CORRIGENDUM FOR "SOME CONVERGENT RECURSIVE SEQUENCES, HOMEOMORPHIC IDENTITIES, AND INDUCTIVELY DEFINED COMPLEMENTARY SEQUENCES"

John C. Holladay, Institute for Defense Analysis, Washington, D.C.

On the above-entitled paper, appearing in the February 1966 volume of the Fibonacci Quarterly, please note the following changes:

Page 13. The last two lines of the Corollary should read:

... and only one homeomorphism g such that $g > 1$ and

$$(2.9) \quad h + h^{-1} = g + g^{-1}.$$

Page 14. Equation (2.27) should read:

$$(2.27) \quad (h \cup h^{-1})(t) = t \text{ for all } (h \cup h^{-1})^{-1}(x) \leq t \leq x.$$

Equation (2.30) should read:

$$(2.30) \quad h_{n+1} = P - h_n^{-1} \quad n > 1.$$

Equation (2.31) should read:

$$(2.31) \quad h \left(\frac{\alpha + \sqrt{\alpha^2 - 4}}{2} \right) I.$$

Page 15. Equation (2.36) should read

$$(2.36) \quad h \left(\frac{\beta + \sqrt{\beta^2 - 4}}{2} \right) I.$$

Page 16. Equations (2.39) and (2.40) should read as follows:

$$(2.39) \quad v = \lim_{n \to \infty} v_n = \left(\frac{\beta + \sqrt{\beta^2 - 4}}{2} \right).$$
Page 21. After proof for the Corollary, add a Reference [5].

Page 23. The first line of the Corollary should read:

Corollary: Let \(P(n) \neq 2n \) for some integer \(n > 0 \). Then

Page 24. Change the last line of Theorem 16 to read:

\[
\{ x_n \} \text{ be inductively defined by}
\]

Equation (3,26) should read:

\[
(3,26) \quad x_0 = a(x_{-1}) - x_{-1}
\]

Page 26. Equation (4,13) should read:

\[
(4,13) \quad F(x) = (x - \sqrt{x^2 - 1})x + \beta - \beta \sqrt{x^2 - 1}/(x - 1)
\]

Page 27. Equation (4,19) should read:

\[
(4,19) \quad (x - \beta) \{(x - 1)x + \beta x + \beta \} > \alpha^2 \epsilon/(x + 1)
\]

Equation (4,24) should begin with the line

\[
(4,24) \quad h^{-1}(\alpha) = xF(1) \quad 0 \leq x \leq 1
\]

Page 28. The first line on the page should read:

If \(\beta \geq 1_2 \), then \(F(1) > 0 \) implies that \(-\epsilon < (\beta - 1)^2 \). It may be

Page 29. Equation (5,3) should read:

\[
(5,3) \quad hh(t) < gh(t)
\]

Page 30. Change the first line of Theorem 22 to read:

Let \(\mu = 1 \) and \(P + \mu I > I \). Let \(g_1 \) be any

Page 31. The last three lines before the Corollary should read:

for \(h \), has been proven. To prove convergence for \(g_1 \), insert \(\mu \) into the proper positions of (1,39) and (1,40), and continue the argument of the paragraph containing (1,39) and (1,40). Uniqueness of \(h \) is obtained from Theorem 21.

Page 32. Add References below.

* * * * *