (40). Further (41) gives us that 

(42) £ r = P BZ)( P ) P^n + r - l ) ( h - l ) - 2Bh-2Cp-hFh + C^ 1 , 

* He has a misprint, making the greatest power of 2 too small by one. 
**The-sequence is D = (op- - j3n)/(a - /3), where a + f$ and a/3 are mutually 

prime integers. For F n , by (4), a = (l/2)(l + N/"5) and p'= (l/2)(l - N/TT). 



228 ON THE DIVISIBILITY PROPERTIES [Oct 

where the sum is again an integer, since either p ^ 3 and n ^ 1, or p = 2 
and n ^ 3Q Thus it = Cr (modpB); so that, since C is prime to p, 
^ o , ^ , " 0 ^ _ , so is- 4 . Again, since £ exceeds a positive integer multiple 
of pB, we have that 

<43) *r > P V I ' - - V i > Vi 

Corollary 10 If pot F = n ^ 1 and p + 2, and if r > s > 0, then 

(44) £ r _ s (p s m, p ) = V m , p ) 

and 

(45) £0(PSm> P) = 4o(m»P)JMm»P) °-° V m » P ) • 

Corollary 20 If pot 2 F m = 1 and r > 1, then 

r+2 
(46) F r = 21 £ 0 (2m J 2)£ 1 (2m J 2)°°^ r (2m,2) . 

2 m 

Theorem 3, with its corollaries, contains a definition of £ (m,p) when-
s 

ever pot F = n > 1 and p n 4 28 By analogy with (40), (44), (45) and (46), 
we shall adopt the following definition for the remaining case, 

Definition 8, If m = 3t where t is odd (so that, by Theorem 2, pot 2 F m 
= 1), the sequence £ (m, 2) is defined by 

s 

(47) .«0(m,2) = | F m 

(48) l,(m,2) = 2*0(2m,2)/£0(m,2) , 

and 

(49) y m , 2 ) = * (2m,2) if s > 2 
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Corollary 3S Adopting Definition .8, we obtain equation (40) for every 
prime p, and every positive integer m such that pot F = n > 1. In every 
case, the numbers Jta = 0 (m,p)(s = 0,1,2',°°®) are integers, all pairwise 

o S 

prime, and all but fL^m^) are always prime to p0 If m is an odd multiple 
of 3,4^(211,2) is an odd multiple of 2; in every other case, J^(m,p) is prime 
to p0 

Proof0 If p + 2 , the corollary coincides with Theorem 30 If p n = 2 
(that is , m is an odd multiple of 3, by (36)) and r ^ 1, Corollary 2 and Defin-
ition 8 (equations (46), (48), and (49)) show that equation (40) holds, with 
^0(m,2)j^(m,2), J02(m,2),j£3(m,2), ° ° ° all pairwise prime odd integers, by 
Theorem 3. Finally, when p n = 2 and r = 0, we get (40) from the definition 
(47)j and, by Theorem 2, J0o(m,2) is an odd integer. 

Further, by (8), F 2 m = F m ( F m + 2Fm_1), which yields through (40) that 
£i(m,2) •= J20(m,2) + F m - l 9 Since %9Fm.t) = ( l 1 }Fm-i) = 1 (by Lemma 4), 
and both £0 and F m . j are odd, we see that ^(111,2) is even and prime to 
|>0(m,2). Finally, since ji^ is odd, it must be an odd multiple of 2e 

Theorem 4C Let P = {Pi ,P2," # ,Pk} be a set of k distinct primes, 
Then P contains all the prime factors of F , F , • • * , Fn7 only if 

Pi P2 P K 

k = 1 and P = {2} or {5} , 

(50) { k = 2 and P = {2, 3} or {2, 5} , 

or 

k = 3 and P - -T2, 3, 5} . 

Proof0 Let k = 1. Then F can have no prime factor other than p1# 

By (2), Lemma 2, and Lemma 11, the only possible values of p1 are 2 and 5„ 
Let k ^ 2, and first suppose that 2 $ Pe By Lemma 4, if I + ]\, 

(Fp . , Fp.) = 1, so that no prime factor is common to two of the Fp^; and by 
Lemma 2, since every p. ^ 3, every Fp. has at least one prime factor, 
Thus every F p . has exactly one prime factore Let us now renumber the p. , 
if necessary, so that p1 is the least prime in P not equal to 5, and 

(51). F^ = p^2, F = p3
r3? • • • , F - p . 1 

Pi P2 3 Pi-i 1 
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where each r j ^ 1, This can always be done, and, since p t 4= 5, inductively 
P2?P3?000 + 5s> and no Pi„! = p|a Finally, by Lemma 8S each pi„ 4 = ar(pi) 
and so, by Lemma 12, or(Pi) = P i - t < Pi. Thus the sequence defined by (51) 
cannot terminate, and this contradicts the finiteness of P, Therefore 2 e P 
and we may write pt = 2a If the F p . (i = 2 ,3 , • ° °,k) are all odd, the p^(i = 
2,3,° • ° ,k) from a set of k - 1 distinct odd primes containing all the prime 
factors of the corresponding" set of Fp.# We have just shown that this can only 
happen if k - 1 = 1 and p2 = 5, Suppose now that one of the F p . is even0 

Then, by (2), we can write p2 = 3, since F3 = 2„ If k = 2, this completes 
the enumeration of possible cases0 If k ^ 3 , then P3?P49 ° ° ° ?Pu form a set of 
k - 2 distinct odd primes containing all the prime factors of the corresponding 
set of Fp., because a(S) = 4, which is not prime, Again, we know that this 
can only happen if k - 2 = 1 and p3 = 5, This completes the proof0 

Definition 9» If pot F N = n, and if either n ^ 1 and p = 5, or n > 
v(p), we shall call p a multiple prime factor (mpf) of F N . If, on the contrary, 
p + 5 and n = v(p), then p is a simple prime factor (spf) of F N . 

Lemma 18, p is a multiple prime factor of F N if and only if it is a prime 
factor of both F N and N, A prime factor of F N which is not multiple is, a 
simple prime factor, 
[This follows from Definition 9, Lemma 8, and Theorem 1„] 

Lemma 19, If k and n are positive integers and p is a multiple prime 
factor, of F , • it is also a multiple prime factor of F, . Conversely, if p is 
a simple prime factor of F, , it is also a simple prime factor of F „ 
[This follows from Lemmas 5 and 18.] 

Theorem 5, F N has at least one simple prime factor, unless N = 1,2, 
5, 6, or 12. 

Proof. Fj = F2 = 1, so that these F N have no prime factors at all, and 
so no spf, as stated. Let N ^ 3, and let F N = m satisfy (27). By Lemma 2, 
the set P of prime factors of F N is not empty. If F N has only mpfs, by 
Lemma.: 16, each p» divides N; whence by Lemma 5, each F . divides m, 

*• P i 
It follows that P contains all the prime factors of every Fp . e This is the 
situation dealt with in Theorem 4, and it can only occur in the five cases listed 
in (50), 

By (2), (50), Lemma 8, and Theorem. 1,. if F N has only mpfs, we see 
that F N = 2 r • 3 s • 5t

0 Further, r < 4; s < 2; t < 1; r t = 0; st• = 0; if 
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r = 0 then s = 0 and t = 1; if s = t = 0 then r = 3; if r s > 0 then r = 
4 and s = 20 Thus F N = 5,89 or 144; whence N = 5, 6y or 12; and all 
these cases are valid and stated in the theorem. 

4m CARM1CHAEL?S THEOREM 

By using the theory, of cyclotomic polynomials, Carmichael proved, for 
the general sequence* D , a theorem which,, in our terminology, reads as 

n 
follows [Compare [1] , Theorem XXIII, pages 61 —62e] 

Carmichaelfs Theorem. If N f 1, 2, 6, or 12, then there is a prime 
p, such that N = #(p)0 

We shall proceed to derive this theorem, for the Fibonacci sequence, by 
the elementary considerations we have used so far. Let 

(52) N = q?*q?2 . . . q*k 

where the q. are distinct primes and the n^ ^ 1. We shall write N,-v for 
any of the k integers N. = N/q*, and more generally N / M for any of the 

( k \ 
h ] integers N/q. q. °@ • q^ , with{i1?i2,** •• , %} a subset" (without repe-

tition) of {1, 2, •• % k}. We shall also write R, for the product of the ( , J 
integers ~FN„. . 

Lemma 20. If N satisfies (52), then 

h=i 

[By repeated application of Lemma 4§ we see that 

<FNV % V • " • F N i h ) = F ( N /q i t , N / q ^ . - . - . N / q ^ ) = 

<54> F 
N / V i 2 " ' % " rN(h) 

F„ 

*See footnote on page 227 above. 
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so that Ru is the product of the, greatest common factors of all sets of h 
numbers F M . Let a prime factor p divide exactly s1 of the F , , ; and 

N(D N(D 
let p 2

f p V ° ° , p m divide s9.s3,* ° • ,• s m of the F M , respectively; but let 
(1) 

no F be divisible by p „ Then k - s^ — s2 — ° ° ° — s m — 1 and 

pot [F , F , • • ° , F N ]= ms Of the I ' 1 factors in R, , (54) shows that 

( h1 ) ' ( h) ? °°° A if1 / a r e respectively divisible by p, p2, ••*, p „ (Note 

that J , 1 = 0 if s < h, and that the set of factors divisible by p includes 

those divisible by p2
? which include those divisible by p3

s and so on)e Thus 

•xyh-fh1)+ (? ) • + - + (sif) • w h » o e 

t=i h=i 7 t=i 

which implies (53)0] 

It follows from Lemmas 5 and 20 that 

F R2 R4 * ° ° F 
(55) Q. - N N 

'N Rt R3 R 5 -- - [ F ^ , F ^ , °«°$ F N ^ ; 

is a positive integerc [Carmichael [1] writes DM for my F N ? and FN(#,/3) 
= /3^N)QN(pr/i8) for my Qw where 

(56) «N) = q ? r V i - l j q ? 2 " 1 ^ - 1) ' " %k (% ~ D 

in the Euler </>~functione ] 
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By (55) and Theorem 2, if a prime p divides QN, it is either a factor 
of F N which is prime to every F , or it also divides some F M . In 

*(!> N ( l ) 
the former case, by Lemma 8, since a(p) divides N, but no N m , neces-
sarily N = of(p), and if N t 5, p 4= 5 and p is a spf of FN„ In the latter 
case, by Theorem 29 p is a mpf of F and pot Q = 1, except if N = 6 
(when QN = Q6 = F ^ /F 2 F 3 = 4.) 

Lemma 21.' If N satisfies (52) and 

(57) QN > q4q2 - • • qfe , 

then there is a prime p such that N = aip). 
[As explained above, if N = 6, QN = 4 < 2 • 3, so this case does not arise* 
Thus pot Q = 0 or 1 and Q / q ^ '" \ cannot be divisible by any q.„ 

Thus if this quotient exceeds one, Q must be divisible by some prime other 
than the qj, and such a prime p has N = or(p).] 

Lemma 22. If N satisfies (52) and k ^ 4 , then (57) holds. 
[Since R, has I, 1 Fibonacci-number factors, and since 

(1 + l ) k = 2k and T V i ) h . [ j = (1 - l ) k = 0 

k-i we see that the numerator and denominator of QN, by (55), each has 2 
Fibonacci-number factors. Also, by (4), if a = (1/2)(\j5 + 1) and b = 
(1/2)(N/5" - 1) so that a > 1 >. b = l / a [Carmichael write^ a and -p for my 
a and b ] , | 

I 

(58) a n ( l - b2) ^ a n ( l - b2n) =s ^SF^ ^ a n ( l + b2n) ^ j a n ( l + b2) . 

Therefore, since (1 -b 2 ) / ( l + b2) = 1/V5 and by (55) and (58), QN ^ a^l /Vs)2 , 
where, by (36), 

f = N - 2N( 1 ) + SN(2) - . . . = N HH^-KH 
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so that 

(59) QN * a ^ V ^ / " 1 * a ^ ^ ^ - ^ ' ^ ^ ^ t V v s ) ^ " 1 

Clearly (qt - l)(q2 - 1) ° • ° (qk - 1) exceeds the value when we put q1 = 2 and 
qi =2i - 1 (i - 2), namely qk~* (k - 1)1. The function 

k 
2 + Z X ^ 

i = i 

increases more slowly with each q. than does the product, and its value at 
k x 

the minimal point is 2" +• k2 - k + 1. If k ^ 4, this is seen to be less than 
2k~1(k - 1)1. Thus, by (59), 

8 k - l 
(60) QN ^ | | |k i I (aV^5)8 

i= i 

The function a / n has a minimum, for integer values of n when n = 29 and 
it exceeds one when n - 4e Thus, by (60), 

(61) Q N / q i q 2
o e * q k ^ (a/2)(aV3)(ay5)(a6/7)(aY'sy5)8 = a2Vl31250 > 8 , 

and the lemma follows.] 
Lemma 23? If N satisfies (52) and k = 3$ then (57) holds if at least 

one q. — 11, or if no q. = 2, or if any n. ^ 20 

[ As in the proof of Lemma 21, (59) still holds. Now, if we suppose that qt < 
q2 < %, we see that qt — 2, q2 — 3, and, by the first supposition of the lemma, 
q3 ^ 11. Thus 
(62) 
(qi - l)(q2 - l)(q3 " 1) := (Qt - l)(q2 - m% - 2) + (q* - l)(q2 - 2) + (qi - 1) 

^ 2(q3 - 2) + (q2 - 2) + (qt - 1) * (qt - 1) + (q2 - 1) + (q3 - 1) + 7 ; 
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and so ? by (59) and (62), a s before , 

(63) Q N / q i q 2 q 3 > (a/2)(a2/3)(a*o/l 1 ) ^ / 5 * ) = a20/l65O > 9 , 

and (57) follows, 

Adopting the second supposit ion, we have qt ^ 3§ q2 > 55 and q3 > 7 

Then (62) Is r ep laced by 

(64) (qt - l)(q2 - l)(q3 - 1) > 8(q3 - 2) + 2(q2 - 2) + q 1 - l 2> (qt -1)+ (q2 - 1 ) + 

+ (q3 - 1) •+ 36 , 
and (63) by 

(65) Q N / q i q 2
( l 3 - (a2/3)(aV5)(a6/7)(a3 6/52) = a4 8/2625 > 106 , 

and (57) follows againe 

Final ly , if any n. ^ 29 0(n) ^ 2(qA - l)(q2 - 2)(q3 - 1)0 Thus , a s before , 

qt ^ 25 q2 > 3 , q3 ^ 59 and 2 ^ - l)(q2 - l)(qg - 1) ^ (qt - 1) + (q2 - 1) + 

(q3 - 1) + 9; whence 

m %/<li<k<k* (a/2)(aV3)(aV5)(aV52) = a " / 7 5 0 « 2.-9 

and we get (57).'] 
L e m m a 24, If N sa t i s f ies (52).and k = 29 then (57) holds If N/qj,q2 > 

33 o r if at l ea s t one q. > 11. 

[ L e t N/q4q2 - r . Then by (55), Q R = F r F r / F ^ F q ^ , and by (8), 

whence, by L e m m a 2, Q N > (F r _ 1 / F ^ 1 " 1 . Thus , by (58) 

(68) QN/q iq2 * { a ^ - ^ " 1 (1 - b ^ V d + b ^ ^ / q f t 



236 ON THE DIVISIBILITY PROPERTIES [Oct 

First we assume that r ^ 3. Then5 by the kind of argument used, above, if 
qt ^ 3 and q2 - 2, and by (68), 

(69) QN /qxq2 ^ ( a q ^ / q i ) ( a 3 q 2" 4 /q 2 ) {a(l - b«>)/(l + h*)}^'1 

> a4(0o94)2/6 > 1 . 

Next, we assume that qt ^ 2, q2 £=11, r ^ 1„ Then, by (68), 

(70) Q N / q i q 2 ^ ( a ^ ^ ^ / q i X a ^ ' V q z X a a - b2°)/(l + b 2 ) } ^ " 1 >a9(0o72)/22>2. 

The results (69) and (70) establish the lemma.] 
Lemma 25, If q is prime and q — 3, then there is a prime p such 

that q = a(p)a 

[if q — 3, F — 2, by Lemma 2, and so F has a prime factor pe By Lem-
ma 8, a(p) divides q, whence, since q is prime, a(p) = q.] 

Lemma 26c If q is prime and X ^ 2, then there is a prime p f 5, 
such that q^ = a(p)0 

[By Lemma 16 and Theorem 1, if q = m, (F / F , F ) = 1 if q * 5; 
and if 5X~* = m, ( F 5 m / F m , F m > = 5e If q * 5, by Lemma 17, F q m / F m > 
F 4 / F 2 = 3; so that F must have a prime factor p f 5, prime to F . 
If q = 5, since F25 / 5 F 5 = 3001, by (2), Lemma 17 shows that again F 
has a prime factor p + 5, prime to F „ Thus, by Lemma 8, for any q,o?(p) 
divides qm = q^ but not m = q " , Therefore q^ = a(p). ] 

We now have sufficient information to prove CarmichaePs theorem. 
Theorem 60 If N + 1, 2, 6, or 12, then there is a prime p such that 

N = ar(p). 
Proof, Let the (unique) prime-power expansion of N be given by (52). 

By Lemma 21, Lemmas 22, 23, and 24 show that the theorem holds in the fol-
lowing cases: (i) if k ^ 4, all N; (ii) if k = 3 and either (a) one q. ^ 11, 
(b) no q. = 2, or (c) one n. ^ 2; and (iii) if k = 2 and either (a) N/q1q2 

- 3 or (b) one qt ^ l l e In addition, Lemmas 25 and 26 show that the theorem 
holds (iv) if k = 1 and N + 28 We see from (2) that, indeed, when N = 1,2, 
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6, or 12, there is no prime p such that N = a(p)0 It therefore remains to 
show that such a p exists, (v) when k = 3, no q. — 11, one q. = 2, and 
no n. — 2, and (vi) when k = 2, N 4 6 or 12, N / q ^ = 1 or 2, and no q. 
— 11. We look for primes p which divide F M but no corresponding F , 

(1) for then N = or(p), as explained earlier,, l ' 
Case (v). We have N = 2 - 3 • 5 = 30, 2 . 3 • 7 = 42, and 2 • 5 • 7 = 

70, We see from (2) that 30 = or(31), 42 = <*(211), and 70 = a(71) = a(911); 
so that the theorem holds„ 

Case (vi). We have. N = 2 • 5 = 10, 22 • 5 = 20, 2 • 7 = 14,. 22 • 7 = 28, 
3 • 5 = 15, 3 • 7 = 21, and 5 - 7 - 35. We see from (2) that 10 = or<ll), 
20 = ar(41), 14 = #(29), 28 = ar(281), 15 = or(61), 21 = ar(421), and'35 = 
a(141961). This completes the theorem,, 

Lemma 27. If N = a(p) and N + 5 whence p =(= 5), p Is a simple 
prime factor of FN» 
[By Lemma 18, if p Is a mpf of F N , p divides both N and F^0 Thus, 
since, by Theorem 1, if p =t= 5, (p,or(p)) = 1; N must be divisible by por(p), 
so that N # a(p)0 The lemma follows.] 

By Lemma 27, Theorem 5 Is seen to follow from Theorem 60 We also 
see that Theorem 3 and its corollaries follow from Theorems 1, 2, and 6 (with 
the exception of the fact that the a (m,p) increase with s). 

s 
For completeness, we also state the following result. 
Lemma 28Q If f1 = 1, f2s f35 ° ° ° ,f = N are all the divisors of N, then 

m 
(71) FN = ]~[Q f r 

r=i 

[If N satisfies (52), its divisors are the (nt + l)(n2 + I)8 • • 0% + 1) = m inte-
gers 

s, s9 k f = q f A q 2
2 ••• q k , 

where 0 ^ s. ^ n., I = l , 2 >
Q ' o , k . By (55), a particular factor F can 

appear only once in Qf; and this, when 
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ti to *k 
g = v q2

2 • * * ^k 

and t. = n. except when i = i l s i 2 s° ° ° s i t (when t. < n . ) , only if f = g or 
gq. or gq. q. or • °• or gq. q. • • • q. a It follows by (55) that F appears 
in 

n r=i 

Qf 
r 

to the total power 

and 1 if h = 0o This proves that the product is simply F „] 

5e PERIODICITY OF RESIDUES 

We shall complete this discussion of divisibility properties with a survey 
of results pertaining to the characteristic number M(m,.n) defined in Section 1. 

Lemmas 13 and 14 show that we may limit the study of the functions 
c*(m,n) and M(m,n) to that of ar(p,n) and ju(p,n), where p is prime. We 
have established the essential properties of ar(p,n) in Theorem 10 Thus, by 
(15), the corresponding behaviour of pt(p,n) is known if we know that of /3(p,n)„ 
So far, we have only stated, in Lemma 10, that /3(m) (and, in particular, 
/3(p,n)) is always an integer.' The papers of Robinson [ 5 ] , Vinson [ 6 ] , and 
Wall [7] have answered almost every question that may be asked about /3(p,n), 
and it is their work which will be outlined herec Proofs of all the results quoted 
below may be found in Vinsonfs paper [ 6 ] , and so will be omitted here, 

Theorem 70 If p is an odd prime and n a positive integer, then 

14 if pot2a(p) =• 0 j 
1 if pot2c*(p) = 1 ( 
2 if pot2a(p) ^ 2] 
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but 

(73) £(2,1) = 0(2,2) - 1, and (3(2,n) = 2 if n > 3 . 

We note that ; with the two exceptions given in (73), 0(p,n) i s independ-

ent of n0 Also? 0(p,n) always takes one of the t h r ee values 1, 2, or 4 — 

a r emarkab ly s imple resu l t , 

Theo rem 8e If m i s a posi t ive in teger satisfying (27), then (i) j3(m) -

4, if m ^ 3 and a(m) i s odd; (ii) j3(m) = 1, if pot2or(p.) = 1 for every 

p . + 2 (i = 1, 2, • • • , k) and if pot2m ^ 2; and (iii) 0(m) = 2 for all other 

me 

We note that T h e o r e m 8 contains Theorem 7, as a specia l c a s e , when 

m = p , where p i s p r ime 0 (The connection i s through L e m m a 13,) 

T h e o r e m 9a If p i s an odd p r i m e , not equal to 5, and n a posi t ive 

in teger , then 

1 if p = 11 or 19 (mod 20) 

(74) j8(p,n) = { 2 if p s 3 or 7 (mod 20) 

4 if p = 13 or 17 (mod 20) 

and (of the r ema in ing va lues of p s 1 o r 9 (mod 2O))0(p,n) # 2 if p = 21 or 

29 (mod 40)o 

These r e s u l t s a r e connected with the foregoing by way of L e m m a 12. 

Vinson points out that the theorem, is "comple te" in the sense that every r e -

maining possibi l i ty o c c u r s ; he l i s t s the examples : 

0(521) = 1, 0(41) = 2, 0(761) = 4, [p = 1 (mod 40)] 

0(809) = 1, 0(409) - 2,. 0(89) = 4, [p = 9 (mod 40)] 
( 7 5 ) j 0(101) = 1, 0(61) = 4 , [p = 21 (mod 40)] 

0(29) = 1, 0(109) - 4, [p = 2 9 (mod 40)] 
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