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1. INTRODUCTION

Let {ak} denote a sequence of natural numbers which satisfies the dif-

ference equation Yo = g T for k =1,2,-+-, It is easy to proveby
induction that a; + a, Foeet a, =2 03 forn=1,2,+-;weuse this fact
in defining
) P(x)=||<1+x)=ZA(k)x
=1 k=0
and
n. a 273
k
@) P (x) = | |(1'+ X )= Z A K)x
k=1 k=0

It follows from these definitions that A(k) enumerates the number of repre-
sentations

. . .o . — T i < e i
(3) aj *aj, * + alj k with 0< i <1j

and that An(k) enumerates the number of these representations with i, < n.

Hoggatt and Basin [9] found recurrence formulae satisfied by {A (k)}
and {A(k)} when {an} is the Fibonacci sequence; in Section 2 we give general -
izations of these results,

Hoggatt and King [10] defined a complete sequence of natural numbers
{an} as one for Which Am) > 0 for n=1,2,--- and found that (i) {Fn} is
complete, (ii) {FP} with any term deleted is complete, and (iii) {Fn} with any
two terms deleted is not complete. Brown [1] gave a simple necessary and
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290 REPRESENTATIONS OF N AS A SUM OF [ Dec.

sufficient condition for completeness of an arbitrary sequence of natural num-
bers and showed that the Fibonacci sequence is characterized by properties (ii)
and (iii) already mentioned. Zeckendorf [13] showed that if F1 is deleted
from the Fibonacci sequence, then the resulting sequence has the property that
every natural number has exactly one representation as a sum of elements from
this sequence whose subscripts differ by at least two. Brown [2] has given an
exposition of this paper and Daykin [4] showed that the Fibonacci sequence is
the only sequence with the properties mentioned in Zeckendorf's Theorem.
More on the subject of Zeckendorf's Theorem can be found in another excellent
paper by Brown [3]. Ferns [5], Lafer [11], and Lafer and Long [12] have
discussed various aspects of the problem of representing numbers as sums of
Fibonacci numbers. Graham [6] has investigated completeness properties of
{Fn + (—l)n} and proved that every sufficiently large number is a sum of dis-
tinct elements of this sequence even after any finite subset has been deleted.

In Section 3 we take up the problem of determining the magnitude of A(n)
when {an} is the Fibonacci sequence; in this case we write A(n) = R(n).
Hoggatt [ 7] proposed that it be shown that R(F, -1) =n and that R(N) > n
if N > F2n - 1. We will show that

R(F_ - 1) :[ngl] ,

andthat F < N <F -1 implies
n n+

1

if n is odd and

[25] <m0 < g

if n is even.

In Section 4 we investigate the number; of representations of k as a sum

of distinct Fibonaceci numbers, writing a, = Fn+1 and T(n) for A(n) in this

case. The behavior of the function T(n) is somewhat different from that of
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R(n) of Section 3. For example, we show that there exist infinitely many n
for which T(n) = k for a fixed k, and in particular we find the solution sets"
for each of the equations T(n) = 1, T(m) =2, T@) = 3. By definition T(n)

< R(n) sothat TN) £ n-1 if N < Fn+1 - 1. We show that

w0 <[4

and T(F, , + 1) = [n/2] for n=3,4,"" .
Hoggatt [8] proposed that one show that M(n), the number of natural

numbers less than n which cannot be expressed as a sum of distinct Lucas
numbers Ln(L1 =1, L2 =3, Ln+2 = Ln+1 + Ln) has the property M(Ln) =
Fn~1; also, he asked for a formula for M(n). In Section 5, we give a solution
to the same question involving any incomplete sequence satisfying are T A4
+ a, with 2y <ag Lt In a paper now in preparation we have shown that
the only complete sequences of natural numbers which satisfy the Fibonacci re-
currence are those with initial terms (i) a; =a, = 1, (i) a; = 1, a, = 2,

or (iii) a; = 2, a, = 1.

2. RECURRENCE RELATIONS

See Section 1 for definitions and notation.
Lemmal. A (k) = A (a ,, -3, -k) for k=0,1,""",n.

Proof. Using the product notation for Pn we see

. a_ .-a
(4) - x ™2 Zp ()1—;) =P (%) -

The symmetric property of An now follows on equating coefficients of the

powers of x in (4).

Lemma 2.

(2) An+l(k) = An(k) if 0<k < an+1 - 1.

(o) An+1(k) = An(k) + An(k - an+1) if a1 <k < 242 " g
© Apq) =Ak-a ) i a,,-a,*l<k<a, -a,.

Proof. Each of these statements is obtained by equating coefficients of
k . . .
X in the identity
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5 P s 2™ p
(5) 1 ® = L+ x )
Lemma 3.
@ AL ) =AK if 0£kea o -1
(b) An+1(k) = Al&(anJr2 - a, -k) +Ak —an+1) if a1 & k ¢ &g " 3y
= - - i - L -
(c) An+1(k) A(a}{1+3 a, ky if 8.9 8+ 1 & k ¢ 2 4a = dy

Proof. (a) This follows by induction on part (a) of Lemma 2.
(c) Using Lemma 1 we have An+1(k) = A +1(an+3 -a, - k) and assum-

n
i - < - - A - -k & -
ing a a,+1 <k <a a, wehave 0 £ a a, k__an+1 1, so

n+2 2 n+3 2 n+3

that we can apply (a) of this lemmato get An+1 (an+3 -a, - k) = A(s:.][1+3 -3, - k)

for k in the range under consideration and this is (c).

(o) Statement (b) of Lemma 2 asserts An +1(k) = An(k) + An(k -a +1) for
An 1< k ¢ & 19 "85 but by (c) of this lemmawehave An(k) = ‘A'(an+2' -, - k)
for k inthe range under consideration. Also, if a4 k ¢ A 49 ~ 2y We

+1 =
have 0 £ k - a1 "8y SO by (a) of this lemma we have An(k - an+1) = Ak
-a, +1). Combining these results gives part b.
Lemma 4.
(a) Ak) = (an+2 —az—k) + Ak —an+l) if a1 <k« a9 "3 and
n=2,3-"",
(b) Ak) = A(an+3 - a, -k) if a9 —a2+1 <k<a, ., -1and n=
2,3, .
(c) A(an+2 ~a2+k) = A(an—az+k) if 1 <k iaz - 1.
(Note that in (b) and (c) the range of k is the empty set unless ay 2 2.)
Proof.
(a) This is merely a combination of (a) and (b) in Lemma 3.
(b) If a9~ 3y +1< k< a .o -1 then 241 —az‘+1 < a g3 -k
S a.- 1, so that by (a)of Lemma 3, A(an+3 -a, - k) = An+1(an+3 -a, - k).

By Lemma 1, An+1 (an+3 -

we see that An +l(k) = A(k) for k in the proposed range.

a, - k) = ‘An 1 (k) and using (a) of Lemma 3 again

(c) Writing k=an+2—a2+j with 1 < j <ay -1 in (b) we get

©) Alpp ~ 233 ) = Alap,g ~ a5 ~ 8y, T8y — ) = Ay, - )



. But we also have a
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but a4 ~i= 81 ~ 3t (ag =) where 1< a, =] £ a, -1 so that we can
use (6) to obtain

(1) Al ~1) =A@ -8, + (2, -]) = Al - @, - ])

Combining (6) and (7) we obtain (c).
Lemma 5. A(an
2, 3’ co s

Proof. For j inthe range under consideration we have 241 <2t

+l+j)=A(an+2—a2—j) for Ogjgan-az and n =

i< 2 19 "8 SO that by (a) of Lemma 4 we have

®) Al D= T8 T %

Alay - ay - ) + AQ)

- ]) + A(an+1 + J - an+1)

It

- a, for the assumed range of

w1 S Zpyg T2 7T S 2,
j, so that we can apply Lemma 4 again to write

2

9 A

nz T3 T T ARy, may ma ., tay Tt A, -3y -]

-a ) = AQ) + Aa, - a, - )

Since the right members of (8) and (9) are the same, so are the left members.
Using Lemmas 4 and 5 it is not hard to calculate A(k) for a given se-

quence {an}. Of particular interest to us are the cases when {an} is the

Fibonacci sequence, the Fibonacci sequence with the first term deleted, and

the Lucas sequence; we write A(k) = R(k), T(k) and S(k) respectively in

these cases. A table is provided for each of these functions in order to illus—

trate some of our results.

3. SOME PROPERTIES OF R(k)

In light of Lemma 4, it is natural to consider the behavior of Rk) in the

intervals [Fn’ Fn 41" 1]; thus, as a matter of convenience we write

(L0) I, = {REn), R(F, + 1), -+, R(F,, - D}
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and note that Lemma 4 implies
1) 1., ={R(O + R(F - 1), RA) + R(F, - 2), ", R(F, -1) + R(0)}.

As we mentioned in the introduction, Hoggatt has proposed that one prove
R(F2n -1) = n and that R(k) > R(F2n -1) if k > an - 1. This problem
has led us to prove a result involving special values of R(k) and to find the

maximum and minimum of R(kk) in In.

Theorem 1.

(a) R(F) = [n . 2] for n >1 ,
_In+1

(b) R(Fn—l) —[———-—2 ]for n>o0,

(c) R(Fn—2)=n—2forn>2,

(d) R(Fn—3)=n—3forn>4.

Proof. We prove only (b) (the other proofs are analogous) which implies
the first part of Hoggatt's proposal. First, we observe that (b) is true for

small values of n by consulting Table 1. Next, suppose

R(Ft—l)=[t;1]f0rt=nandn+1

and take k = Fn 4o —1 in(a) of Lemma 4 to obtain

2

(12) R(F_., - 1)

R(0) + R(F - 1) = 1+ [m]

4

Thus, the assertion follows by induction on n.

n+2

Theorem 2.

R(Fn) _ [n ;— 2]

is 2 minimum of R(k) in In'
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Proof. We can verify the theorem for small values of n by inspection
in Table 1. Suppose the theorem holds for all n < N - 1. We know by Theo-
rem 1 that

R(Fn) - [n er 2]

so that we are assuming

-1 and n=1,2,--,N-1.

(13) [“—-;—L—z-] = R(F) £ R() for F_ £k &F

Now suppose FN £k £ F -1 and write n = N -1 in(a) of Lemma

N+1

4 to obtain
(14) REk) = R(F,q -1 -k + Rk - Fy ;

-1 impli -1-k & - Lk -
but Fy &k £ Fy,, -1 implies 0 & Fy g -1 k£Fy -1 and 0£ Kk
P < -
Fy s FN—l 1. Suppose
(15) F, € Fpgyy -1 -k £ F,, -1,

where of course Ft+1 -15< FN—l -1 or 0<t< N-2 (we are taking FO =
0). Now

(16) Fy - Fiy € k#Fy-Fy, < P -F -1,

but with 0 <t < N -2 we must have FN_2SF -F and FN—Ft—ls

N Tt
Fy-p 1 sothat evidently

- < -
17) g € K-Fy S Fyg-1

Using (16) and (17) along with (13) we have
N
(18) [-2—] < Rk - Fy)
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and
t+2 .
(19) 15[2]SR(FN+1—1—k)s1ncet20.

Combining (18) and (19) in (14) gives
20) Rk) = [32’-] +1 = [N : 2]
for FN =k= FN i 1. Hence the theorem follows by induction on N.

Corollary. R(k) > R(Fy -1) =n if k > F, -1.

Proof. We know from Theorem 2 that the minimum value of R(k) in
12n and Iszrl is n+1 in each of them; hence the minimum of R(k) in Ion
U12n+1 is n+ 1. Thus, every value of R(k) in 12n+2 U Izn+3 is at least
n+ 2 so that we can conclude by induction on n that R(k) > R(FZn -1) if k
> an -1.

Theorem 3. The maximum of R(k) in Izn is Fn+2 and the maximum
of R(k) in 12n+1 is ZFM+1 for n=1,2,---; also,

(21) Fy = 2Fy < F, < 2Fg < «++ < F_,<2F  <F o<
for n = 2,3,--

Proof. The result in (21) follows by a simple induction.

The results concerning the maximum values of R(k) in I2n and 12n+1

can be verified for small n by using Table 1. Suppose these results hold for

all n = N; then we have by (a) of Lemma 4,

22) R(F ,, +1t = R(F -t -1)+R@t) for 0<t=<F -1

n+l

Also, .we know by (b) of Lemma 4 that R(k) is symmetric in I so it is

n+1’
enough to consider the values of only the first half of the elements of In +1 in
order to determine the maximum elements. More than the first half of the

elements of In 41 are contained in the sets

@3) {R(F_,, + tylt = 0,1,---, F__ -Ttand{R(F_, +t)lt=F _,°

-, F -
n

1.
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Consider first the maximum of the first of the two sets in (23); evidently,

max R(F_ . +1t) = max {R(F_ -t - 1) + R(t)
ost=F_ -1 M1 0=t<F_,-1. ™ !
n-1 n-1
(24) = max R(F -t-1)+ max R(t)
<< - -
0=t<F _ -1 O<t<F__ -1
= 2 max In_2

Next, we have for the second set in (233

max R(F + t)
F _St=F -1 T
= max R(F -t -1+ max R(t)
=t<F - =t=F -

(25) F _,St=F -1 F _,St=F -1
= max Im_3 + max In_1

Together (24) and (25) imply

(26) max In+1 = max {max In—l + max In—3’ 2 max In—z}

Writingn = 2N + 1 in (26) and applying the induction hypothesis we have

F

@7 wg b = Frug s

max Ly, =max {F

similarly, n = 2N+ 2 in (26) gives

(28) max I = max {2F

2N+3 N2 2Fuob = 2Fy

In order to finish the proof of Theorem 3 we need to. show that F. o €

I2N+2 and 2FN+2 € 12N+3'

Since 0 SF2N+tS F2N+3 -1 for t =0,1,---, F2N—1 -1, we can

use (22) and (b) of Lemma 4 to find

(29) R(F F .+t = R(F

an+s T Fan ont1 Tt T D R(Fy 1) = 2R(Fy o+ 1),
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for t =0,1,:°", F2N-1 - 1. From this we gather that all of the elements of’
IZN multiplied by 2 occur in IZN +35 hence, twice the maximum in IZN is
in IZN+3 and this is precisely 2FN+2'

It is not so obvious that FN +3 € IZN 125 to prove this we let xn denote
an integer such that R(FZN + )\n) = Fn+2 for n = N. We will also include
in our induction hypothesis that an .admissible value of xn+1 for n < N is
given by )‘n+1 = F2n—1 - )‘n - 1. Now consider

RFoxee * Fanop “ Ay~ 1)

50) = BFoner = Fonar 0 * By ~ Ay - D)
= R(Fgy * Ay + B(Fy g + Aoy
= Fyez ¥ P T Faes -

The second equality in (30) follows from (22). It is now clear that an admissible

value for xN+1 is FZN—I - )‘N -1 and that FN+3 € IZN+2'

the proof of Theorem 3.

This completes

4. T(), THE NUMBER OF REPRESENTATIONS OF n AS A SUM
OF DISTINCT FIBONACCI NUMBERS

For the moment we are taking a = Fn 1 in the lemmas of Section 2

and write A(k) = T(k) in this case. The following theorem can be proved in
the same way we proved Theorem 1, so we leave out the proof.

Theorem 4.

n+11. _
(a) ,T(Fn+1) - [ 2 ] 1f n = 1!2!

= (8l . _
®) T(F,, +1) = [2] if n= 3,4,
Theorem 5.
(a) T(N) =1 ifandonly if N = Fn+1 -1 for n=1,2,""-,
(b) 1T(112\I)=2 if and only if N=Fn+3+Fn—10r Fn+4—Fn—1 forn =
(c) T(N) > 0 if N= 0. ‘
(@ T(N) =3ifandonly ifN=F +F -1, F  +F -1, F .-
Fn-l, Fn+6_}n+1_1 for n =1,2," .

Proof. (a) and (c): We can check Table 2 to see that T(Fn+1 -1 =1
if n =1,2,3,4. Suppose T(Fm_1 -1) =1 for all n less than N > 4. Then
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by (c) of Lemma 4 we have T(FN - F3 +1) = T(FN -1) = T(FN_3 - 1) which

is 1 by assumption. Next, the table shows that the only values of N < F5 for
which T(N) =1 are N = F2 -1, F3 -1, F4 -1 and F5 - 1. Suppose for
all 4 =n< N, where N > 5, that Fn =k < Fn+1 -1 implies T(k) > 1.
Then by (a) of Lemma 4 we have for FN =k< FN+1 -1, Tk)=T(F
F3 -k + Tk - FN) = 2. This completes the proofs of both (a) and (c).
() By Lemma 5, we have T(Fn+3 + Fn -1) = T(Fn+4 - Fn - F3 +1),
and since Fn+3 = Fn+3 + Fn -1= Fn+4 - F3 we can apply (a) of Lemma 4 to
get T(F g+ F -1) =T(F  , ~-Fy-F o-F +1)+T(F ,+F -1-F )
= T(Fn+1 -1) + T(Fn -1). By (a) of this lemma, the last sum is 2. To prove

N+1 ~

the "only if'' part of (c), we use induction with (a) of Lemma 4 just as in the
proof of the "only if" part of (a).

(d) The proof can be given using induction and (a) of Lemma 4 justas (a)
and (b) were proved.

Theorem 6. For every natural number k there exist infinitely many N
suchthat N has exactly k representations as a sum of distinct Fibonacci num-
bers, in fact,

(31) T(F 2F . -1) = k for n = 1,2, and k = 4,5,

n+k+2 + n+2
Proof. The theorem is true for k = 1,2,3, by (), (b),and{(d) of Theo-
rem 5. We will verify the theorem for k = 4 and leave the verification for

k = 5 as an exercise.

Since Fn+6 = Fn+6 + 217‘](1_]_2 -1= Fn+7 - F3 we can apply (a) of Lemma
4 to obtain
T(Fn+6 + 2Fn+2 -1) = T(Fn+7 - F3 - Fn+6 - 2Fn+2 + 1)
(32) + T(Fp,e * 2F 5 -1 - F o
= T(F,, - 2F o - 1) + TRF , - 1);

however, 2Fn+2 = Fn+2 + Fn+1 + Fn = Fn+3 + Fn so that

(33) TEF ,, -1) = T(F ., +F -1) = 2,
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(34) T(F .. -2F . -1) = T(F

n+5 nt+2 Fpo-1 =2

n+t4 ~ "n

by (b) of Theorem 5; combining (33) and (34) in the last member of (32) gives the
desired result.

Now suppose (31) holds for all k < N where N > 5. ‘Since F‘n+N+2 =
Fn+N+2 + 2Fn+2 -1= Fn+N+3 - F3, we can use (a) of Lemma 4 to obtain
TEpNs2 ¥ 2F g =1 = TFpiws = F3 = Friwe ~2Fmp +1)

(35) * T(Fn+N+2 * 2Fn+2 -L- Fn+N+2)
= TFpineg ~ 2Fpag = D 7 T@F,, - 1)
i -1= - s
Since 0 < 2Fn+2 1 Fn+N+1 F3 we can use Lemma 5 to write
T(Fn+N+1 - F3 - 2Fn+2 + 1) = T(Fn+N+1 - 2Fn+2 - 1)
(36) = -1);
= T(F  x + 2F 0 -1

but, this last quantity is n - 2 by assumption and recalling (33) we seethat the
sum in the last member of (35) is (N - 2) + 2 = N. This concludes the proof.

5. INCOMPLETE SEQUENCES

In what follows, N(n) denotes the number of non-negative integers k =
‘n for which AKk) = 0.
Lemma 6. Let 0 < V) < Vg <o denote the sequence of numbers k

for which A() = 0 and suppose v is a complete listing of

t+1° V20T Vi
the v's between a and a_+k+j=<a for n= 2; then v, .
n n n+l t+j

for j =1,2,°*°,s and Vg is the largest v not exceeding k + 1.

= + .
an{ VJ

Proof. The lemma can be verified for n = 2 and 3 by determining
Ak) for 0 = k = a1 using P4(x), since by (a) of Lemma 3 we have A(k) =
A4(k) for k in the supposed range. '
Suppose for some N =3 that the vi's between a, and a,

+1

by A, + Vs B+ Vgt a, + \f where v, 18 the largest vy not exceeding

a1 and n <N, We will show that this implies the v; between ay and ay

are given

+k <a are given by a .+ v.,, a

N+1 N 1’
largest v not exceeding k + 1,

Nt Vg ttts By + Vg Where v is the
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) Case 1. Let ay < aN+vj = Ay T 39 then by (a) of Lemma 4 we
ave

A(a,N+Vj) = A(3N+1 -2 - Ay - v].) + A(aN + vj - aN?
A(aLN_1 - ay - v].) + A(VJ.)

A(aN_1 - a, - Vj) ;

I

(37

but for aN + vj in the range being considered we have 0 = Vj = a -a, so

that by Lemma 5

N-1 2

(38) A(a,N_1 -2, - vj) = A(aN__2 + vj)

and the right member is zero by assumption, so that A(a.N +Vj) =0 is a
consequence.
Now suppose there is a t not a vy such that a = ay +t= ag+1 29

N
and A(aN +t) = 0; then by (a) of Lemma 4 we would have

(39) Alag +1) = Ay -3, - 1) + A®)

But this is a contradiction since A(t) # 0 (¢ isnota vi) and we assumed
A(aN +t) = 0.

Thus aN+v1, aN+v2,"‘,aN+VSS aN+kS a4~ 3y 1S a complete
listing of the vj between ay and ay t k = ANy ~ 2o

Case 2. Let aN+1—a < a

9 N + vj = ANty then by (c) of Lemma 4 we

have

(40) A(aN + vj) = A(aN_2 + vj)

which is zero by assumption. If we suppose there is a t such that t is not
a v, and Ay ~ 2 < AT t < A implies A(aN+ t) = 0, we obtain a
contradiction since A(aN +t) = A(aLN_2 +t) = 0 would imply t is a Vs

Thus, ay +v].,'- Ay +v,, with V]. the smallest vi not less than

-a, and a

y-p’ comprises a complete listing of the vi between a 5 N+1°

N+1
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Taken together, the results proved in Cases 1 and 2 imply Lemma 6 by
induction.

Corollary, If A(k) > 0 for k =< 8y, then {an} is complete; this is
equivalent to saying (al, az) = (2,1), (1,2) or (1,1).

Proof. This follows from Lemma 6 and induction. Also, note that if
{an} is not complete, then there exist infinitely many k such that A(k) = 0.

Lemma 7.

@) N(an+ k) = N(an) +Nk) if 0=k=a

(b) Nk) = k if 0=k <a .

(c) N() k—lifa15k< a, -

(d) N(k) k -2 if a, = k= 2, .

(e) N(an—l) = N(an) if n=1,2,---.

Proof. (a) Suppose n > 2, then by Lemma 6, the \ such that a, <

v.=a +k with 0=k =23
i n n

and n = 2,3,4, " .
n-1

It

1]

29

-1 j
where v, is the smallest \ not exceeding k. Hence there are N(k) vy in

are given by a_ + a_ + cee,a tv
g Y 8, TV 3 T Vg "

the supposed range. By definition the number of v, =a, is N(an) S0 N(atn
+k) = N(an) + N(k).

(b) (c) (d) follow from the fact that A(k) + 0 with k < a, only if k=0,

3

a a,

o
(e) Since a, isnevera v, N(an -1) = N(an).

19

Lemma 8. N(al) =2
= N(an) + N(an_l) if n= 3,4,---. |
Proof. N(al) = N(a1 -1) = a - 1 by (e) and (b) of Lemma 7 respectively;

-1, N(a,) = a, -2, N(ay) =a, -3 and N@a_, )

the second and third statements follow by (e) and (c) and (e) and (d) of the same
lemma respectively. The last statement follows by writing k = a1 in (a) of
Lemma 7.
Lemma 9. N(a ) =a_ -F if n=1,2,... and F_ denotes the nth
—_— T n n+l n
Fibonacci number.
Proof. The statement is clearly true for n = 1,2,3 and can be seenby
the first part of Lemma 8., Ifwe suppose the statement true for all n < kk = 3)

we can write

Il

Ny, ) = N@) +N@y ;) = -F, +a ;- F

(41)

U1~ Fraa
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by the last part of Lemma 8; so Lemma 9 follows by induction on k.

Lemma 10. Every natural number can be written in the form

(42) n=ak1+ak2 + aki—l—t
i > =t <
with kj+1 kJ.Jrl and 0=t a,.
Proof. The lemma is trivially true for all n = a,. Every natural num-
ber between a, and as can be written a2+t with t < 2, ; n = ag is of

the form (42).

Suppose (42) holds for all n < N, and let a denote the largest a; not
exceeding N and consider N - a- We must have N = ay < & 1> since
N < ay = a4 implies N = a . which contradicts the maximal property of
ay. It follows that N - ay < N can be represented in the form (42) with k +
1> kl; hence, N = ay + gy Foeot ' +t is also of the form (42).

Theorem 7. Let n be a number represented as in (42). Then

n-{F a1+ Flgun + 000+ Fea} i 0 st=a)

(#43) N(w =
n-{1+ Figg+1 T Fge1 + 000 F Fki+1} if a; =t=a,
Proof. Since ap, + +r * Ay FU< g - 1 we can apply Lemma 7
to obtain
(44) N@n) = N(akl) + N(ak2 o oA, + 1) ;

applying Lemma 7 repeatedly in (44) we get

(45) N@) = Nag,) + Nlygg) + - + Nigg + 1)

Now if ag; = 2g» 0=t=a, since if t = a, we would have ag; = ag and

we can write

(46) Ny + 1) = Nag) + N@) ;
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but if ag; = ap,. We would have ay +t < a, and we reselect t as a, + tl;

also, we can conclude from this that a -1 = ag S0 (46) still holds in this

i
case. Thus (45) can be written in the form
(47) N(m) = Nay) + Niaky) + -+ + Nagy) + Nt
Applying Lemma 9 to the N'(aki) in the right member of (47) we get

(48) N(@) = ay; - Fis1 + gy - Figal + oo+ + ap; - Figeg + N
= gy tagy toorr bkt NE) - {Figaq oo+ Fgn}o s

but if t < 2, N(¢t) =t and Ayt At t = n by assumption so that the

first part of (43) is true. If a; = t < a9, N¢) =t -1 and we see that the

second part of (43) is also true. This completes the proof of Theorem 6.
Hoggatt (Problem H-53, Fibonacei Quarterly)has proposed that one show

that M(n), the number of naturalnumberslessthan n which cannot be expres-

sed as a sum of distinet Lucas numbers Ln(Ll =1, L2 = 3, Ln+2 = Ln+1+ Lrl

has the property

’

(49) M(L) = F__,

also, he asked for a formula for M(n).

The Lucas sequence can be used in place of {a } inall of our lemmas
and theorems. In particular, Lemma 9 tells us M(Ln) = N(Ln) = Ln - Fn+1;
it is a trivial matter to show L_- F =F by induction so (49) is proved.

n n+1 n-1
Writing ay, = Ly,
natural numbers n.

in (42) and Theorem 7 gives a formula for M) for all

Table 1
R(k) for 0 sk < 144

n |0|[1]2]|3 4|5 6 7|8 9 10 11 12 |13 14 15 16 17 18 19
Rm)|1{2|2|3 3}3 43|45 4.5 4} 4 6 5 6 6 5 6

n 20121 22 23 24 25 26 27 28 29 30 31 32 33|34 35 36 37 38 39
Rm) 45 7 6 8 7 6 8 6 7 8 6 7 5|5 8 7 9 9 8
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Table 1 (Cont'd)
n 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54|55 56 57 58 59

Rm) 10 7 810 810 8 7 10 8 9 9 7 8 516 9 8 11 10

n 60 61 62 63 64 65 66 67 68 69 70 71 72 73 T4 75 76 T7 78 79
Rn) 912 9 11 13 10 12 9 8 12 10 12 12 10 12 8 9 12 10 13

n 80 81 82 83 84 85 86 87 88189 90 91 92 93 94 95 96 97 98 99
R(n) 11 9 12 9 10 11 8 9 6} 6 10 9 12 12 11 14 10 12 15 12

n 100 101 102 103 104 105 106 107 108 1069 110 111 112 113 114 115
R(n) 15 12 11 16 13 15 15 12 14 9 10 14 12 16 14 12

n 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
R(n) 16 12 14 16 12 14 10 9 14 12 15 15 13 16 11 12

n 132 133 134 135 136 137 138 139 140 141 142 143
Rmn) 15 12 15 12 10 14 11 12 12 9 10 6

Table 2
T(k) for 0= k = 55

n. 012345 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Tmw) 11121 2 213 2 2 3 1 3 3 2 4 2 3 3

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Tm) 1 4 3 3 5 2 4 4 2 5 3.3 4 1 4 4 3 6 3 5

n 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
T (n) 5 2 6 4 4 6 2 5 5 3 6 3 4 4 1 5
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Table 3
S(k) for 0 < k < 68

n Of1 2{3{4 5 6|7 8 9 10f11 12 13 14 15 16 17 |18 19
Sm 1J1 0j1492 1 0j2 2 O 1} 3 2 O 2 3 1 0] 3 3

n 20 21 22 23 24 25 26 27 28|29 30 31 32 33 34 35 36 37 38 39
Sm) 0 2 4 2 0 3 3 0 1l4 3 0 3 5 2 0 4 4 0 2

n 40 41 42 43 44 45 46 |47 48 49 50 51 52 53 54 55 56 57 58 59
Sm) 5 3 0 3 4 1 0f4 4 0 3 6 3 0O b 5 0 2 6 4

n 60 61 62 63 64 65 66 67 68 69
S(n) 0 4 6 2 0 5 5 0 3
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