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1. MOTIVATION 

It is known that if Ln, respectively Rn9 are n x n matrices with the (/, j ) * entry the binomial 
coefficient (y~l)? respectively (^l)), then L2

n = In (mod 2), respectively R„=In (mod 2), where 
In is the identity matrix of dimension n>\ (see, e.g., Problem PI 073 5 in the May 1999 issue of 
Arner. Math Monthly). 

The entries of Ln form a left-justified Pascal triangle and the entries of Rn result from taking 
the mirror-image of this triangle with respect to its first column. 

The questions we ask are: Can this result be extended to other primes or, better yet, is it pos-
sible to find a closed form for the entries of powers of Ln and Rnl 

Ln succumbs easily, as we shall see in our first result. Rn in turn fights back, since closed 
forms for its powers are not found. However, we show a beautiful connection between matrices 
similar to Rn and the Fibonacci numbers. If n - 2, the connection is easily seen, since 

A simple consequence of our results is that the order of Ln modulo a prime p is p, and the order 
of Rn modulo/? divides four times the entry point of the Fibonacci sequence modulo p. 

2* HIGHER POWERS OF L AND Rn 

The first approach that comes to mind is to find a closed form for all entries of powers of Ln 

and Rn. It is not difficult to obtain all the powers of Ln. Denoting the entries of the e* power of 
Ln by 1$9 we can prove 

Theorem 1: The entries of Li are 

W = ̂ j-ty C1) 
Proof: We use induction on e. The result is certainly true for e = l. Now, using induction 

and matrix multiplication, 

c-£(i:lh(j:!) |̂-(i-lXi=i 

To prove a similar result for Rn is no easy matter. In fact, except for a few lower-dimensional 
cases and a few of its rows/columns, simple closed forms for the entries of Re

n are not found. 
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Iii the sequel, we consider the tableau with entries aijy i > 1, j > 0, satisfying 

^, ; - l=^-l f JH+q-W, (2) 
with boundary conditions alt„ = l, ahj=0, j*n. We shall use the following consequences of 
the boundary conditions and recurrence (2): aUJ = 0 for i+j <n, and ahn+l = 05 1 <i <n [in fact, 
we use only these consequences and (2)]. The matrix R will be defined as (^•,_/-)I=I...?IJJ-=L..„. We 
treat the second and third powers first, since it gives us the idea about the general case. To clear 
up the mysteries of some of the steps in our calculations, we will refer to matrix multiplication as 
m.m. and the boundary conditions as he. 

Lemma 2: The entries of the matrix R2 satisfy 

Kj+i = bi'ij+i+2Ai-irbtp 2 < i < w ? i < j < « - i ? (3) 

and the entries of J?3 satisfy 
ci+lJ = 2cUJ+3citj_l-2*i+lJ_l, l<i<n-l, 2<j<n. (4) 

Proof: Using matrix multiplication and (2), we obtain 

(2)i 
1 ~ i 

5=1 5=1 

n n n 

= 5X A+w _ 2X Ay m='IX Any ~hy 
5=1 5=1 5=1 

Therefore, denoting SUj = Z ^ i ^ A + w * w e obtain 

I f 2 < i < w and l<j<n, 
Sl. J = Z (^-1, * + ai~h ^ l K + l , ; "= Si-1, J + Z a/-l, A , 7 

5=1 r=2 
m.m. & j , b.c. « » 

= "Vi, y + bt-i, j+a<-i, »+ia»+i, y " a»-i, iai, / = V i . y + *.-i, y • 

Using (6) in the previous recurrence, we obtain bf J+i + hij = bi_lj+1 + hl_lj+hi_lj, which gives us 
(3). 

If the relations (3) are satisfied, we obtain, for j > 2, 

(5) 

cijm=Y.ai,hi - Z ^ . ^ - i y + ^ - u - i - ^ y - i ) 
5=1 5=1 

n n 

= 2 X A-iy + 2 I X A-i,y-i -<7.y-i = Tt.j+2Tuj-\-ci.j-i> 
5=1 5=1 

where Tu y = EJU ̂ , A - i y • Furthermore, for i < /? - 1 , 
( 2 ) / 

TUj- Z (^+l.f-l ^ M - l ) ^ " ! , / ^ ^ / +<*+!, A / -ai+\.J>n.rCU -"l^OJ+Oi, A , / 
(2) , , ftf. 
- *7+l, j ~ C i , / + ai, A ) , J " a i , » + A i , ; ~~ Ci+l j Ci, j ' 
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Therefore, 
°t, j = TUj+2Tit j_x - cu j_x = ci+lf j - ch j + 2ci+l j „ t - 2cJ9 j _ t - cu j _ x , 

which will produce the equations (4). D 

Corollary 3: The entries of the second and third power of R can be expressed in terms of the 
entries of the previous row: 

We have wondered if relations similar to (3) or (4) are true for higher powers of R. It turns 
out that 

Theorem 4: The entries af*j of the e®1 power of R satisfy the relation 

F , de)- = F de\ + F , fl(eJ , - F a^ , 
^Vl "i,y ^e "i-l,y ^ ^e+l "i-l, y-1 re ui, j-l> 

where i^ is the Fibonacci sequence. 

Proof: We show first that the entries of Re satisfy a relation of the form 

sM?, = «.<4$j+fi.4$j-i+r.43-i CO 
and then will proceed to find these coefficients. From Lemma 2, we observe that St = 0, al = 1, 
fix = l,n = -l $2 = h<*2 = !> Pi = 2>r2 = - 1 , and £3 = 1, a3 = 2, /?3 = 3, r 3 = -2 . Now, the 
coefficients of Re satisfy, for i, j > 2, 

°e~lai-\J ~ Zj°e-lai-l,sas,j ~ Z^ai-l,s\ae-las-lj^Pe-las-l,j-l+fe-las,j-l) 
5=1 5=1 ( 8 ) 

m.m. ±'a+.iU,_UJ +fit-iUl_itJ_1 +re-i4-\,j-u 

where UUj = 2 ^ at, a£$. We evaluate, for 2 < / < n, 

5=1 

~ ai5y a/-l,y+ai,0a0,y a/-l,0^),y ai,nan,j ^ai-l,nanJ 

- ai, y ai-i, y + a i - i , i ao, y a / - i 5 n+ia«, y ~ ai, y a?-i, y> 

since dj_u = 0, i < #i, and aj_ln+l = 0. Thus, 

« - i < # = (^-i + * - i W - i y +0»-i - J V i W - l y-i " A ^ i < % 

Therefore, we obtain the following system of sequences: 

ae = ae_l+Se_1, 

He - Pe-l ~ 7 e-l> 

Ye = -Pe-l-

(9) 
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From this, we deduce Se
 = Fe__^ ^e

 = Fe, J3e = Fe+^ y e — ~FeJ where Fe is the Fibonacci sequence 
withi^ = 0, F1 = l. D 

Corollary 3 can be generalized, with a little more work and anticipating (10), to obtain the 
elements in the (/ +1)* row of Re, in terms of the elements in the previous row. 

Proposition 5: We have 
; - i pk-i 

k=l re-l 

3. HIGHER POWERS OF Ln AND Mn MODULO A PRIME p 

As before let Ln, respectively Rn, be defined as the matrices with entries (J~l), respectively 
CJl}). We use the notation n matrix =a (modpf with the meaning "matrix = al„ (modp)". 

We ask the question of whether or not the order of ln and Rn modulo a prime/? is finite. We 
can easily prove a result for Ln using Theorem 1. 

Theorem 6: The order of Ln (n > 2) modulo/? is/?. 

Proof: We have shown that the entries of Ifn are //*j = ̂ J(jl\) for any integer e. Thus, the 
entries on the principal diagonal of Ifn are all 1. If / * j , then p | l\f). Assume there is an integer 
e with 0 < e < p such that p\lj\j for all i*j. Take i = 2 and 7 = 1. Then p\e is a contradiction. 
Therefore, the integer/? is the least integer e > 0 for which p\l^eJ for all / ^j, which proves our 
assertion. • 

We can prove the finiteness of the order of Rn modulo p in a simple manner. By the Pigeon-
hole Principle, there exist s<t such that Rs

n = Rf
n (modp). Since Rn is an invertible matrix (det 

Rn - (~\y ^ 0 (mod p)\ R^ = In (mod p). More precise results will be proved next. In order 
to do that, we need some known facts about the period of the Fibonacci sequence. It was shown 
that the period of the Fibonacci sequence modulo m (not necessarily prime) is less than or equal to 
6m (with equality holding for infinitely many values of m) (see P. Freyd, Problem E 3410, Amer. 
Math Monthly, December 1990, with a solution provided in ibid, March 1992). In the case of a 
prime, the result can be strengthened (see Theorem 7). The least integer n * 0 with the property 
m\Fn is called the entry point modulo m. 

In [1] and [7], the authors obtain (see also [6], Chs. VI-VII, for a more updated source) 

Theorem 7 (Bloom-Wall): Denote the period of the Fibonacci sequence modulo p by 2P(/?). Let 
p be an odd prime with p * 5. If p s ±1 (mod 5), then the period 9*0?) 10? -1) . If p = ±3 (mod 
5), then the entry point e\(p + l) and the period 2?(j?) 12(p +1). 

Remark 8: For p = 2, the entry point is 3 and the period is 3. In the case p = 59 the entry point 
is 5 and the period is 20. 

Theorem 9: If e is the entry point modulo p of Fe9 thee R^k = (~l)(^1)eiV-i4£ (mod p) and 
i ^ + i ^ ( - l ) * 4 w ( m o d ^)- Moreover, R* = In (modp). 

Proof: We prove by induction on e that the elements in the first row and first column of R* 
are 
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W^ZtyttF.'-1 and c^^F^Ft1. (10) 

First, we deal with the elements In the first row. The first equation is certainly true for e = l, if we 
define 0̂  = 1. Now, 

Again by induction, we prove the result for the elements in the first column. The case e = l can 
be checked easily. Then 

5 = 1 S=l ^ ' 

= F"~l Y I £=M Y' ~ * 1 = F"-1 II+5=1-1 = F""' F",1 

e a U.J v»-*J * [ i - J e e+1-
Let e be the entry point modulo p of the Fibonacci sequence. By Bloom-Waifs result, we 

have e<p + \. Using Theorem 4, we obtain F^a^j ^ Fea^\J^Fe^1aff{J_1-Fea^j_.l (mod/?). 
Thus, 

i W ^ ^ i ^ U (mod/?)- (11) 
Since Fe_t + Fe = FM, p\Fe, and /> |F^ , we obtain Fe_x = Fe+l (mod/?) and 

< ! s « £ l , - i (mod/?). (12) 

We see from what was proved above that, modulo p, the elements in the first row and column of 
Rn (mod/?) are all zero, except for the one in the first position, which is F"Z\ # 0 (mod/?). Using 
(12), we get Re

n = F^In (mod/?). Using Cassinifs identity Fe__tFe+l -Fe
2 = (-If (see [2], p. 292), 

we obtain F%_x = F*+l = (™l)e (mod/?). If w = 2*, then 

F - 1 = F/4"1 - ( / ^ ^ / v l l - ( - l ) * / £ - ( - 1 ) ( * + 1 ) ^ (mod/?). 

If 7i = 2k +1, then F£ = 7^5 s (Fj^)* s (-1)^ (mod/?). 
The previous two congruences replaced in R% s= i ^ X (mod /?), will give the first two 

assertions of our theorem. 
It is well known (a very particular case of Matijasevichfs lemma) that F2e_x = F£_x + F* = F^ 

(mod F^X so F£_x = 1 (mod /?). Thus, since Fm divides Fsm for all m and s (in particular, for 
s = 2,m = e), it follows that F2e = 0 (mod/?) and B? = (R*ef = {F^rlIn s /„ (mod/?). D 

Remark 10: We remark here the fact that the bound 4e for the order of R is tight. That can be 
seen by taking, for example, the prime 13, since the entry point for the Fibonacci sequence is 7, 
and the order of R4k is 28. 
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Using some elementary number theory, we can prove 

Theorem 11: If p \ F l9 then i?̂ "™1 = In (mod/?). 

Proof: We observe that, since p \ Jy^, we have p = ±1 (mod 5), otherwise, p = ±2 (mod 5), 
and by Bloom-Wall's theorem, the entry point e divides p +1. Thus, e\p-\ and e\p + \. There-
fore, e must be 2. This is not possible because F2 = l, which is not divisible by any prime. So, 
p = i l (mod 5) and Fp EE F^2 (mod pi Thus, RP~l = F ; ^ = F/"1/, (mod/?). 

By the previous Bloom-Wall theorem, &(p) \ (p~-1); therefore, Jy.! = 0, Fp = 1, F ^ = 1, 
etc. Hence, i?^ 1 = F£~% = /„ (mod/?)- D 

Another interesting result is the following theorem. 

Theorem 12: If plF^, then i?4+
+\ s j r

2 i t + 1 (mod/?) and W£l = -I2k (mod/?). 

Pr^of: Assume p = 2. The entry point of the Fibonacci sequence modulo 2 is e = 3. Since 
F> = 1, Theorem 9 shows the result in this case. Assume p>2. We know that in this case we 
must have p = ±2 (mod 5). Using the known formula (see, e.g., [3], Theorem 180) 

Fj=2l~J lMty*W+ 
taking j = p, and using Fermat's Little Theorem, 2P l = 1 (mod/?), we obtain 

Fp^5^n(Pj = -l(modp), 

since, for the primes = ±2 (mod 5), 5 is a quadratic nonresidue. 
When n is odd, i?^+1 sFp~~lIn = (F^)^!^ = In (mod/?). Consider the case of n even. Since 

Fp s - I (mod/?), we have RJ?1 = Ff% = (-1)"-% = -/„ (mod/?). D 

The proofs of the previous two theorems imply 

Corollary 13: If p = ±1 (mod 5) and /? - 1 is the entry point for the Fibonacci sequence modulo 
p, then the period is exactly p - 1. If /? = ±2 (mod 5) and /? +1 is the entry point for the Fibo-
nacci sequence modulo/?, then the period is exactly 2(/? +1). 

Corollary 14: The order of Rn (mod/?) is less than or equal to 2(p +1) and the bound is met. 
Proof: If p = ±1 (mod 5), thee the order of R„ (mod /?) is < p -1. If /? s ±2 (mod 5), then 

Fp = -1 (mod/?). Therefore, J^+1 =F;~!4 = H F 1 / , (mod/?). Thus, i ? ^ 2 s /n (mod/?). The 
bound is met for all primes p = ±2 (mod 5) and all even integers n. D 

4. FURTHER PROBLEMS ANB RESULTS 

The inverses of Rn and Ln are not difficult to find. We have 

Theorem 15: The inverse of 

^ ( C - ' . L , , * <K<-*"G--'.L /*» 
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The Inverse of 

Proof: We have 

t(-^(i:lXj:l)'vf(-'rG--,.Xi:i)**,G-i)I(-<'4 
which is 05 unless i-j, in which case it is 1. A similar analysis for Rn will produce its inverse. • 

Another approach to find a closed form for all entries of powers of Rn would be to find all 
eigenvalues of Rn, and use the diagonalization of the matrix to find the entries of Rn. We found 
the following empirically and we state It as a conjecture. 

Conjecture 16: Denote </> = ̂ jr-, $ - ^Y~ . The eigenvalues of Rn are: 

(a) {H)k+it2i-\(-Vk+T-lU,..,k if" = 2*. 
(b) {(-l)k}^{H?+i<t>\(-dk+it2iU...,k if» = 2* + l. 

Another venue of research would be to study the matrices associated to other Interesting 
sequences—Lucas, Pell, etc.—and we will approach this matter elsewhere. 

Note Added to Proof: Recently, the above-mentioned conjecture was settled in the affirma-
tive, Independently, by P. Stanlca and R. Peele, by D. Callan, and by H. Prodinger. 
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