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Diophantus found three rationals ~, -y, ~ with the property that the product of any two of 
them Increased by the sum of those two gives a perfect square (see [5], pp. 85-86, 215-217), and 
Euler found four rationals ^ , ^ 4 , -̂ -, j - with the same property (see [4], pp. 518-519). 

We will call a set {x1? x2,..., xm} ofm rationals such that xtXj +xt +Xj is a perfect square for 
all 1 < i < j < m a Eulerian m-tuple. 

In [8], we found the Eulerian quintuple 

f 27 17 27 4931 ( , 
1 40' 8 ' 10 ? ? 40 J ' l } 

This example leads us to the following questions: Is there any Eulerian quintuple consisting of 
positive rationals (this would be more in the style of Diophantus)? Are there infinitely many such 
quintuples? In the present paper we give affirmative answers to both questions. 

We mention that it is not known whether there exists any Eulerian quadruple consisting of 
integers. In [3]. [10], and [12], it was proved that some particular Eulerian triples cannot be 
extended to an integer quadruple; in [7], it was proved that the Eulerian pair {0,1} cannot be 
extended to an integer quadruple. 

Let q be a rational number. A set {aha2,...,am} of m nonzero rationals is called a 
Diophantine m-tuple with the property D(q) if aflj + q is a perfect square for all 1 </ <j <m 
(see [6]). It is clear that {xhx2,...,xm} is a Eulerian m-tuple iff {xx +1, x2 +1,... , xm +1} is a 
Diophantine m-tuple with the property D(-l). 

In [8], we proved that the set 

{US^-m-S^, lA* + 5>(-, + 3), ( , - 2 X 5 ^ 6 ) , 
} (x2 +4x- 6)(-x2 +4x-f 6), 4x2 } 

has the property D(^x 2 (x 2 ~x-3)(x 2 +2x-12)) . From (2) for x = | , we obtain the Eulerian 
quintuple (1). 

Consider the quartic curve 
Q: y2 = -(x2-x~3)(x2 +2x-12). 

We have a rational point (f , f ) on Q. Using the construction from [1], we find that, with the 
substitution 

63^ + 10̂  + 2619 24J3 - 6777s2 -lit2- 34749/ + 54898479 
18s+ 4/+ 2403 ? J (18s+4/ + 2403)2 

Q is birationally equivalent to the elliptic curve 

E: t2 = ^-189815-1001700 
= (s-159)(s + 75)(s + 84). 

(3) 
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Using the program package SIMATH (see [14]), we obtain the following information about 
curve E: E(Q)t0TS = Z/2Z x Z/2Z, E(Q\OTS = {6,A = (159, 0), B = (-75, 0), C = (-84, 0)}, rank 
£(Q) = 1, £(Q)/£(Q)tors=<P>, where P = (2103, -96228). The author is grateful to the 
referee for the observation that the minimal equation for E is v2 = u3 - u2 - 23 AM -1296. This is 
curve 1248E1 in John Cremona's online tables, which confirm that the rank of E is equal to 1. 

As a direct consequence of the fact that rank E(Q) = 1, we conclude that there are infinitely 
many rational points on Q. By (2), we obtain infinitely many Diophantine quintuples with the 
property D ( - ^ x 2 j 2 ) , and multiplying elements of these quintuples by -^ we obtain quintuples 
with the property D(- l ) . Therefore, we have proved 

Theorem 1: There exist infinitely many Diophantine quintuples with the property D(-l). 

Corollary 1: There exist infinitely many Eulerian quintuples. 

The next question is: Which points (s, t) on E(Q) induce Eulerian quintuples with positive 
elements or, equivalently, Diophantine quintuples with the property D(-l) whose elements are 
>1? 

Therefore, we would like to find the points (x, y) on Q such that the five rationals 

(x2 4- 6x -18)(-x2 + 2x + 2) - Axy x(x + 5)(-x + 3) - Ay 3(x - 2)(5x + 6) - 4xy 
Axy ? Ay ? Axy 
(x2 + 4x-6)(-x2 + 4x + 6)-Axy A 3x-y 

: :—, and 
Axy y 

are all positive. Let us denote these five expressions by ^ (x , j ) , . . . , J?5(x,j/). First of all, from 
(x2 - x - 3)(x2 + 2x -12) = -y2 < 0, it follows that 

"l + Vl3 X G 

.Here, 

- i - V i 3 , l ^ u 2 •l + J\3 (4) 

-1 - Vl3 *-4.605551275464, 1 Z^ *-1.302775637732, 

1±^11 „ 2.302775637732, -1+Vl3 * 2.605551275464. 

Set a = ^ r^ . and 0 = ~1+^. Then condition (4) may be written in the form 

xe[-2a,-fl\\j[a,2p\. 
Assume first that y > 0. Then we find (using MATHEMATICA) that R^x, y) > 0 if and only if 

x e(a, xm) u <x(2),20), where 

x(1) « 2.306300513595, x(2) * 2.601569034318; 
R2(x, y) > 0 iff x e (a, 20); R3(x, y) > 0 iff x e (a, 20); R4(x, y) > 0 iff x e (a, 2/3); R5(x, y)>0 
iff jce<a,2/?>. 

Assume now that y < 0. Then we find that R^x, y)>0 iff x e (-2a, -0); i?2(x, y) > 0 iff 
x G(2CC, X(3)) iwi <-3, -0), where 

act3)*-4.482360405707; 
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R3(x, y) > 0 iff x G (-2a, - 2> u <x(4), - P), where 

x(4)« -1338580448007; 
Jf4(x, j ) > 0 iff x e (-2a, - /?>; i?5(x, j ) > 0 Iff x G <-2a, - 3> u <-2, - /?>. 

Summarizing these computations, we may write that J^(JC, j ) > 0 for / = 1,..., 5 iff 

x G<a, x(1)> LJ <x(2)
? 2/J>, y > 0 or x G<-2a, x(3)> u <x(4), -fi), y< 0. (5) 

We can see also that we have only three possibilities for the signs of J^(x,j/), / = 1,..., 5. 
Namely, we may have zero, one, or five negative numbers among them. This is not surprising. 
Indeed, it is a consequence of the following simple fact. 

Proposition 1: There does not exist a Eulerian triple {x1? x2, x^} such that xt > 0, x2 < 0, and 
x3 <0. 

Proof: Let y2 = -x2 and y3 = -x3. Since -xxy2 -y2 + xl>0, we have y2 < 1 and, similarly, 
y3<l. On the other hand, y^-yz~y3 ^0 implies y2y3> 4, a contradiction. D 

Now we may determine the points on E such that the corresponding points (x, y) on Q sat-
isfy (5). Using (3), we obtain that these points are 

sG{&\P^) KJ (P\^\t>0 or SG(&>,^6>> u <^7),^8)>, t<0, (6) 
where 

,s(1) « -79.224984709848, si2) « -76.849933010661, 
sQ) « 458.63743164323, s(4) « 937.53800125946, 
s(5) « -82.093984103146, s(6) « -79.690329099008, 
^7 ) « 232.03689724592, ^8) « 348.76934786866. 

Our final task is-to determine rational points on E which satisfy (6). We know that rational 
points on E have the form X = T+mP, where T G {©, A9 By C} and W G Z . 

We may parameterize elliptic curve E by the Weierstrass function 

s=p(z)9 t = jp>(z). 

We will denote the parameter z corresponding to the point X = (5, /) by m(X). The Weierstrass 
p-function is periodic, with complex and real periods given by 

ds 
Vl 001700+189815- s* 

ds 
/159 Vs3-18981s-1001700 

(see [11], pp. 22-29). We have a(A) = %-, o)(B) = ̂ - + ̂ -i, m{C) = ̂ i. Using PARI [2], we 
find that <»(P) = a, where 

er« 0.0218157627564. 
Also using PARI, we find that condition (6) is equivalent to 

m{X) e ( / 0 , ^ ) u ( y » + ^ , * < > + ̂  (7) 
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or 

m 

where 

W-^i e (y(2\ n u (r
(2)+^, ̂ (2) +^)3 (8) 

yW « 0.0545490289958, ^ « 0.06898634204343 

X(2) « 0.0525347833467? ^(2) « 0.0710005876925. 

Note that points X and A + X Induce the same quintuple. Namely, if X induces the point 
(x, y) on Q, then A + X induces the point (f 3 fr)3 and the only effect of these changes on Ri

is is 
the permutation of R2{x, j ) and R3(x, y). Therefore, it suffices to consider the points of the form 
mP and C+mP. 

The point X = mP satisfies condition (7) iff ma mod ̂  e</(1), ^(1)> or, equivalently, 

j^^j^m. (9) 

Analogously, the point X = C+mP satisfies condition (8) iff 

2y(2) 2S(2)\ 
wi-[ — | m o d l e ( ^ — , ^ — ) . (10) 

{m2J \ m2 ' m2 J 
Assume that —1 = -f- e Q. Then co(2lP) = 0, which means that P is a torsion point, a contradic-
tion. Therefore, ^~ is an irrational number and we may apply Bohl-Sierpinski-Weyl theorem (see 
[13], pp. 24-27), which implies that the sequence {m-(^) mod l} is dense in [0, 1]. 

Therefore, there are infinitely many integers m that satisfy condition (9), resp. (10), and then 
the corresponding points mP, C + mP on E(Q) satisfy conditions (7), resp. (8). 

Hence, we have proved 

Theorem 2: There exist infinitely many Eulerian quintuples consisting of positive rationals. 
Example 1: Condition (9) can be approximated by 

#1-0.214469590718 modi e (0.536286571189, 0.678201019526), 

and condition (10) by 
in-0.214469590718 modi e (0.51646663051, 0.698002960205). 

It is easy to find "small solutions" of (9): 
msMl = {..., -100,-95,-86,-81,-72,-67,-58,-53,-44,-39,-30,-25, 

-16,-11,-2,3,12,17,26,31,40,45,54,59,68,73,82,87,96,...},. 

and of (10): 
MGM2 = {..., -100,-95,-90,-86,-81,-72,-67,-58,-53,-44,-39,-30,-25, 

-16,-11,-2,3,12,17,26,31,40,45,54,59,68,73,82,87,91, 96,...}. 

Note that, for i = 1,2, msMi holds if and only if l-m eMt. Namely, the points rnP and 
A + (l-m)P induce the same point on Q. This fact explains why ^(1) + S® = ^(2) + <^2) = a + -^• 
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Note also that, for "many11 elements m of the set Mi9 / = 1,2, m + 2%eMf holds. This 
happens because 28a is close to 3a)2. 

The Eulerian quintuples induced by the points -IP and C-2P are listed in the following 
table: 

point on E Eulerian quintuple 

-2P 

f12253738824071768160902809331272805381 40228062558134597846809398333 
113356284738726537361337339615814680856 ' 2027377666049252712575626072 ' 

90410203607675775632231738735 1459249660815833141719920182753327588589 
2640165528414654368852526998 > 13356284738726537361337339615814680856 > 

164634788770687616151 
200378051669604563 J 

C-2P 

-24384004810826647895250908584025016017 11174534572531880776077845373 
l 1226018751971657626989240363062470220 ' 1225575724730803312553801852 ' 

200408761263308135110463918 2876707800134532926186517692138532777 
200450485329612350005456055> 1226018751971657626989240363062470220 ' 

1329253988561517422 ^ 
200378051669604563 J 

Remark 1: In the same manner as in the proof of Theorem 2, we can prove that there are 
infinitely many Eulerian quintuples consisting of negative rationals, and infinitely many Eulerian 
quintuples consisting of one negative and four rationals. 
Remark 2: In [9], we asked the following question: For which nonzero rationals q do there exist 
infinitely many rational Diophantine quintuples with the property D(q)l It is clear that it suffices 
to consider square-free integers q. It was already known to Euler that there exist infinitely many 
rational Diophantine quintuples with the property D(l) (see [4], p. 517). In [9], we gave an 
affirmative answer to the above question for q = -39 and Theorem 1 solves the case q = -l. In 
our forthcoming paper, we will give an affirmative answer to the above question for a large class 
of rationals q, including 114 integers in the range -100 <2< 100. 
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