A SINGULAR FIBONACCI MATRIX AND ITS RELATED LAMBDA FUNCTION

Curtis McKnight (student) \& Dean Priest, Harding College, Searcy, Arkansas

After a very brief introduction to some of the extremely basic properties of Fibonacci numbers, a student of mine inductively produced the following identities concerning determinants of Fibonacci matrices:
(1) $\quad\left|\begin{array}{cc}F_{n} & F_{n+1} \\ F_{n+S+2} & F_{n+\mathrm{S}+3}\end{array}\right|=(-1)^{\mathrm{n}+1} \mathrm{~F}_{\mathrm{S}+2}$

$$
\left|\begin{array}{cc}
F_{n} & F_{n+m+1} \tag{2}\\
F_{n+m+2} & F_{n+2 m+3}
\end{array}\right|=(-1)^{n+1} F_{m+1} F_{m+2}
$$

$$
\left|\begin{array}{cc}
F_{n} & F_{n+m+1} \tag{3}\\
F_{n+m+s+2} & F_{n+2 m+s+3}
\end{array}\right|=(-1)^{n+1} F_{m+1} F_{m+s+2}
$$

Each row of the determinant is regarded as a pair of numbers, the subscript s refers to the number of terms in the Fibonacci sequence skipped between successive pairs, and the subscript m refers to the number of terms skipped between the two numbers of a pair.

It is simple exercise to establish the validity of (1), (2), and (3) using $\mathrm{F}_{\mathrm{m}+\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1} \mathrm{~F}_{\mathrm{m}}+\mathrm{F}_{\mathrm{n}} \mathrm{F}_{\mathrm{m}+1}$. However, close inspection will show that (1), (2), and (3) are only special cases and/or variations of

$$
\begin{equation*}
\mathrm{F}_{\mathrm{p}} \mathrm{~F}_{\mathrm{q}}-\mathrm{F}_{\mathrm{p}-\mathrm{k}} \mathrm{~F}_{\mathrm{q}+\mathrm{k}}=(-1)^{\mathrm{p}-\mathrm{k}} \mathrm{~F}_{\mathrm{k}} \mathrm{~F}_{\mathrm{q}+\mathrm{k}-\mathrm{p}} \tag{4}
\end{equation*}
$$

where $k=m+1$ and $q-p=s+1$.
This comparison is made easier when (4) is written as

$$
\left|\begin{array}{cc}
\mathrm{F}_{\mathrm{p}-\mathrm{k}} & \mathrm{~F}_{\mathrm{p}} \\
\mathrm{~F}_{\mathrm{q}} & \mathrm{~F}_{\mathrm{q}+\mathrm{k}}
\end{array}\right|=(-1)^{\mathrm{p}-\mathrm{k}+1} \mathrm{~F}_{\mathrm{k}} \mathrm{~F}_{\mathrm{q}+\mathrm{k}-\mathrm{p}}
$$

thus suggesting a form for a related 3×3 matrix

$$
P=\left[\begin{array}{ccc}
F_{j-k} & F_{j} & F_{j+k} \\
F_{m-k} & F_{m} & F_{m+k} \\
F_{n-k} & F_{n} & F_{n+k}
\end{array}\right]
$$

A singular property of the $\operatorname{Det}(\mathrm{P})$ presents itself.
Theorem: $\operatorname{Det}(P)=0, k, j, m, n$ are integers.
Proof: There is no loss in generality to assume $\mathrm{j}>\mathrm{m}>\mathrm{n}$ and it is simply convenient to assume $k \geq 0$. By applying (4) it is apparent that the columns of P are linearly dependent. We note by inspection that F_{k} (column 3) $-F_{2 k}$ (column 2) $=(-1)^{\mathrm{k}+1} \mathrm{~F}_{\mathrm{k}}$ (column 1). Thus, the determinant is clearly zero (0).
Q. E. D.

Since the $\operatorname{Det}(P)=0$, a previous article of this Quarterly [3] suggests it would be interesting to consider the $\operatorname{Det}(P+a)$ where $P+a$ means a matrix P with a added to each element of P. The generality of j, m, n, and k would almost prohibit the techniques used by Whitney [3]. Hence procedures discussed by Bicknell in [1] and by Bicknell and Hoggatt in a previous article of this Quarterly [2] are employed. Using the formula [2]

$$
\operatorname{Det}(P+a)=\operatorname{Det}(P)+a \lambda(P)
$$

where $\lambda(P)$ is the change in the value of the determinant of P, when the number 1 is added to each element of P, we have

$$
\operatorname{Det}(P+a)=a \lambda(P),
$$

since $\operatorname{Det}(P)=0$. Now $\lambda(P)$ and the corresponding $\operatorname{Det}(P+a)$ are interesting in any one of the following forms. They are also derived with the aid of (4').
(a)

$$
\lambda(P)=\left|\begin{array}{ccc}
1 & 1 & 1 \\
F_{m-k}-F_{j-k} & F_{m}-F_{j} & F_{m+k}-F_{j+k} \\
F_{n-k}-F_{j-k} & F_{n}-F_{j} & F_{n+k}-F_{j+k}
\end{array}\right|
$$

or
(b) $\quad \lambda(P)=\left[F_{2 k}-F_{k}-(-1) k F_{k}\right]\left[(-1)^{m-k_{2}} F_{n-m}+(-1)^{j-k_{F}}{ }_{n-j}-(-1)^{j-k_{F}}{ }_{m-j}\right]$

Therefore,
(c) $\quad \operatorname{Det}(P+a)=\left|\begin{array}{ccc}a & a & a \\ F_{m-k}-F_{j-k} & F_{m}-F_{j} & F_{m+k}-F_{j+k} \\ F_{n-k}-F_{j-k} & F_{n}-F_{j} & F_{n+k}-F_{j+k}\end{array}\right|$
or

The first factors of (b) and (d) have a straightforward simplification if it is known in advance whether or not k is even or odd. The various forms of $\lambda(\mathrm{P})$ and $\operatorname{Det}(\mathrm{P}+\mathrm{a})$ become much more intriguing once the interesting patterns in the subscripts and exponents and their relationship to P are observed. These patterns could easily serve as mnemonic devices.

REFERENCES

1. Marjorie Bicknell, "The Lambda Number of a Matrix: The Sum of Its n^{2} Cofactors," Amer. Math. Monthly, 72 (1965), pp 260-264.
2. Marjorie Bicknell and V. E. Hoggatt, Jr. , "Fibonacci Matrices and Lambda Functions," Fibonacci Quarterly, Vol. 1, No. 2, April 1964, pp 47 - 50.
3. Problem B-24, Fibonacci Quarterly, Vol. 2, No. 2, April, 1964.

REQUEST

The Fibonacci Bibliographical Research Center desires that any reader finding a Fibonacci reference send a card giving the reference and a brief description of the contents. Please forward all such information to:
Fibonacci Bibliographical Research Center.
Mathematics Department, San Jose State College
San Jose, California.

