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1. INTRODUCTION 

Let a0,...?ar_1 (r >2,ar_x ^0) be some fixed real (or complex) numbers and {C„}w>0 be a 
sequence of real (or complex) numbers. Let {Tn}~^0 be the sequence defined by the following 
nonhomogeneous relation of order r, 

Tn+l=aJn+alTn-l + '-+ar-lTn-r^CnJ fcrW>r-l, (1) 

where TQ,..., Tr_x are specified by the initial conditions. In the sequel, we refer to these sequences 
as sequences (J). The solutions {Tn}n>0 of (1) may be given as follows: Tn - l*h^ + 7%p\ where 
{7^}„>o is a solution of the homogeneous part of (1) and {1^p^}n^o is a particular solution of (1). 
If Q = Tfj=QpjCJ

n, solutions {TJn^0 of 0 ) °W be expressed as Tn = itf^fljTj, where {Tj}„^0 is 
a solution of (1) for Cn = CJ

n. Sequences (1) are studied in the case of Cn polynomial or factorial 
polynomial (see, e.g., [2], [3], [4], [5], [7], [12], and [8]). 

The purpose of this paper is to study a linearization process of (1) when Cn-Vn, where 
{Vn}n>0 is an ^-generalized Fibonacci sequence whose V0,..., Vm_l are the initial terms and 

Vn+^Wn + '-'+b^V^i, f o r / i ^w-1 , (2) 

where bQ,..., bm_l (m> 2,bm_l & 0) are given fixed real (or complex) numbers. This process per-
mits the construction of a method for solving (1). In the polynomial and factorial polynomial 
cases, our linearization process allows us to express well-known particular solutions, particularly 
Asveld's polynomials and factorial polynomials, in another form. Examples and discussion are 
given. 

This paper is organized as follows: In Section 2 we study a Linearization Process of (1). In 
Section 3 we apply this process to polynomial and factorial polynomial cases. Section 4 provides 
a concluding discussion. 

2, LINEARIZATION PROCESS FOR SEQUENCES (1) 

In this section we suppose Cn~Vn with {VJn^0 defined by (2), where we set m=s and 
a2 = {/i0,...,//,} the set of its characteristic roots whose multiplicities are, respectively, /%,.. . ,#. 
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Expression (1) implies that Vn+l = Tn+l - ZylJ, a^n-j f°r anY ^ > r - 1 . Let n > r + s -1, then 
for anyy (0 < j < s -1) we have Vn_j = Tn_j - E ^ akTn_j_k_x. Then from (2) we derive that 

r - l s-\ s-l r - l 
Tn+1 = Y,ajTn-j + HfijTn-J " Z HbjakTn-j-k-V ( 3 ) 

/=o y=o /=o fc=o 

Expression (3) shows that 3^+1 (« >r + s - l ) is a linear recurrence relation of order r + s; more 
precisely, we have 

r j - l r 2 - l r + < s - l 

£ u = (ao +b0)Tn + ̂  (a; + bj - Cj)Tn_j + £ v y ^ y - ^ ^ - / , 

where c, = Hk+p=j',k>i,p>oh-iap md /i = min(r, s), r2 = max(r,s) with vj=aj-cJ for r > s , 
v • = i • - cy for r < s, and v • = 0 for r = s. Hence, we have the following result. 

Theorem 2.1 (Linearization Process): Let {Tn}n>0 be a sequence (1) and {Vn}n>0 be a sequence 
(2), where m-s. Suppose Cn=Vn, then {TJn>0 is a sequence (2), where m-r + $. More pre-
cisely, {Tn}n>0 is a sequence (2) whose initial terms are TQ,...,!^^ and whose characteristic 
polynomial is p(x) = P\(x)p2(x), where pt(x) = xr -J^r~}QciJxr~J~l is the characteristic polynomial 
of the homogeneous part of (1) and p2(x) = xs - Zy=o ̂ x*"7-1 *s ̂ e characteristic polynomial of 
(2). 

Let <JX = {20,..., Ag} be the set of characteristic roots of the homogeneous part of (1) whose 
multiplicities are n0,...,nq, respectively. Then er = {v,p(v) = 0} = alua2. Set 0 = { v0,..., vk}, 
where vi=pii for 0<i<t and vi+t = ^x for l < / < A - f + l. If <r1n<r2 = 0, we have k = q + 
t + l, and if not, £ = $ + £ + 1-2/, where w is the cardinal of Gxr\u2. In the latter case, the Linear-
ization Process shows that the multiplicity of Vj ealr\<j2

 ls mj =nj +Pj> where rij and pj are 
multiplicities of v- in px(x) and p2(x), respectively. Therefore, we derive the Binet formula of 
\Tn}n>Q a S 

t k-t+\ 

y^S^W+Z^rW^ (4) 
y=o y=i 

with Rj(ri) = H™do fijiri* where ntj is the multiplicity of vj in p(x) = pl(x)p2(x) and /?77 are 
constants derived as solution of a linear system of r + s equations (see, e.g., [9] and [11]). 

Because Vj for t +1 < j < k satisfies Pi(Vj) = 0, we show that the sequence {^}n>0 defined 
by 1*® = Zy={+1i?;+f(^)v^+f is a solution of the homogeneous part of (1). Thus, we have the fol-
lowing result. 

Theorem 2.2: Let {Tn}n>0 be a sequence (1) and {Vn}n>0 a sequence (2), where m = s. Suppose 
Cn - Vn9 then the sequence {T%p)}n>o, defined by 

is a particular solution of (1). 

Suppose v0 = JUQ = 1 ea2, then Binet's formula implies that Vn = Q)(^) + Zy=i2/(w)^"? where 
Qj(ri) are polynomials in n of degree p} - . Then a solution {1^p)}n>0 of (1) may be expressed as 
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follows: #'> = Tl
n + T^ where {TX>o and {^}w>0 are the solutions of (1) for, Cn = Q,(/i) and 

Q = T!]=\Q](n)t£j, respectively. We call {T*}n>0 the polynomial solutions of(l), corresponding 
to the polynomial part of Cn. 

Corollary 2.1: Let {^}„>0 be a sequence (1) and {Vn}n>0 a sequence (2). Suppose v0 = /i0 = 
lea2. Then the polynomial solution {T*}n±o of (1) is given by 3^ = /i0(w), where Ro(n) = 
S S ^ / W 'm derived from the Binet formula (4) of the linearized expression (3) of {^}w>0. More 
precisely: 
(a) If 1 g crl9 we have 7% = i?o(w) with RQ(X) of degree #% - 1 , where m^ = /?0 is the multiplicity 
of//0 = 1 in /?2(x)-
(6) If 1 e a1? we have 1% = i^(w) with /^(JC) of degree #% - 1 = n0 + p0 - 1 , where w0 and p0 are 
multiplicities of 2 0 = ju0 = 1 in ^(x) and p2(x)> respectively. 

Corollary 2.1 shows that the polynomial solution {T*}„±o of (1) is nothing but the polynomial 
part of (4), corresponding to the solution of (1) for C„, equal to the polynomial part in the Binet 
decomposition of {Vn}n>0. 

Example 2.1: Let {Tn}n>0 be a sequence (1) whose initial terms are T0, Tl9 and Tn+l =a0Tn + 
a\^n-i +^n for w > 1, where {Vn}n>0 is a sequence (2) with m=s. Then the Linearization Process 
implies that {Tn}n>0 is a sequence (2), where m = s+2, whose initial terms are TQ9...9Ts+l and 
whose coefficients are f#0 = aQ + bQt> ul = al+ bx - aQbQ, u^ = bx - aj>x - apQ,..., us_l = bs_t - aQbs_2 -
atbs_3, us = ajt^-afi^ and us+l = - a ^ - i -

3* APPLICATIONS TO POLYNOMIAL AND FACTORIAL POLYNOMIAL CASES 

3.1 Polynomial Case 
In this subsection we consider C„ = H<j3s0fi/iJ

9 where n eN. Let us first connect this case 
with the situation of Section 2. To this aim, we can show easily that if {VJn^Q is a sequence such 
that Vn = Tfj=QPjnJ\ for «>0 , then {VJn>0 is a sequence (2) with m = d + \ whose initial terms 
are V09 ...9Vd and coefficients bj = (-l)y(!/+{), where (*) = fc!(^)p are derived from its characteris-
tic polynomial p2(x) = (x-l)d+l. Particularly, for Cn =nj, we derive the following proposition 
from Corollary 2.1. 

Proposition 3 J: Let {Tn}n^0 be a sequence (1) and let Cn-n]'. Then the polynomial solution 
{Pj(n)}n>0 of (1) is given by Pj(n) = /^(/i), where ^(n) = ZJV/V 1 ' is derived from the Binet 
formula (4) of the linearized expression (3) of {Tn}n7l0. More precisely: 
(a) If 1 £ al3 we have /̂ .(w) = i?o(«) with i?0(x) of degree m$ - 1 = j . 
(S) If 1 G a1? we have /^(w) = i?o(w) with R0(x) of degree w0 - 1 = n0+j, where «0 is the multi-
plicity of 10 - 1 in px(x). 

More generally, we have the following result. 

Proposition 3.2: Let {Tn}„^0 be a sequence (1) and let Cn = Tfj=Qpjnj. Then the polynomial 
solution {P(n)}„zo of (1) is P(n) = I^(n) = T?MfijPj(n)9 where Ro(n) = Iffilfiot*r is derived 
from the Binet formula (4) of the linearized expression (3) or {Tn}n^0. More precisely: 
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(a) If 1 g al9 we have P(n) = R${n) with RQ(x) of degree d. 
(h) If 1 e o-l5 we have P(/i) = R^Qi) with i?0(x) of degree m0-l = n0 + d9 where TI0 is the multi-
plicity of 10 = 1 in Pj(x). 

Propositions 3.1 and 3.2 show that particular polynomial solutions Pj(n) (0<j<d) are the 
well-known Asveld polynomials studied in [3], [5], [8], and [12]. Our method of obtaining Pj(n) 
(0<j<d) is different. For their computation, we applied the Linearization Process of Section 2 
to {^}„>o- Thus, the Binet formula (4) of the linearized expression (3) of (1) allows us to con-
clude that Pj(n) can be considered as a polynomial part of (4). For A,0 = lecrl, we have mQ > 
7 + 2, and Proposition 3.1 shows that Pj(n) may be of degree >7 + l because the a& are not 
necessarily null for j +1 < / < m0 -1. This result has been verified by the authors with the aid of 
another method devised for solving equations (1) for a general Cn. 

3*2 Factorial Polynomial Case 
In this subsection, let Cn = Ey=0 Pp{3), where n^ = n(n -1) • • • (n - j +1). Note that /i(;) = 

7 !(y for 7 > 1 and w(0) = 1 (0(0) = 1). This case is related to the situation of Section 2 as follows. 
Consider Stirling numbers of the first kind s(t, j) and Stirling numbers of the second kind, S(t, j), 
which are defined by x(J) = Z/=0 s(t, j)xf and xj = Ej=0 S(t, i)x(f) (see, e.g., [1], [6], [7], and [10]). 
Hence, for any j > 1, we have n^ = S/sso,s(^ i'V- Therefore, {«(;)}„>0 is a sequence (2), where 
5 = 7 + 1. We then derive the following proposition from Proposition 3.2. 

Proposition 33: Let {^}„>0 be a sequence (1) and C„ = niJ\ Then the factorial polynomial solu-
tion {^(w)L>o of (1) is given by PJ(ri) = K(u(ri), where R<u(n)=TJ

J
t=Qs(jJ)Pt(n) with Pt(n) = 

Tfjto°~l ®otni (0 < / < 7) are solutions of the linearized expression (3) of {Tn}n>0 for Cn ~nf (0 < 
t<j). More precisely: 
(a) If 1 e o-1? we have 1* (/i) = Z^0(£/-g <A t)ytq)d«\ where ^ = E,% <${K q), with £(/, ?) 
the Stirling numbers of the second kind. 
(b) If 1 ea , , we have PJ{n) = l^-l^^-is{J,tyr1q)rf-''\ where y„ = Z£*-1a$,S(i,?), with 
w0 > 1 the multiplicity of 2 0 = 1. 

More generally, we have the following proposition. 

Proposition 3.4: Let {TJn>0 be a sequence (1) and Cn = Zy=0Pf^]). Then, the factorial polyno-

mial solution {jP(rt)}„fco of (1) i§ giyen by P(ri) = i?o(«) = Y?J=Q P jPjtn), where ^.(w) a r e factorial 
polynomial solutions of (1) for Cw = n^ given by Proposition 3.3. 

Propositions 3.3 and 3.4 show that particular factorial polynomial solutions Pj(n) (0<j<d) 
are the well-known Asveld factorial polynomials studied in [5] and [7]. Our method of obtaining 
Pj(ri) (0<j<d) is different from those above. As for the polynomial case, if 1 eah we can 
show that Pj(n) (0<j<d) may be of degree >j + l. This result has also been verified by the 
authors using another method for solving (1) in the general case. 

Example 3.1: Let {^}w>0 be a sequence (1) whose initial conditions are T0, Tl? and Tn+l = 3Tn-
2Tn_x +Vn for n > 1, where Vn = n. It is easy to see that Vn+l - 2V„-Vn_1; therefore, the Lineariza-
tion Process of Section 2 and Example 2.1 imply that Tn+l = 5Tn- 9Tn_t + lTn_2 - 2Tn_3 for n > 3, 
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where the Initial conditions are TQy 2J, T2 = 3TX -2TQ +1, and T3 = 1TX -6T0 + 5. The characteristic 
polynomial of {TJn>0 is p(x) = (x- lf(x -2) . So the Binet formula of {Tn)n>0 is Tn = P(n) + rft? 
for any n > 0, where P(/i) = an2+hm + c. Also, the coefficients a, ft, c, and 77 are a solution of 
the linear system of 4 equations, (S): P(n) + r/2n = Tn> n = 0,1,2,3. A straight computation allows 
us to verify that (S) is a Cramer system which owns a unique solution a, b, c9 and rj. In particu-
lar, we have a = ~~. Hence, the polynomial solution {P(n)}n>0 of (1) is of degree 2. 

4. CONCLUDING DISCUSSION AND EXAMPLE 
4.1 Method of Substitution and Linearization Process 

For Cn = Yfj=QpjnJ (or C„ = Sy=o^yW(y)), the usual way for searching the particular polyno-
mial (or factorial polynomial) solutions {-P(»)}w 0̂ (o r {^(w)}«>o) °f OX anc* hence the Asveld 
polynomials (or factorial polynomials), is to consider them in the following form: 

d d 
P(n)^Y,AjnJ* P(n) = Y,AjnU)- (5) 

Thee the coefficients Aj (0<j<d) are computed from a series of equations that are obtained 
from the substitution of (5) in (1) (see, e.g., [3], [4], [5], [7], [8], and [12]). 

The natural question is: How can we compare the Linearization Process of Section 2 and the 
method of substitution for searching particular solutions of (1) in polynomial and factorial poly-
nomial cases? The Linearization Process of Section 2 shows that: 
(a) If yi0 = 1 g.al [i.e., 1 is not a characteristic root of the homogeneous part of (1)], the Lineari-
zation Process shows that {P(n)}n>0 (or fP(«)}w>0) is of the form (5). And the coefficients Aj 
(0 < j < d) of (5) are obtained with the aid of the Binet formula applied directly to the linearized 
expression (3) of (1). 
(b) If 2 0 = 1 eat [i.e., 1 is a characteristic root of the homogeneous part of (1)], then these solu-
tions may be of degree >d. More precisely, we have P(n) = Zy=o° A/iJ and P(n) = Ey=o° Aj.n(j\ 
where n0 is the multiplicity of A0 = 1 eat. If P(ri), or P(ri), is of degree d, we must have Aj = 0 
for d + l<j <d+nQ. This means that we have some constraints on the coefficients a0,..., ar_h 

or on the initial terms T0,..., Tr_t. 

The following simple example helps to make precise the difference between the Linearization 
Process and the method of substitution. 

Example 4.1: Let {T„}„^0 ^e a s e ( l u e n c e 0 ) whose initial terms are TQ, 2J, and Tn+l =@0Tn + 
a^n-x +K f°r n - * > w n e r e a0 = l-a,al = a with a * 1, and Vn = n. Then we can see that Vn+l = 
2Vn -Vn_l. Hence, the Linearization Process of Section 2 implies that 

3^1 = ( 3 - a ) ^ + 3 ( a - l ) r w . 1 - ( 3 a - l ) 2 ^ 2 + a ^ 3 for«>3, 

where initial terms are TQ, Tl9 T2 = (1 - a)Tx + aT0 +1, and T3 = (a2 - a + T)TX + a(l - a)T0 + (3 - a). 
The characteristic polynomial of {TJnk0 is p(x) = (x -l)3(x + a) , and its Binet formula is Tn = 
P(n) + TJX[ for n > 0, where P(w) = an2 +bn + c and Aj = - a . The coefficients a, A, c, and r\ are 
derived from the following linear system 4 equations (S): P(2) +17^ = TJ9 j = 0,1,2, and 3. A 
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straight computation allows us to see that (S) is a Cramer system which owns a unique solution 
a, b, c, and TJ if Aa = 2a3 + 6a2 + 6a - 2 * 0. In particular, we have a = (a +1)2 / Aa. Therefore, 
the polynomial solution {P(n)}n>0 of (1) is of degree 1 if a = - 1 , and of degree 2 if not. 
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