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ON THE DIVISIBILITY PROPERTIES OF FIBONACCI NUMBERS

John H. Halton, University of Colorado, Boulder, Colorado

1. INTRODUCTION

The Fibonacci sequence is defined by the recurrence relation

Fpeo = Fneg + Fp s

together with the particular values

@)

numbers which are divisible by powers of a given integer,

remainders, when the Fibonacci numbers are divided by a given integer.

\

whence

i

Fy
Fy

1, F =2, F; =3, Fy =5, Fg = 8 = 25, F; = 13
21 =37, Fyg=234=2:17, Fjy = 55 =511, == ;

I

and, in particular,

Fjp=144=2%-32, F, =377 =13-29, Fy5=610=2-5-61,
Fyp=2584=23.17.19, Fy = 6765 = 3+5°11-41,

Fy, = 10946 = 2+ 13- 421, Ty, = 46368 = 25.32.7.23 ,

Fys = 75025 = 52+ 3001, Fpg = 317811 = 3-13-29-281,

Fjp = 832040 = 23+ 51131+ 61, Fg5 = 9227465 = 5° 13- 141961 ,

Fgy = 14930352 = 24. 33.17-19-107, Fy, = 267914296=23.13-29-211. 421

Fqo = 190392490709135 = 5-11-13-29-71-911-141961 .

In this paper, we shall be concerned with the sub-sequence of Fibonacci
We shall also be
interested in the associated problem of the periodic nature of the sequence of

217



218 ON THE DIVISIBILITY PROPERTIES [Oct.

The Fibonacci sequence is defined for all integer values of the index n,
However, the well=known identity
151

(3) Fo= (D7F,

shows that negative indices add nothing to the divisibility properties of the
Fibonacci numbers. We shall consequently simplify our discussion, without
loss of generality, by imposing the restriction that n = 0,

Of the many papers dealing with our problem, perhaps the most useful
are those of Carmichael [l , Robinson [5], Vinson [6] , and Wall [7]; and the
reader can find many additional references in these, Most of the other papers
in the field give either less complete results, or give them for more general
sequences,

We shall make use, in what follows, of the well-known identities:*

=\ n E AR
(4) Fn=w~%{}(1;\j5) ~<1'2\/5)} ;

[3n-1)]
Nty n s
(5) Fn=<—2—) E 5%, if n=1 ;
2s + 1
§=0
-1
(6) F2 - Fp-1Fpey = 1" ;
k
7) F = N (k FrpEhp it k=0 ;
( kntr ~ \ n” n-i r+h’ =7
h=0 "
and since Fj = 0,
k

® P = FL D

h=1

*See, for example, equations (6), (3), (5), (67), and (34), in my earlier,paper
[3]. Equation (5) above follows from (4) by the binomial theorem.

k
Fh—i Fk-h F
h n n-i-h
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Also
k+1 k k
(9) = + ,
h h h -1
and
p
(10) p divides if p isprimeand 0 <s <p ,
s

and Fermat's theorem, that
11 mP™ =1 (modp) if p is prime and (m,p) = 1

As is customary, we use (A,B,C,°°°) to represent the greatest com-
mon factor of integers A,B,C," -+, and [A,B,C,*°"° ] to represent their least

common multiple, We have

(12) i ® = (m/p) (mod p)

where p is an odd prime and (m/p) denotes the Legendre index, which is +1
if (m,p) = 1, and 0 otherwise,

Each writer seems to have invented his own notation, I shall adopt the
following, which comes closest to that of Robinson in [5].

Definition 1, The least positive index « such that Fa is divisible by

m" (that is, F_ = 0 (mod m%) ‘will be written
(13) o(m,n) = om™,1) = o(mb) .

This is variously called the "rank of apparition” (why not "appearance''?) of

m®, or the '"restricted period" of the Fibonacci sequence modulo mn,

Definition 2, The least positive index g such that both FM = 0 and
Futq =1 (mod m™) will be written
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(14) p(m,n) = p(m”,1) = p(m?

This notation follows Carmichael [2], whonamed p the "characteristic number"

of the Fibonaceci sequence modulo m™, It is also called the "period' of the se-

quence modulo . mi,

Definition 3, I shall write

(15) p(m,n)/e(m,n) = B(m,n) = p(m,1) = B(m")

Definition 4, The greatest integer v such that Fa is divisible by

(m, n)

m” will be written

(16) p(m,n) = v(ml,1) = p(mb)
It is then clear that
17) a(m,n) = g(m,n + 1) = .00 = g(m,r(m,n)) < a@m,pv(m,n) + 1)
or, equivalently,
(18) v (m,v(m,n)) = v(m,n)
Definition 5, I shall call the sequence
@9 Fom,y Tom, > Fam,n "

the divisibility sequence of m,

2, PRELIMINARIES

We shall need a number of preliminary results, whose proofs will be out-
lined for completeness.

Lemma 1, Fn’ F and Fn+2 are always pairwise prime,

- n+i’
[1f £ divides two of the numbers, it must divide the third, by (1). Thus,,by
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induction along the sequence, using (1), we see that f must divide every Fm.
Thus, since F; = 1, f = 1,]

Lemma 2, I n =2, Fn is a strictly increasing positive function of n,
[By (1), it F  =0and F _ =1, F > F =1 By (2, F, = 0 and
F; = 1, whence the lemma follows by induction, ]

Lemma 3, If n =3

(20) a(f) = n .

[By Lemma 2, if n = 3, the least index m such that F = Fn is n.]

ILemma 4,

(21) (Fm9 Fn) = F(m,n)

[Let (m,n) =g and (Fp,,Fy) = G. There are integers x and y (not both
negative) such that xm + yn = g, Suppose x = 0; then, by (7},

Y& h _x-h

F o= ) F F F = 0 (mod G) ,

g s \ 1, m  m-1" ynth
h=0

since G divides Fm and Fn, and by (8), Fn divides Fyn' Thus Fg is
divisible by G, Again, by (8), FkgE 0 (mod ¥ g)" Thus, since g divides
both m and n, Fg divides both F,, and Fo» and so G 1is divisible by
Fg.]

Lemma 5. F is divisible by Fn’ if and only if either m is divisible
by n, or n= 2,

[By Lemma 4, (Fm,Fn) = F][1 if and only if F = Fn; that is, (m,n) =

(m,n)
nor n=2]

Definition 6. The remainder when Fn is divided by m will be written

()
n

and will be called the residue of Fn modulo m, Clearly

(22) F = an) (mod m), 0 = Fflm) <m
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Lemma 6, The sequence of residues an), modulo any integer m=

2, is periodic with period p(m), That is

(m) - pm)
Fn+ku(m) = F

(23) or
n+ku(m) F (mod m),

[ The ordered pair of integers F( m) F(If_li) can take at most m? distinct val-
ues, Thus the m?+ 1 such consecu‘uve pairs in F(m), F(m) FI(rI:l-)!-1
must have a duplication, By backward induction on the indices of two equal
pairs, using (1), we seethat there must be a pair Fl({m) F1(<If1) equal to Fgm)
=0, F(m) =1, with 2 = k = m?, By definition, the least such k is pu(m),
The periodicity nowfollows from (1). ]

Lemma 7, For any infeger m, we can find an Fn divisible by m.
[For example, »n = kym), for any integer k, by Lemma 6.]

Lemma 8, Fn is divisible by m if and only if n is divisible by a(m).
[Since m is a factor of Fa(m); if n is divisible by a(m), Fn is divisible
by m, by Lemma 5, ILet n=ko(m) +r, 0 = r < o(m), andlet m divide
Fn Then, by (7), Fg(m) [F,= F, =0 (modm), Thus, sinceby Lemma 1,
(Fo(im)s Fo(m)-1) = F: = 0 (mod m). Since r < g(m), which is minimal,
Fr = 0; whence r = 0 and n is divisible by a(m).]

Lemma 9, TFor all integers m and r = s > 0, o(m,s) divideso(m,r).

[Fa(m,r) is divisible by m’ andsoby m®, The result follows from Lemma
8.]

Lemma 10, p(m) is divisible by o(m). That is, B(m) is an integer.
[Since F( m) Fém}J =90, F is divisible by m. The lemma follows

p(m) p(mm)

from Lemma 8, ]

Lemma 11, If p is an odd prime, then p divides only one of Fp_ o
Fp, and F,P+1; namely, F,_, where m = p - (5/p).
[(p,2) = 1. Using (5), (10), and (11), we obtain that

-y 1o-1
= oP-1 - s _
(24) F, = 2P Z <25+1>5 =5 (mod p)

S=)
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Thus p divides Fp if and only if (5/p) = 0, by (12); that is, when p = 5.
By (5), (9), (10), and (11),

-
- p P\ p-i)

@) 2, =P = ) ( >+( )5s51+5*}( (mod p)
5=0

2s + 1 2s

and, by (1), (24), and (25),

(26) 2F = 1- 5501 (1mod p)

The lemma now follows. We miay, note that all but the dependence on (5/p)
follows directly from (6), which yields that, if p # 5, by (11) and (24),

- 2 - = .
Fp—1Fp+1 Fp 1 =0 (modp) ;

and from (1).]
Lemma 12, o(p) divides p - (5/p), if p is an odd prime; and if «(p)
is itself prime and p # 5, a(P) < p.
[ The first part follows from Lemmas 8 and 11, Thus a(p) < p+ 1. By Lem-
ma 11, if p + 5 and o(p) is prime, since p + 1 is not prime, ao@P)= p - 2.]
Lemma 13, If

AN )y
1 2 k
27 m = Py P °°° Pk s

where the p; are distinct primes and the )‘i are positive integers, then

(28) af(m,n) = [a(pisnxi): a(p29n>\-2)s ctcy, Q’(pk,n)\.k)]

and

(29) “(m:n) = [“(pi’nxi)’ I“l'(pZ,n)\Z)’ T, I“l’(pk:nxk)]
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[By Lemma 8, F, is divisible by p; = if and only if t is divisible by a(p;,

nxi). Thus F, is divisible by m? if and only if t is a multiple of all the

t
a(pi,nxi), Since o(m,n) is minimal, (28) follows., By Lemma 6, Fs+t =
Fs (mod P, 1) for every s if and only if t is a mu'tiple of /.t(pi,n)\i)., Thus,

by the Chinese remainder theorem, F = FS (mod mn) for every s if and

s+t
only if t is a common multiple of the “(pi’m‘i)‘ Since p(m,n) is the mini-
mal such t, (29) follows,]

Lemma 14, For any integers m and n,
o(m,n]) = [a(m), a@D)]
(30) and
p([m,n]) = [Hm), p@)]

[ This follows from Lemma 13, by expanding m and n in prime factors. ]
Definition 7. The greatest integer n such that N is divisible by m"

will be written

(31) n = potmN

and called the '"potency' of N to base m, following H. Gupta. It is then clear

that, in particular,

(32) v(m,n) = potha(m’ n)

Lemma 15, poth = n if and only if N is divisible by a(m,n) but

N
not by a(m,n + 1),

[ This is an immediate consequence of Lemma 8, ]
Lemma 16, If k and n are positive integers, then (Fien / Fn’ Fn) is
a factor of k.
_ k-1 . _ s
[Bgll{_(?), Fln /Fn= kF _ (mod Fy). Thus, if (Fi, /F,,Fy) = g, g divides
an_1 . By Lemma 1, (Fn—1’Fn) = 1; so g divides k.]
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Lemma 17, If k and n are both integers greater than one, then

Fin /Fy is a strictly increasing function of n and of k,
_ vk (k\_h-1 _k-h
[By (8), Fkn/Fn B Zh=1 h)Fn Pt e

neq? and k., The resuli follows from Lemma 2. ]
Of these results, those in Lemmas 1, 2, 4 — 7, 11, and 16 havebeen

Every ferm in the sum is positive,
and increases with Fn, F

known for a long time, Lemmas 8-—10 and 12 — 15 appear, or are implicit, in
the papers of Robinson [5], Vinson [6], and Wall [7].[My o(m), g{m), p(m)
are written o(m}, g(m), 6(m}) by Robihson, and f(m), t(m), s(m) by Vinson,,

respectively; and Wall writes d(m), k(m) for my o(m), p(m)}.]

3. THE DIVISIBILITY SEQUENCE

Theorem 1, If p is an odd prime and n = v(p), then

(33) op,n) = 0" V)
(34) v(p,n) = n

¥ p 45 (@a@) = 1; while

(35) a5,n) = 5°

Further,

(36) o2) = 3, ad) = 6 = a(8)
and if n = 3,

37 a2,n) = 2% 0@ = 2273

Proof, By Lemma 9, ofp,n) = ka(p,n -1}, for some integer k, Write

_ n _ -t _
Fa'(p‘s 1'1) - P A’ Fa'(pa n"j‘) P B, Fa/(p’na.j_)—i c.
Then, by (8),
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k
L / k
(38) pA = }:(h>p<n-1)(h—1)3h by

h=1

Thus, if n > v(p) =1, since (p,C) = 1, kB must be divisible by p. Hence,
if vip,n-1)=n-1, (p,B) = 1, whence p divides k, Since o(p,n) and
so k, is minimal, k = p. Now, by (10), since k > 2, (38) yields that A =
BcP! (mod p). Since the factors on the right are prime to p, so is A,
whence v(p,n) = n. By (18), v(p,v(p)) = v(p), so that, by induction, if n =
vp), (34)holds and a@,n) = o™ P, vo). By 17), o, vE) = @),
yielding (33).

By Lemma 12, o(p) divides p - (5/p). Thus, if p + 5, (p,a(p)) = 1.
If p=15, then, by (2), «(5) = 5, v(5) = 1, and, by (33), we get (35).

Finally, if p = 2, (38) still holds, and we see, as before, that k = p
=2 if v@,n-1) = n- 1. Thus 2A = 2" 'B2+ 2BC, whence (2,A) = 1
and v(2,n) = n, as before, if n =3, By (2), we have (36), whence we obtain
(37) like (33).

Theorem 2, If pothm =n =1, where p is prime and pm + 2, and

if r =0 and (p,t) = 1; then pot F =n+r., If pb =2, tm is anodd
P prtm
is an odd multiple of 2, while, if r =1, pot,F =
m 2 tm

multiple of 3 and F
r+2,

Proof, We repeatedly use Lemma 15 and Theorem 1, If n =1 and pn
+ 2, either p isoddand n = y(p), or p =2 and n = 3; whence, by (33)
or (37),

t

(39) ap,n+ r) = p o, n)

Thus, m = ko(p,n) for some k prime to p, Hence pTtm = tka(p,n + r), so
that pot F p S ot By (36), if pn =2, m and tm are divisible by 3
ptm
but not by 6, so that pot,F

if r =1,

im = 1, and similarly by (37), potzertm =r+ 2,

Theorems 1 and 2 have afairly long history. Lucas [4] (see pages 209 —
210) proved the simplest formula (39) with r = 1, but failed tonotice the anomaly
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when p” = 2, Carmichael [1] (see pages 40 —42) proved Theorem 2 in full *
-using the theory of cyclotomic polynomials, Both Lucas' and Carmichael's re~
sults apply to a more general sequence** than that defined by (1) and (2).
Robinson [5] proves Theorem 1, for odd primes only, by a matrix method.

Theorem 3, If pothm =n =1, where p is prime and pn ¥ 2, and
if r = 0; then there is a strictly increasing sequence of pairwise prime inte-
gers ﬂs = QS (m,p)(s = 0,1,2,222), all prime to p, such that

. +
(40) F T = pn rfgﬂi °°e QI‘ »
pm

Proof, When r = 0, we define Fm = pnﬂ(,, where (p,fy) = 1. By

Theorem 2, if r = 1, there are integers A,B, and C, such that

and (p,A) = (p,B) = 1, while, by Lemma 1, (pB,C) = 1. Thus, by (8),

P
—~/ P
(41) A =B z :< h) p(l‘l+I'—1)(h—i)-'lBh-icp—hFh
h=1

where, as in the proof of Theorem 1, the sum on the right is an integer, since
n =1, Thus A is divisible by B, If we write A = ﬂrB, it is clear that
A= fylye-- !Zr , yielding (40), Further (41) gives us that

o]
p ) (h=1)-2_h-2 D -
(42) 0, = pBZ( )p(n““ H-D=2ghrophy o gPt
ez \ B

* He has a misprint, making the greatest power of 2 too small by one,
**The ‘sequence is Dn = @ - Y/ (@ - B), where o+ p and of are mutually
prime integers., For F,, by (4); o = (1/2)(1 +N5) and g = (1/2)(1 - NB).
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where the sum is again an integer, since either p =3 and n =1, or p =2

and n= 3, Thus nr = cP! (mod pB); so that, since C is prime to p,

0s"1» B
of pB, we have that

L, 0, <= llr_l, so is ﬁr‘ Again, since ﬂr exceeds a positive integer multiple

(43) L A N

Corollary 1, If pothm =n =1 and pn ¥ 2, andif r > s =0, then

(44) 0, @°m, p) =g (m,p)
and
(45) 1 0°m, p) = fy(m,p)Ly(m,p) ++* L (m,D)

Corollary 2. If pot,Fy, =1 and r =1, then

(46) Fzrm = 2% (2m, 2) ¢,(2m, 2) ** 0, @m,2)
Theorem 3, with its corollaries, contains a definition of ﬁs(m,p) when-
ever pot F\ =n =1 and p" + 2, By analogy with (40), (44), (45) and (46),
we shall adopt the following definition for the remaining case,
Definition 8. If m = 3t where t is odd (so that, by Theorem 2, pot,Fp,

Eo A2t A 4= A

= 1), the sequence Bs(m,Z) is defined by

(47) 2(m,2) = 3F,
(48) li(m,Z) = 21)_0(2m,2)/£0(m,2) ,
and

(49) ﬂs(m,2) = zs_1(2m,2) if s= 2,
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Corollary 3. Adopting Definition 8, we obtain equation (40) for every
prime p, and every positive integer m such that pothm =n =1, Inevery

case, the numbers ES = lzs(m,p)(s = 0,1,2,°°°) are integers, all pairwise
prime, and all but £,(m,p) are always prime to p, If m is an odd multiple
of 3,4(m,2) is an odd multiple of 2; in every other case, 4(m,p) is prime
to p.

Proof, If pn + 2, the corollary coincides with Theorem 3, If pn =2
(that is, m 1is an odd multiple of 3, by (36)) and r =1, Corollary 2andDefin-
ition 8 (equations (46), (48), and (49)) show that equation (40) holds, with
%ﬂo(m,Z)ﬂi(m,Z), fy(m, 2),03(m,2), --- all pairwise prime odd integers, by
Theorem 3, Finally, when pn =2 and r = 0, we get (40) from the definition
(47), and, by Theorem 2, £,(m,2) is an odd integer,

Further, by (8), Fom = Fm(Fm + 2Fm-y), which yields through (40) that
04(m,2) = 4(m,2) + Fm-y. Since (&, Fm-_y) = (4, Fm—4) = 1 (by Lemma 4),
and both ¢, and Fy-; are odd, we see that f;(m,2) is even and prime to

{y(m,2), Finally, since %20121 is odd, f; must be an odd multiple of 2,

Theorem 4, Let P = {p;,ps,"°"°, pk} be a set of k distinct primes,

Then P contains all the prime factors of Fp ,F only if
1

p ¥k

k =1 and P= 2} or {5} ,
(50) k = 2 and P = {2, 3} or {2, 5} ,
or
k = 3 and P = {2, 3, 5}

Proof, Let k = 1. Then Fp1 can have no prime factor other than p;.
By (2), Lemma 2, and Lemma 11, the only possible values of p, are 2 and 5,

Let k = 2, and first suppose that 2 ¢ P, By Lemma 4, if i ¥ j,
(Fpi, ij) = 1, sothat po prime factor is common to two of the Fpi; and by
Lemma 2, since every p; =3, every Fpi has at least one prime factor.
Thus every FPi has exactly one prime factor. Let us now renumber the P;»
if necessary, so that p; is the least prime in P not equal to 5, and

r I 1
51 F = 2’ F = 3 eeoe F — . 0o o
( ) Dy D2 Dy D37, ’ p
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where each rj =1. This can always be done, and, since p; ¥ 5, inductively
Py,P3,°°° ¥ 5, andno pj-; = pj. Finally, by Lemma 8, each pj_; = o(pj)
and so, by Lemma 12, «(p;) = pj-y < Pi. Thus the sequence defined by (51)
cannot terminate, and this contradicts the finiteness of P, Therefore 2¢P
and we may write p; = 2. If the Fpi (i=2,3,°°,k) are all odd, the pji =
2,3,°°°,k) from a set of k -1 distinct odd primes containing all the prime
factors of the corresponding set of Fpi' We have just shownthat this can only
happen if k-1 =1 and p, = 5. Suppose now that one of the Fpi is even,
Then, by (2), we can write p, = 3, since Fy = 2, I k = 2, this completes
the enumeration of possible cases, If k =3, then p;,py,--° P form a set of
k - 2 distinct odd primes containing all the prime factors of the corresponding
set of Fpi’
can only happen if k-2 = 1 and p; = 5. This completes the proof,

because «(3) = 4, which is not prime. Again, we know that this

Definition 9, If pothN =n, andif either n =1 and p=5, or n >

v(p), we shallcall p a multiple prime factor (mpf) of F If, onthe contrary,

N
p ¥ 5 and n = v(p), then p is a simple prime factor (spf) of F

N
Lemma 18, p is a multiple prime factor of FN ifand only if itis aprime
factor of both FN

simple prime factor.

and N, A prime factor of F,. which is not multiple is a

N

[ This follows from Definition 9, Lemma 8, and Theorem 1, ]
Lemma 19, If k and n arepositive integers and p is a multiple prime

factor of Fn’ it is also a multiple prime factor of F Conversely, if p is

a simple prime factor of Fkn’ it is also a simple pri;mne factor of Fn’
[ This follows from Lemmas 5 and 18, ]

Theorem 5, FN has at least one simple prime factor, unless N = 1,2,
5, 6, or 12,

Proof, F; = Fy = 1, so that these Fy have noprime factors atall, and

so no spf, as stated. Let N = 3, and let FN = m satisfy (27). By Lemma2,

the set P of prime factors of F,. is not empty., If FN has only mpfs, by

N
Lemma 16, each p; divides N; whence by Lemma 5, each Fp_ divides m.
i

It follows that P contains all the prime factors of every Fpi' This is the

situation dealt with in Theorem 4, and it can only occur in thefive caseslisted
in (50),

By (2), (50), Lemma 8, and Theorem 1, if FN
that FN = Zr-35~5t, Further, r = 4;s= 2;t=<1;rt = 0; st = 0; if

has only mpfs, we see
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r =20 then s = 0 and t = 1;if s =t =0 then r = 3;if rs >0 thenr =
4 and s = 2, Thus FN = 5,8, or 144; whence N = 5, 6, or 12; and all

these cases are valid and stated in the theorem,

4., CARMICHAEL'S THEOREM

By using the theory of cyclotomic polynomials, Carmichael proved, for
the general sequence™® D, a theorem which, in our terminology, reads as
follows [Compare [1], Theorem XXIII, pages 61 —62,]

Carmichael's Theovem, If N # 1, 2, 6, or 12, then there is a prime
p, suchthat N = ofp). |
We shall proceed to derive this theorem, for the Fibonacci sequence, by

the elementary considerations we have used so far, Let

O

1
2“mqk R

(52) N = qjlqp

where the q, are distinct primes and the n; =1, We shall write N(l) for
any of the k integers N, = N/ g;, and more generally N (h) for any of the
(i) integers N/qiiqiz" o qih’ with {ii,izaﬂ ce, ih} a subset (without repl?—
tition) of {1, 2, * -, k. We shall also write Rh for the product of the ( h)
integers -FN(h)“

Lemma 20, If N satisfies (52), then

h-1
53 F . B , %%, F e
( ) [ Ni Nz Nkj RZ R4 RG oo

[By repeated application of Lemma 4, we see that

. . eeo T = I
(FNH’ FN12=y ? Nlh) (N/'Oiip N//Qigs °Ts N/q‘ih> -
(54)

F._ = F
NG G, 0t Gy Ny

*See footnote on page 227 ahove.
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so that Ry is the product of the greatest common factors of all sets of h

numbers Fy - Letaprime factor p divide exactly s; of the FN ; and

0 (1)
let p?,pd,c-,p™ divide sy,85,°°*, sy of the Fy » respectively; but let
(1)
R m+1 = = > = =
no FN(l) be divisible by p~ . Then k =gy = 8y = 2> = 5, = 1 and
_ k .
pOtp[FNi’FNg’ s FNk]— m, Of the ( h) factors in Rh, (54) shows that

s .
(s’h1 ), (i?-) , o0 ,( ll;n) are respectively divisible by p, p?, °*~°, pm, (Note

S

that ( h

) = 0 if s < h, and that the set of factors divisible by p includes

those divisible by p?, which include those divisible by p3, and so on), Thus

ot _ (si) + [S2) 4+ e 4 (Sm) whence
POt Ry =\ n h )/ b/
. < RiR3 Ry — -t "t i{l 1 l)st}
e = - = - - -m ’
pop R2 R4R6°°° ZZ( ) h (

which implies (53).]

It follows from Lemmas 5 and 20 that

(55) Q- N N
N TR By By T [Fy, F e, F

Nk]

is a positive integer. [Carmichael [1] writes DN for my FN’ and FN(a, B)
= /3¢(N)QN(01/ p) for my Qg, where

n, -1
(56) o) = oty - D - D g - D)

in the Euler ¢-function, |
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By (55) and Theorem 2, if a prime p divides Qy, itis either a factor

of FN which is prime to every FN(l)’ or it also divides some FN . . In
the former case, by Lemma 8, since «(p) divides N, but no N(l)’ riezzes-
sarily N = o(p), andif N + 5, p +# 5 and p is a spfof FN‘ In the latter
case, by Theorem 2, p is a mpf of FN, and pothN =1, except if N = 6
(when Q = Qg = FeFy /FyFs = 4,)

Lemma 21, If N satisfies (52) and
(57) Qq > 92> Y

then there is a prime p - such that N = w(p).
[ As explained above, if N = 6, QN = 4 < 2+ 3, so this case does nct arise,
Thus potp QN =0 or 1 and QN /a0y - Qe cannot be divisible by any 9;-
Thus if this quotient exceeds one, QN must be divisible by some prime other
than the q;, and such a prime p has N = a(p).]

Lemma 22, If N satisfies (52) and k =4, then (57) holds.

[Since R has (ﬁ) Fibonacci-number factors, and since

k

[k k _ .k SN K
Z( =@+ 1% =2 and Z(—l) > -—a-nf=-0
h hF—‘O h

h=0

we see that the numerator and denominator of QN, by (55), each has Zk'1
Fibonacci-number factors, Also, by (4), if a = (1/2)(’\/:—5_ +1) and b =
(1/2)(N5 - 1) sothat a > 1> b = 1/a [Carmichael writeS; a and -B for my
a and b], ' i

B |
(58) 2%(L - b?) = a1 - b™) = NEF_ = a1 + b = 2% + b?)

. k-1
Therefore, since (1 -b?)/(1+b?) = 1//5 and by (55) and (58), Q = af(l/w%)Z

where, by (56),

=N - e = 2L S I S )
f=N ZN(1)+EN(2) N<1 q1>(1 q2> (1 q) ¢ (N);

k/
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so that

(59) QN > a¢(N)(1/ /\J'E—)'~)2k_1 > a(qj_l) (q2—1)° °° (qk_i)(l/ \/‘5')21{_1

Clearly (4 - 1)(dy = 1) === (g - 1) exceeds the value when we put q; = 2 and
q; =21 -1 (i = 2), namely 5! (k- 1)!, The function

k

k

25 + E(qi - 1)
i=1

increases more slowly with each 9 than does the product, and its value at
the minimal point is 2k+ kK2 -k+1, If k=4, this is seen to be less than
2K71(c - 1)1, Thus, by (59),

)
(60) Q = ;ﬂl P ay/NEy
The function a"”/n has a minimum for integer values of n when n = 2, and
it exceeds one when n = 4, Thus, by (60),
(61) Qy /4y * - qy = (3/2)(@%/3)@¥5)(@%/N@¥/N5)® = a?9/131250 > § ,
and the lemma follows, ]

Lemma 23, If N satisfies (52) and k = 3, then (57) holds if at least

one q. = 11, orifno q. = 2, orifany n, = 2,
9 i Vo

1l

[ As in the proof of Lemma 21, (59) still holds, Now, if we suppose that q, <
dy < q3, weseethat g, = 2, q, = 3, and, by the first supposition ofthe lemma,
g3 = 11, Thus

(62)

@ - 1@ - I3 - 1) = (@ - 1)@y - 1)@ ~ 2) + (@3 - 1)(Qy - 2) + (g - 1)

= 203 = 2)+ (@ ~2)+ @ -1)= (g -+ (U -i)+ (g -1)+7
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and so, by (569) and (62), as before,

(63) Q /419,95 = (a/2)(a?/3)(al?/11)(a’/5%) = a2/1650 > 9 ,

and (57) follows,
Adopting the second supposition, we have q; = 3, gy = 5, and g3 = 7
Then (62) is replaced by

(64) (dy - 1)(dy - 1)(Q3 - 1) =8(q3 - 2) + 2(dp - 2)+ Q4 -1 =(qy-1)+ (A -1)+

+ (g3 - 1) + 36,
and (63) by
(65)  Qy /418,95 = (a%/3)(a¥/5)(a%/ 7)(a%%/5%) = a%/2625 > 106

and (57) follows again,

Finally, if any n, =2,¢(m) = 2(qy - 1)(ay - 2)(g3 - 1). Thus, as before,
43 =2,q=3,d3=5, and 2(qy - 1)@ - 1)(g3 - 1) = (g - 1) + (g - 1) +
(ds - 1) + 9; whence

(66) Qq /%9 = (@/2)@Y/3)@Y/5)@%5) = al®/750 ~ 2.9
and we get (57).]

Lemma 24, If N satisfies (52) and k = 2, then (57) holds if N/ 4y =

3, or if at least one q; = 11.

[Let N/qd, = r. Thenby (55), Qy = FquZI_Fr /qurFqir , and by (8),
9 a4
qi h-1 q1 —
= -1 .qy-h h-1_0q;-h
o ay = (1) e (1) st
b=t VD2 het V2

-1
whence, by Lemma 2, Qg = (qur—l /Fr)Qli . Thus, by (58)

(68) Qq /a4 = {a(qTi)r'i @ - pi@r-1y,q bzr)} Ut/ g q,
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¥irst we assume that ¥ =3, Then, by the kind of argument used above, if
9;= 3 and d, = 2, and by (68),

(39) Q /a6 = @M Vap@ ™ /qy) fa - bloy/ (1 + b8)} U
> a%(0.94)2/6 >1 ,

Next, we assume that qy = 2, qy = 11, r =1, Then, by (68),

(700 Qq /a8, = @ U 1/q) @2 /g {a@ - b2/ (1 + b2 1 s a%0,72)/22 52,

The results (69) and (70) establish the lemma, ]

Lemma 25, If q is prime and q = 3, then there is a prime p such
that q = a(p).
[If q = 3, F, =2, by Lemma 2, and so F_ has a prime factor p. By Lem-
ma 8, o(p) divides q, whence, since q is prime, a(p) = d.]

Lemma 26, If q is prime and \ = 2, then there is a prime p # 5,
such that q™=w(p).
[By Lemma 16 and Theorem 1, if Mt = m, qm /Fm F ) =1if q%5;
andif 5" ' = m, (P, /F_,F_)=5 If q %5, by Lemma 17, Fom /Fm =
F,/F, = 3; so that qu must have a prime factor p ¥ 5, prime to F_,
If q=5, since Fy;/5F; = 3001, by (2), Lemma 17 shows that again qu
has a prime factor p # 5, prime to F_. Thus, by Lemma 8, for any q,a(p)
M1 Therefore ar = (). ]

We now have sufficient information to prove Carmichael's theorem.

Theorem 6, If N + 1, 2, 6, or 12, then there is a prime p such that
N = a(p).

Proof, Let the (unique) prime-power expansion of N be given by (52).
By Lemma 21, Lemmas 22, 23, and 24 show that the theorem holds in the fol-
lowing cases: (i) if k = 4, all N; (ii) if k = 3 and either (a) one q =
(b) no q; = 2, or (c) one n, = 2; and (iii) if k = 2 and either (a) N/qiqz
=3 or (b) one q; = 11. In addition, Lemmas 25 and 26 show that the theorem
holds (iv) if k =1 and N # 2, We see from (2) that, indeed, when N=1,2,

divides gqm = q)‘ but not m = g
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6, or 12, there is no prime p suchthat N = g(p), It therefore remains to
show that such a p exisis, (v} when k =3, no 9 = 11, one q = 2, and
no n, = 2, and (vi) when k= 2, N #+ 6 or 12, N/q1q2 = 1lor 2, and no 9

= 11, We look for primes p which divide F,. but no corresponding F

N N,..’
for then N = o(p), as explained earlier, 1)

Case (v), Wehave N=2+3°5=230,2:3°7 =42, and 2°5°-7 =
70. We see from (2) that 30 = «(31), 42 = «(211), and 70 = @(71) = «(911);
so that the theorem holds,

Case (vi), Wehave N =25 =10, 22-5 = 20, 2°7 =14, 22 7 = 28,
3.5=15,38-7 =21, and 5.7 = 35, We see from (2) that 10 = o(11),
20 = o(41), 14 = o(29), 28 = @(281), 15 = o(6l), 21 = o(421), and 35 =
@(141961). This completes the theorem,

Lemma 27, If N = o(p) and N # 5 whence p #+ 5), p is a simple
prime factor of FN"

[By Lemma 18, if p is a mpf of FN’ p divides both N and FN“
since, by Theorem 1, if p ¥ 5, (p,a(®)) = 1; N must be divisible by pa(p),
so that N # a(p). The lemma follows, ]

By Lemma 27, Theorem 5 is seen to follow from Theorem 6. We also

Thus,

see that Theorem 3 and its corollaries follow from Theorems 1, 2, and 6 (with
the exception of the fact that the p_s(m,p) increase with s).

For completeness, we also state the following result,

Lemma 28, If £, =1, £,,f5,--- ,fm = N are all the divisors of N, then

(71) Fy = Q

[If N satisfies (52), its divisors are the (n;+ 1)(ny + 1)°-(ng+ 1) = m inte-

gers

S
=g g,

where 0 =< s; = 1, i=1,2,--°,k By (565), a particular factor Fg can

appear only once in Qf; and this, when
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il

and ti =1 except when i ii,iz,“”,i,l (when ti < ni), only if =g or
i

igqii or gqiiqiz or ¢+ or gqiiin oo qih° It follows by (55) that Fg appears

mn

to the total power

h h h
1_< >+< >_.,,.+(_1)h< >=(1—1)h=0ifh21,
i 2 h

and 1 if h = 0, This proves that the product is simply FN q

5, PERIODICITY OF RESIDUES

We shall complete this discussion of divisibility properties with a survey
of results pertaining to the characteristic number p(m,n) defined inSectionl,

Lemmas 13 and 14 show that we may limit the study of the functions
a(m,n) and M(m,n) to that of a(p,n) and u{p,n), where p is prime, We
have established the essential properties of «a(p,n) in Theorem 1, Thus, by
(15), the corresponding behaviour of u(p,n) isknown if we knowthat of B(p,n).
So far, we have only stated, in Lemma 10, that pg(m) (and, in particular,
B(p,n)) is always an integer, The papers of Robinson [5], Vinson [6], and
Wall [ 7] have answered almost every question that may be asked about S(p,n},
anditis their work which will be outlined here, Proofs of all the results quoted
below may be found in Vinson's paper [ 6], and so will be omitted here,

Theorem 7, If p is an odd prime and n a positive integer, then

4 if potzoz(p) = Q
(72) B, = {1 if potye(®) = 1¢
2 if potyafp) = 2
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but
(73) B2,1) = p2,2) = 1, and p@2,n =2 if n =3 ,

We note that, with the two exceptions given in (75), A(p,n) is independ-
ent of n, Also, pA(p,n) always takes one of the three values 1, 2, or 4 —
a remarkably simple result,

Theorem 8, If m is a positive integer satisfying (27), then (i) B(m) =
4, if m= 3 and o(m) is odd; (ii) g(m) = 1, if potzaf(pi) = 1 for every
p; F2(@{1=1,2,--, k) andif potym = 2; and (ili) g(m) = 2 for all other
m,

We note that Theorem 8 contains Theorem 7, as a special case, when
m = png where p is prime, (The connection is through Lemma 13,)

Theorem 9., If p is an odd prime, not equal to 5, and n a positive

integer, then

1 i p= 11 or 19 (mod 20)
(74) Bp,n) = (2 if p= 3 or 7 (mod20) ;
4 if p = 13 or 17 (mod 20)

and (of the remaining values of p = 1 or 9 (mod 20))B(p,n) + 2 if p = 21 or
29 (mod 40).

These results are connected with the foregoing by way of Lemma 12,
Vinson points out that the theorem is "complete! in the sense that every re-

maining possibility occurs; he lists the examples:

p(521) = 1, p(41) = 2, B(761) = 4, [p = 1 (mod 40}] ;

B(809) = 1, B(409) = 2, B(89) = 4, [p = 9 (mod 40)] ;

@5 paon) = 1, pe1) = 4, [p=21 (mod 40)] ;

5{29) = 1, p(109) = 4, [p =29 (mod 4:0)] .
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