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The usual way to multiply numbers in binary representation runs as follows: To compute 
m-n, copy n to x. Multiply x by two. If the last digit of m is 1, then add n to x. Now delete the 
last digit of m. Repeat until m = 1, then x = m-n. 

Since multiplication by 2 needs almost no time, the running time of this algorithm depends 
only on the time to add two numbers and the number of lfs occurring 'mm. If n and m are both 
k-bit numbers, one needs almost always y£2-bit operations. 

In [1], Dimitrov and Donevsky used the Zeckendorf representation to construct a number 
system in which, on average, less nonvanishing digits are needed to represent a number. Thus, 
using this representation, multiplication becomes about 3.2% faster. In this note we will give 
another number system, which gives an algorithm to multiply w-digit numbers in expected time 
f ?i2 + 2w, i.e., for large numbers this algorithm is 25% faster than the usual one. 

Note that, for very large numbers, Karatsuba and Ofmann gave an algorithms with running 
time 0(^ili85), and Schoenhagen and Strasser gave one with running time 0(n log/flog log TI) [2]; 
however, the constants implied by the 0-notations are so large that these algorithms have no 
meaning for most computations. Thus, faster multiplication of small numbers might speed up 
many computations. 

We will write integers as a string consisting of 1, 0, and - 1 , and interpret a string akak_x... 
a0 as E^/21. Our algorithm will make use of the following simple statement. 

Proposition 1: 
(a) Every integer n has a unique representation as above with the following additional 

requirements: there are no three consecutive l's, no two consecutive nonvanishing digits are -l 's, 
between a 1 and a -1 there are at least two 0's, and the first digit is 0 if and only if n = 0. 

(h) The expected number of nonvanishing digits in the representation of an n-b\t number is 
| ( n + 3). 

(c) The representation can be found by changing < |-w-bits on average. 
Proof: First, we prove the uniqueness of this representation. Let n be the least number such 

that there are two different representations ak ... a0 and fil... J30. If & > /, then 
ak... a0 - pt... /3Q> 100-100... -110110.. . = 1-1-1-1...= 1. 

N y / V y / 

k+l digits <k digits 

Thus, k = /. Since, by the same computation, the leading digit of a positive digit is 1, deleting this 
digit together with the following 0's yields a counterexample of smaller absolute value, therefore 
inverting if necessary gives a smaller positive counterexample. However, we assumed n to be 
minimal. 

To construct this representation, begin with the ordinary binary representation of n. Now, 
since 2h + ••• +4 + 2 + 1 = 2k+l - 1 , we have 
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11...11 = 100...00-1. 
k digits r̂-f-1 digits 

Thus, replacing every string of A consecutive l's as above does not change the value of the string, 
and it is easily seen that the new representation fulfills all requirements, if we replace only blocks 
of length > 3. During this replacement, we have to change k +1 digits for every block of length k. 
Since the expected value of the number of blocks of length k in an w-digit number is nTk~l, the 
expected value of replacements equals 

k=3 H ^ k=3 L H 

In the resulting string, there is a single 1 for every substring 011 in the ordinary binary representa-
tion, two consecutive l's for every substring 0110 and a 1 and a -1 for every block of length > 3. 
Thus, to estimate the number of nonvanishing digits, we have to count the blocks in the ordinary 
binary representation. At every digit, a new block begins with probability 1/2, except the first 
one, where this is certain. If the last digit is 0, then there are as many 1-blocks as 0-blocks, other-
wise, there is one 1-block more. Thus, the expected number of 1-blocks is i~3-. Among these, 
there are - ^ blocks of length 1; thus, the total number of nonvanishing digits equals 

~n+3 n+3 3, ^ 
2— — = -(w +3). 

4 8 8V ; 

Hence, all of our claims are proved. • 
Now, adding and subtracting Integers takes the same amount of time. Thus, to multiply two 

zz-digit numbers using this modified binary system, we need | ( « + 3) additions or subtractions on 
average. Each addition needs n bit operations, so this part of the multiplication algorithm needs 
|w2 +-|w steps. We also have to modify one of the two numbers to be multiplied, which takes 
~n steps. Therefore, the total running time becomes 

3 2 15 3 2 o 
8 8 8 

as claimed. 
For n > 15, we have ~n2 > |w2 +-^w. Thus, for numbers > 215 = 32768, multiplying by using 

this number system is faster than the usual algorithm. 
Note that things become even better if one has to do computations with the same number 

several times, since than one only has to convert the Integers once. It Is easily seen that in this 
case multiplication is always at least as fast as the standard algorithm. 
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