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1. INTRODUCTION 

The Brahmagupta matrix and polynomials In two real variables were first introduced by 
Suryanarayan [7]. Later they were extended to two complex variables [8]. There is yet another 
way to extend naturally from the real variables case to the complex variables case. This is done 
by using two complex variables with their conjugates. In this paper we will explore this way of 
generalizing the matrix and the polynomials. This method yields quite different results than the 
ones developed in [8]. 

We define the Brahmagupta matrix, see (1) below, involving two complex variables as well as 
their conjugates and show that it generates a class of homogeneous polynomials. The two com-
plex variaibles z and w He in two distinct complex planes. This space is denoted C x C o r C 2 . A 
typical member of this space has the form g = (z,w). Following [8], the points in C2 can be 
identified naturally with the points of R4 by the scheme: 

(z, w) GC2 <-> (x + iy,u+iv)<->(x,y, u, v) e R4. 

The polynomials generated by the matrix contain some of the well-known real polynomials like 
Chebychev polynomials of the first and second kind and Morgan-Voyce polynomials, among 
others. Thus, the paper provides a unified approach to the study of Brahmagupta polynomials. 

In this paper we study the Brahmagupta matrix aed the Brahmagupta polynomials in two 
complex variables and their conjugates. This study is similar to those in [7] and [8] and provides 
a natural way to extend them from the real case to the complex case. The emerging polynomials 
have a unique feature, namely, their real and imaginary parts form only two polynomials instead of 
four, involving essentially two variables. However, they have to be studied in two different cases 
depending on the nature of the variables: (i) both real; (ii) one real and the other purely imaginary. 
It is interesting to note that in the former case the Brahmagupta matrix and Brahmagupta polyno-
mials are particular cases of those given in [7]; in the latter case, they are special cases of those 
given in [8]. In fact, Section 2 is clearly different from [7] and [8]. Section 5 is intended to show 
that the extended class of polynomials contain many of the well-known polynomials. 

2. BRAHMAGUPTA MATMX WITH COMPLEX ENTRIES 

Let z = x+iy and w = if+/v be two complex variables and let z = x-iy and w=u-iv be 
their conjugates. Let t * 0 be a fixed real number. Consider the matrix 

BJ=BJ(Z,W) = ^ ; ] = S(x,iO + JB(y,v), (1) 
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where 

*(£!/) = "£ rj and J- i 0 
0 - i 

Let fi = det(B/) = |z|2- r |w|2. It is clear that, if j = 0 and v = 0, then (1) reduces to the real case 
[7]. Let Bj denote the set of all matrices of the form B3. Define B3 = B3(z,w). Bj shows that, 
if Bk = Bj(zk, wk), then Bj satisfies the following properties: 

BlB2*B2Bl9 BlB2 = BlB2, B3B3^B3B3. 

Thus, if the entries of Bj are real, then Bj forms a commutative subgroup of GL(2, R). But in 
the present case, Bj is a noncommutative subgroup of GL(2, C). 

Let p - dQt(Bj) * 0. Set a2 = x2 - p. Notice that a is real if x2 - p > 0 and a is imaginary 
if x2 - P < 0. The eigenvalues of Bj are X± = x ± a, with corresponding eigenvectors E± = [±w, 
aTiyf, where J7 denotes the transpose. Using the eigenrelations, Bj can be diagonalized in the 
form 

Define 

z 
tw 

w 
z 

1 
2wa 

w 
a-iy a 

z w 
fw z 

• a 
cr + j j w 

-a+iy w (2) 

U L^ v 
Then, using the above eigenrelations, we find that 

[ z wT _ 1 [" w -w ~\\(x + a 
fw *J ~2wa[a-iy «+*>_][ 0 

)" 0 
(x-ay 

a+iy w 
-a+iy w 

From the above result, we derive the following Binet forms for zn and wn: 

^„=^[(x + ay-(x-an 

(3) 

(4) 

Let us consider the two cases: (a) a is real; (b) a is imaginary. 
Case (a). For a real, we can separate the real and imaginary parts of z„ = x„+ry„ and 

w_ • u„+ivn and obtain 
(0 Xn^Kx + ay + ix-aYl 

{iv) vn=^i(x+ay-(x-ayi 

(5) 

Set 

a y u V 
(6) 
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From the above results, we see that Instead of the four forms xn9 yn9 un, and vn9 there are essen-
tially two forms to consider, namely, 

xn = ^[(x + ay + (x-ay} and an=~[(x + af-(x-afl (7) 

We can generate x̂  and an by the matrix 

A = A(xP a) = x a ] 
a xj 

Case (b). For a imaginary, let us write a = ta. Following a similar procedure as for the 
real case, we find that 

a y u v y (8) 

where yn is obtained by replacing a by ia in (5, ii) and similarly we define x„, un, v„, and an. In 
relation (7), replacing a by ia, we find that 

x„ = h(x+iay + (x-ia)n] and ia„ =h(x+ia)"-(x-ia)"]. (9) 

From (7) and (9), we see that xn±an = (x±of and xn±ian ~(x±iaf. Similarly, we can 
generate xn and an by the matrix 

A = A(xja) = x ia 
ia x 

3@ PROPERTIES OF A AND A 

Notice that the determinant of A as well as that of A is x2 - a2 & 0. Since 
A(xh al)A(x2, a2) = A(x2, a2)A(xl9 ax), 

the set of matrices of the form A commute. Set 

An - A - X a \ _\ %n ^n 
a xj ~[a„ xn 

The Binet forms of A are given by (7). xn and an satisfy the following recurrence relations: 

xn+l = xxn+aan; aw+1 = xa w - f«v (10) 

From the recurrence relation (10), we derive the three-term recurrence relations satisfied by xn 

and an: 
xn+l = Ixx^ - (x2 - a2)xnml; an+l = 2xan - (x2 - a2)an^. 

It is clear that, if a is imaginary, the three-term recurrence relation becomes 

xn+l = 2xxn - (x2 + a2)xn^; an+l = 2x&„ - (x2 + a2)an^. 

if 4 = xn + an and % = xn-a„, thee 1* = 4 and tf = r/„. 
From the above results we see that, for real a, 

A _ x [cosh a sieha 
* ^e [sinha coshiz 
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To show this, we write 2xk = ̂ k + 7]k and 2ak = %k - r/k. Since 
00 Ak 

*A = 1TT and 4 = fc=0 k\ 
ak 

ah 

A _ we express xk and ak in terms of £ and 7 and obtain the desired results. Notice that dete 

On the other hand, if a is imaginary, we replace a by * a and follow a similar reasoning to 
show that 

eA =ex cos a 1 sin a 
1 sin a cos a 

In this case also, dete = e2x. 
xn and an can be extended to the negative integers also by defining x_n = xnp~n and a_n = 

-anp~n. Then we will have 

A~n x a 
a x 

a_ 
a_ 

here we have used the property 

x ai11 _ r_i_r x -&Tf _ j _ 
a xj J " [ / ? [ - a x \J pn 

-a* 

Notice that A0 = I, the identity matrix. A similar result holds for A n. 

4. RECURRENCE RELATIONS 

From the Binet forms (7) and (9), the reader may verify the following. 
Recurrence Relations: 

(0 
(77) 

m 
(iv) 

(v) 

(vi) 

(v/7) 

(viii) 

Xm+n XmXn — ^nfi^m 

®m+n ~ Xrrflm ~*~ ®mXn> 

P Xm-n ~ XmXn "*" aman> 

P ®m-n ~ Xrflm "*" Xm@'m 

Xm+n "T P Xm-n ~ ^XmXn> 

am+n ~*~P am-n = ^Xnam> 

Xm+n ~ P Xm-n ~ ^ ^ m ^ w ? 

am+n ~ P am-n = ^Xman-> 

( i i ) 

where the top sign is chosen if a is real; if a is imaginary, the bottom sign is chosen. Notice that 
(v) and (vi) are the generalizations of the three-term recurrence relations. 

Let Z£=i = Z. Again using the Binet forms, the reader may verify the following 
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(i) Yx = P X" x"+l + x P 
k /32-2x + l 

k p2-2x + \ 

K } ** k 2(j32-2x2 + \) 2{fi2-\) ' 

v2 _P2<X2n-<X2n+2 + <*2-P2 , /Ptf* ~ 1)' 
2{fi2-2a2 + \) 2(/?2-l) ' 

P2<*« (12) 

(/v) loi^Y^^V +i r„2 

(v) 2TJxkx„+l_k=m„+l+i . 
(X 

B2a (W) 2 Z akanU_k = mnU - ^ ^ , 
(wi) 2 Z ^aw_^+1 = 2 1 a A ^ + 1 = M W + 1 . 

(12, v, vi, vil) are convolution formulas. For a imaginary, a set of similar formulas holds. 
From the Binet forms for (7) we see that, for a > 0, xn and an satisfy 

Tie Limiting Properties: 

lim —— = 1 and lim —*- = lim —JL- = x + a. 

Tie Divisors of x2n and a2n: 
From (11 i) we see that, if a is imaginary, thee x+i« and x-ia are factors of x2n for real 

a. 
From (11 ii) we see that xn and an are factors of a2n. The last statement can be generalized: 

Ifr divides s, then xr and ar are factors of a5. 

5. BMAHMAGUPTA POLYNOMIALS 

With the help of the binomial expansions for xn ± a„ = (x ± a)n, we find that 

xn = xw +(^\xn-2a2 +f j l x ^ V + - . , 

aw = n x ^ a + f 3 V 3 a 3 +f J V V + - . 

Similarly, expanding x̂  ±ian = (x±la)n, we obtain 

For a real, the first few polynomials of x̂  and an are: 

x0 = l, Xj=x? X2=x2 + a2, x3 = x3-f3xa2, x4 = x4 + 6x2a2+j4 , . . . ; 
a0 = 0, ax = a, a2 = 2x«, a3 = 3x2a + a3, a4 = 4xa3 + 4x3a,.... 

Similarly, for a imaginary, we can write the first few polynomials of x̂  and a„. 
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Special Cases of t ie Polynomials: 
a. Brahmagupta sequences 
If x = 2 and a = V3, the Binet forms reduce to 

These sequences appear le obtaining Heron triangles with consecutive integer sides [1]; 2xn 

denotes the middle side and 2un denotes the height of the triangle. 

k Lucas and Fibonacci sequences Ln and Fn 

le Bj in (1), set x - y = u = y, v = 0, and 1 = 6. Thee we get 01 = a2 - x2 = 1, a- ^§-y and 

and, in this case, we have 

Wj{Ln+iF„,Fn) = Ln+iFn F„ 

c. Pell sequences 
In J5;, if we set x = y = w = 1, v = 0, and t = 3, we get /? = -1 , a = V2, and x„ and wn reduce 

to Pell sequences given by: 
2JC„ = (1 + V2)n + (1 - V2)", 2V2w„ = (1 + -Jl)n - (1 -V2)". 

Also, B„ becomes 

Bj(x„+iy„,y„) = 3j„ x„-iy„_ 

(L Brahmagupta polynomials 
If v = 0 = y, then xn and j„ reduce to the Brahmagupta polynomials in the real case: 

*„=| [ (*+W0"+(x-W0"] , y„ = ^[(x+yJt)"-(x-yJtn 

The properties of these polynomials have been studied in [7]. 

e. The Chebyshev polynomials 
Set /? = 1, a = Vx 2 -1 , and 1/ = 1, then 

1. ^ = « [ ( * + V ^ r 4- (x - V?M)" ] = £(*), 

2v ar - 1 
The Chebyshev polynomials occur in many branches of mathematics like Interpolation Theory, 
Orthogonal Polynomials, Approximation Theory, Numerical Analysis, etc. [6]. 

/ Polynomials similar to Chebyshev polynomials 
If we set fi = -1 and a = Vx2 + 1, we obtain polynomials similar to the Chebyshev polyno-

mials: 
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xn=I[(x+«J7vi)n+(* - 4x^)1=rn(x), 

& 2Vx2 +1 
g. Morgan-Voycepolynomials 
If x Is replaced by (x + 2) / 2 and a by Vx2+4x / 2 in the matrix A, then the det A = I. If, in 

addition, u = 1, thee 

0 fx + 2 + / x 2 +4xY , fjc + 2-V?+4jcY 2*-(_ ~2 j + ^ ~2 j , 

where Bn is the Morgan-Voyce polynomial [4], [9]. The three-term recurrence relation for these 
polynomials are Bn = (2 + x)Bnm_x ~~ Bn„2. Morgan-Voyce polynomials are used in the analysis of 
ladder networks and electric line theory [4], [9]. 

h. Catalan numbers 
If JC = 1 and a2 = 1 + 4w in (5), we find that 

2xn = (1 + <JT+4u)n + (1 - *JT+4u)\ 

2un = - i - i—[(1 + Jl + 4u)n - (1 - Vr+^w)'']. 
•vl + 4f# 

Both xw and f#w appear in the study of Catalan numbers [2]. 

Let a be real Then we find, from (7), 
dxn dan dxn dan 
ox da da ax 

From the above relations, we infer that xn and an are the polynomial solutions of the wave 
equation: 

dx1 da1 

On the other hand, Set a be imaginary. Put a = ia. Then we find, from (9), 
dxn dan 

* - * - * - ' • ( l 3 ) 

From these relations, we infer that xn and an are the polynomial solutions of the Laplace equa-
tion: 

k dx2 da2 
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6. GENERATING FUNCTIONS 

We shall now show that the generating functions for zn and wn are: 

(14) 

We shall assume that s is real; then we can separate the real and imaginary parts on both sides to 
obtain the following generating functions for xn and an: 

(0 Y,*/=—l~xs' 2; (») f.«X=—— 
~0 " 1-2XS+0S2' y ' ~0 " 1-2x5+ 

To show (13), we use the standard result: For \Bjs\ < 1, we have 

8$*' 
(15) 

n=0 
Now, 

I-BjS = l-zs -ws 
-tWs l-zs 

d®t(I-BJs) = l-(z + z)s + (\z\2-t\wf)s2^l-2xs+$s2, 

and 

(l-2»+/b2)£(^)" = l-zs ws 
tWs l-zs 

The claim (14) follows from the above result. 
It is known that, if F(s) and L(s) are generating functions of Fn and Ln, respectively, then 

F(s) = eL^ [3]. This result can be generalized to the generating functions of xn and an. Let 

X(s) = f > f c s \ A(s) = fiZtsk-\ *(*) = £ * , j 

k=l k=X a k=\ " * 

Notice that sx'(s) = X(s). Now, we state this result as the following theorem. 

Theorem: e2^ = A(s). 

Proof: Set % = x + a and t] = x-a. Then 

£+ri = 2x, fr = x2-a2 = B, 2*„ = ( f + 77"), 2an = (?-rf). 
Now consider 

5* 
* * 

2 « + - ^ + 7: 
2 ^ 

= -l[ln(l-^) + ln(l-^)] = - l l n ( l -2^+M 

which implies 2%(s) = In i4(s) or e2%{<i) = A(s). 
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All the infinite series summation properties involving reciprocals of xn and yn developed in 
[7] can be extended to xn and an (or an). Since the arithmetic goes through without any changes, 
we do not list them here. 
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