THE BRAHMAGUPTA POLYNOMIALS IN TWO COMPLEX VARIABLES AND THEIR CONJUGATES

R. Rangarajan
Department of Mathematics, Mysore University, Manasagangotri, 570 006, India
E-mail: rajra63@yahoo.com
H. S. Sudheer
Department of Mathematics, Kasturbha College, Shimoga, Karnataka, India
(Submitted February 2000-Final Revision August 2000)

1. $\mathbb{I N T R O D U C T I O N}$

The Brahmagupta matrix and polynomials in two real variables were first introduced by Suryanarayan [7]. Later they were extended to two complex variables [8]. There is yet another way to extend naturally from the real variables case to the complex variables case. This is done by using two complex variables with their conjugates. In this paper we will explore this way of generalizing the matrix and the polynomials. This method yields quite different results than the ones developed in [8].

We define the Brahmagupta matrix, see (1) below, involving two complex variables as well as their conjugates and show that it generates a class of homogeneous polynomials. The two complex variables z and w lie in two distinct complex planes. This space is denoted $\mathbb{C} \times \mathbb{C}$ or \mathbb{C}^{2}. A typical member of this space has the form $\zeta=(z, w)$. Following [8], the points in \mathbb{C}^{2} can be identified naturally with the points of \mathbb{R}^{4} by the scheme:

$$
(z, w) \in \mathbb{C}^{2} \leftrightarrow(x+i y, u+i v) \leftrightarrow(x, y, u, v) \in \mathbb{R}^{4} .
$$

The polynomials generated by the matrix contain some of the well-known real polynomials like Chebychev polynomials of the first and second kind and Morgan-Voyce polynomials, among others. Thus, the paper provides a unified approach to the study of Brahmagupta polynomials.

In this paper we study the Brahmagupta matrix and the Brahmagupta polynomials in two complex variables and their conjugates. This study is similar to those in [7] and [8] and provides a natural way to extend them from the real case to the complex case. The emerging polynomials have a unique feature, namely, their real and imaginary parts form only two polynomials instead of four, involving essentially two variables. However, they have to be studied in two different cases depending on the nature of the variables: (i) both real; (ii) one real and the other purely imaginary. It is interesting to note that in the former case the Brahmagupta matrix and Brahmagupta polynomials are particular cases of those given in [7]; in the latter case, they are special cases of those given in [8]. In fact, Section 2 is clearly different from [7] and [8]. Section 5 is intended to show that the extended class of polynomials contain many of the well-known polynomials.

2. BRAHMAGUPTA MATRIX WITH COMPLEX ENTRIES

Let $z=x+i y$ and $w=u+i v$ be two complex variables and let $\bar{z}=x-i y$ and $\bar{w}=u-i v$ be their conjugates. Let $t \neq 0$ be a fixed real number. Consider the matrix

$$
B_{J}=B_{J}(z, w)=\left[\begin{array}{cc}
z & w \tag{1}\\
\lfloor w & \bar{z}
\end{array}\right]=B(x, u)+J B(y, v),
$$

where

$$
B(\xi, \eta)=\left[\begin{array}{cc}
\xi & \eta \\
t \eta & \xi
\end{array}\right] \text { and } J=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] .
$$

Let $\beta=\operatorname{det}\left(B_{J}\right)=|z|^{2}-t|w|^{2}$. It is clear that, if $y=0$ and $v=0$, then (1) reduces to the real case [7]. Let $\mathbf{B}_{\mathbf{J}}$ denote the set of all matrices of the form B_{J}. Define $\bar{B}_{J}=B_{J}(\bar{z}, \bar{w})$. $\mathbf{B}_{\mathbf{J}}$ shows that, if $B_{k}=B_{J}\left(z_{k}, w_{k}\right)$, then $\mathbf{B}_{\mathbf{J}}$ satisfies the following properties:

$$
B_{1} B_{2} \neq B_{2} B_{1}, \bar{B}_{1} \bar{B}_{2}=\bar{B}_{1} \bar{B}_{2}, B_{J} \bar{B}_{J} \neq \bar{B}_{J} B_{J} .
$$

Thus, if the entries of B_{J} are real, then $\mathbf{B}_{\mathbf{J}}$ forms a commutative subgroup of $G L(2, R)$. But in the present case, $\mathbf{B}_{\mathbf{J}}$ is a noncommutative subgroup of $G L(2, C)$.

Let $\beta=\operatorname{det}\left(B_{J}\right) \neq 0$. Set $\alpha^{2}=x^{2}-\beta$. Notice that α is real if $x^{2}-\beta>0$ and α is imaginary if $x^{2}-\beta<0$. The eigenvalues of B_{J} are $\lambda_{ \pm}=x \pm \alpha$, with corresponding eigenvectors $E_{ \pm}=[\pm w$, $\alpha \mp i y]^{T}$, where T denotes the transpose. Using the eigenrelations, B_{J} can be diagonalized in the form

$$
\left[\begin{array}{cc}
z & w \tag{2}\\
\overline{t w} & \bar{z}
\end{array}\right]=\frac{1}{2 w \alpha}\left[\begin{array}{cc}
w & -w \\
\alpha-i y & \alpha+i y
\end{array}\right]\left[\begin{array}{cc}
x+\alpha & 0 \\
0 & x-\alpha
\end{array}\right]\left[\begin{array}{cc}
\alpha+i y & w \\
-\alpha+i y & w
\end{array}\right] .
$$

Define

$$
\left[\begin{array}{cc}
z & w \\
\bar{w} & \bar{z}
\end{array}\right]^{n}=\left[\begin{array}{cc}
z_{n} & w_{n} \\
t w_{n} & \bar{z}_{n}
\end{array}\right] .
$$

Then, using the above eigenrelations, we find that

$$
\left[\begin{array}{cc}
z & w \\
t \bar{w} & \bar{z}
\end{array}\right]^{n}=\frac{1}{2 w \alpha}\left[\begin{array}{cc}
w & -w \\
\alpha-i y & \alpha+i y
\end{array}\right]\left[\begin{array}{cc}
(x+\alpha)^{n} & 0 \\
0 & (x-\alpha)^{n}
\end{array}\right]\left[\begin{array}{cc}
\alpha+i y & w \\
-\alpha+i y & w
\end{array}\right] .
$$

From the above result, we derive the following Binet forms for z_{n} and w_{n} :

$$
\begin{gather*}
z_{n}=\frac{1}{2 \alpha}\left[(\alpha+i y)(x+\alpha)^{n}+(\alpha-i y)(x-\alpha)^{n}\right], \tag{3}\\
w_{n}=\frac{w}{2 \alpha}\left[(x+\alpha)^{n}-(x-\alpha)^{n}\right] . \tag{4}
\end{gather*}
$$

Let us consider the two cases: (a) α is real; (b) α is imaginary.
Case (a). For α real, we can separate the real and imaginary parts of $z_{n}=x_{n}+i y_{n}$ and $w_{n}=u_{n}+i v_{n}$ and obtain
(i) $\quad x_{n}=\frac{1}{2}\left[(x+\alpha)^{n}+(x-\alpha)^{n}\right]$,
(ii) $y_{n}=\frac{y}{2 \alpha}\left[(x+\alpha)^{n}-(x-\alpha)^{n}\right]$,
(iii) $u_{n}=\frac{u}{2 \alpha}\left[(x+\alpha)^{n}-(x-\alpha)^{n}\right]$,
(iv) $\quad v_{n}=\frac{v}{2 \alpha}\left[(x+\alpha)^{n}-(x-\alpha)^{n}\right]$.

Set

$$
\begin{equation*}
\frac{\alpha_{n}}{\alpha}=\frac{y_{n}}{y}=\frac{u_{n}}{u}=\frac{v_{n}}{v} . \tag{6}
\end{equation*}
$$

From the above results, we see that instead of the four forms x_{n}, y_{n}, u_{n}, and v_{n}, there are essentially two forms to consider, namely,

$$
\begin{equation*}
x_{n}=\frac{1}{2}\left[(x+\alpha)^{n}+(x-\alpha)^{n}\right] \text { and } \alpha_{n}=\frac{1}{2}\left[(x+\alpha)^{n}-(x-\alpha)^{n}\right] \tag{7}
\end{equation*}
$$

We can generate x_{n} and α_{n} by the matrix

$$
A=A(x, \alpha)=\left[\begin{array}{ll}
x & \alpha \\
\alpha & x
\end{array}\right]
$$

Case (b). For α imaginary, let us write $\alpha=i \hat{\alpha}$. Following a similar procedure as for the real case, we find that

$$
\begin{equation*}
\frac{\hat{\alpha}_{n}}{\alpha}=\frac{\hat{y}_{n}}{y}=\frac{\hat{u}_{n}}{u}=\frac{\hat{v}_{n}}{v} \tag{8}
\end{equation*}
$$

where \hat{y}_{n} is obtained by replacing α by ia in $(5, i i)$ and similarly we define $\hat{x}_{n}, \hat{u}_{n}, \hat{v}_{n}$, and $\hat{\alpha}_{n}$. In relation (7), replacing α by $i \hat{\alpha}$, we find that

$$
\begin{equation*}
\hat{x}_{n}=\frac{1}{2}\left[(x+i \hat{\alpha})^{n}+(x-i \hat{\alpha})^{n}\right] \text { and } i \hat{\alpha}_{n}=\frac{1}{2}\left[(x+i \hat{\alpha})^{n}-(x-i \hat{\alpha})^{n}\right] \tag{9}
\end{equation*}
$$

From (7) and (9), we see that $x_{n} \pm \alpha_{n}=(x \pm \alpha)^{n}$ and $\hat{x}_{n} \pm i \hat{\alpha}_{n}=(x \pm i \hat{\alpha})^{n}$. Similarly, we can generate \hat{x}_{n} and $\hat{\alpha}_{n}$ by the matrix

$$
\hat{A}=\hat{A}(x, i \hat{\alpha})=\left[\begin{array}{cc}
x & i \hat{\alpha} \\
i \hat{\alpha} & x
\end{array}\right]
$$

3. PROPERTIES OF AND \hat{A}

Notice that the determinant of A as well as that of \hat{A} is $x^{2}-\alpha^{2} \neq 0$. Since

$$
A\left(x_{1}, \alpha_{1}\right) A\left(x_{2}, \alpha_{2}\right)=A\left(x_{2}, \alpha_{2}\right) A\left(x_{1}, \alpha_{1}\right)
$$

the set of matrices of the form A commute. Set

$$
A_{n}=A^{n}=\left[\begin{array}{ll}
x & \alpha \\
\alpha & x
\end{array}\right]^{n}=\left[\begin{array}{ll}
x_{n} & \alpha_{n} \\
\alpha_{n} & x_{n}
\end{array}\right]
$$

The Binet forms of A are given by (7). x_{n} and α_{n} satisfy the following recurrence relations:

$$
\begin{equation*}
x_{n+1}=x x_{n}+\alpha \alpha_{n} ; \quad \alpha_{n+1}=x \alpha_{n}+\alpha x_{n} \tag{10}
\end{equation*}
$$

From the recurrence relation (10), we derive the three-term recurrence relations satisfied by x_{n} and α_{n} :

$$
x_{n+1}=2 x x_{n}-\left(x^{2}-\alpha^{2}\right) x_{n-1} ; \quad \alpha_{n+1}=2 x \alpha_{n}-\left(x^{2}-\alpha^{2}\right) \alpha_{n-1}
$$

It is clear that, if α is imaginary, the three-term recurrence relation becomes

$$
\hat{x}_{n+1}=2 x \hat{x}_{n}-\left(x^{2}+\hat{\alpha}^{2}\right) \hat{x}_{n-1} ; \quad \hat{\alpha}_{n+1}=2 x \hat{\alpha}_{n}-\left(\hat{x}^{2}+\hat{\alpha}^{2}\right) \hat{\alpha}_{n-1}
$$

If $\xi_{n}=x_{n}+\alpha_{n}$ and $\eta_{n}=x_{n}-\alpha_{n}$, then $\xi^{n}=\xi_{n}$ and $\eta^{n}=\eta_{n}$.
From the above results we see that, for real α,

$$
e^{A}=e^{x}\left[\begin{array}{ll}
\cosh \alpha & \sinh \alpha \\
\sinh \alpha & \cosh \alpha
\end{array}\right]
$$

To show this, we write $2 x_{k}=\xi_{k}+\eta_{k}$ and $2 \alpha_{k}=\xi_{k}-\eta_{k}$. Since

$$
e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!} \text { and } A_{k}=\left[\begin{array}{cc}
x_{k} & \alpha_{k} \\
\alpha_{k} & x_{k}
\end{array}\right]
$$

we express x_{k} and α_{k} in terms of ξ and η and obtain the desired results. Notice that $\operatorname{det} e^{A}=$ $e^{2 x}$.

On the other hand, if α is imaginary, we replace α by $i \hat{\alpha}$ and follow a similar reasoning to show that

$$
e^{\hat{A}}=e^{x}\left[\begin{array}{cc}
\cos \hat{\alpha} & i \sin \hat{\alpha} \\
i \sin \hat{\alpha} & \cos \hat{\alpha}
\end{array}\right]
$$

In this case also, $\operatorname{det} e^{\hat{A}}=e^{2 x}$.
x_{n} and α_{n} can be extended to the negative integers also by defining $x_{-n}=x_{n} \beta^{-n}$ and $\alpha_{-n}=$ $-\alpha_{n} \beta^{-n}$. Then we will have

$$
A^{-n}=\left[\begin{array}{ll}
x & \alpha \\
\alpha & x
\end{array}\right]^{-n}=\left[\begin{array}{ll}
x_{-n} & \alpha_{-n} \\
\alpha_{-n} & x_{-n}
\end{array}\right]=A_{-n}
$$

here we have used the property

$$
\left(\left[\begin{array}{ll}
x & \alpha \\
\alpha & x
\end{array}\right]^{-1}\right)^{n}=\left(\frac{1}{\beta}\left[\begin{array}{cc}
x & -\alpha \\
-\alpha & x
\end{array}\right]\right)^{n}=\frac{1}{\beta^{n}}\left[\begin{array}{cc}
x_{n} & -\alpha_{n} \\
-\alpha_{n} & x_{n}
\end{array}\right]
$$

Notice that $A^{0}=I$, the identity matrix. A similar result holds for \hat{A}^{-n}.

4. RECURRENCE RELATIONS

From the Binet forms (7) and (9), the reader may verify the following.

Recurrence Relations:

$$
\begin{align*}
& x_{m+n}=x_{m} x_{n} \pm \alpha_{m} \alpha_{n} \tag{i}\\
& \alpha_{m+n}=x_{m} \alpha_{m}+\alpha_{m} x_{n}
\end{align*}
$$

(ii)
(iii)

$$
\beta^{2 n} x_{m-n}=x_{m} x_{n} \mp \alpha_{m} \alpha_{n}
$$

(iv)

$$
\beta^{2 n} \alpha_{m-n}=x_{n} \alpha_{m} \mp x_{m} \alpha_{n}
$$

(v) $\quad x_{m+n}+\beta^{2 n} x_{m-n}=2 x_{m} x_{n}$,
(vi)

$$
\begin{equation*}
\alpha_{m+n}+\beta^{2 n} \alpha_{m-n}=2 x_{n} \alpha_{m} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
x_{m+n}-\beta^{2 n} x_{m-n}= \pm 2 \alpha_{m} \alpha_{n} \tag{vii}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{m+n}-\beta^{2 n} \alpha_{m-n}=2 x_{m} \alpha_{n} \tag{viii}
\end{equation*}
$$

where the top sign is chosen if α is real; if α is imaginary, the bottom sign is chosen. Notice that (v) and (vi) are the generalizations of the three-term recurrence relations.

Let $\sum_{k=1}^{n}=\Sigma$. Again using the Binet forms, the reader may verify the following
(i) $\quad \sum x_{k}=\frac{\beta^{2} x_{n}-x_{n+1}+x-\beta^{2}}{\beta^{2}-2 x+1}$,

$$
\begin{equation*}
\Sigma \alpha_{k}=\frac{\beta^{2} \alpha_{n}-\alpha_{n+1}+\alpha}{\beta^{2}-2 x+1} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\sum x_{k}^{2}=\frac{\beta^{2} x_{2 n}-x_{2 n+2}+x_{2}-\beta^{2}}{2\left(\beta^{2}-2 x_{2}+1\right)}+\frac{\beta^{2}\left(\beta^{2 n}-2\right)}{2\left(\beta^{2}-1\right)}, \tag{iiii}
\end{equation*}
$$

$$
\begin{equation*}
\sum \alpha_{k}^{2}=\frac{\beta^{2} \alpha_{2 n}-\alpha_{2 n+2}+\alpha_{2}-\beta^{2}}{2\left(\beta^{2}-2 \alpha_{2}+1\right)}+\frac{\beta^{2}\left(\beta^{2 n}-1\right)^{2}}{2\left(\beta^{2}-1\right)} \tag{iv}
\end{equation*}
$$

(v) $2 \sum x_{k} x_{n+1-k}=n x_{n+1}+\frac{\beta^{2} \alpha_{n}}{\alpha}$,
(vi) $2 \sum \alpha_{k} \alpha_{n+1-k}=n x_{n+1}-\frac{\beta^{2} \alpha_{n}}{\alpha}$,

$$
\begin{equation*}
2 \sum x_{k} \alpha_{n-k+1}=2 \sum \alpha_{k} x_{n-k+1}=n \alpha_{n+1} . \tag{vii}
\end{equation*}
$$

(12, v, vi, vii) are convolution formulas. For α imaginary, a set of similar formulas holds.
From the Binet forms for (7) we see that, for $\alpha>0, x_{n}$ and α_{n} satisfy

The Limiting Properties:

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{\alpha_{n}}=1 \text { and } \lim _{n \rightarrow \infty} \frac{x_{n}}{x_{n-1}}=\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\alpha_{n-1}}=x+\alpha .
$$

The Divisors of $x_{2 n}$ and $\alpha_{2 n}$:
From (11 i) we see that, if α is imaginary, then $x+i \alpha$ and $x-i \alpha$ are factors of $x_{2 n}$ for real α.

From (11 ii) we see that x_{n} and α_{n} are factors of $\alpha_{2 n}$. The last statement can be generalized: If r divides s, then x_{r} and α_{r} are factors of α_{s}.

5. BRAHMAGUPTA POLYNOMIALS

With the help of the binomial expansions for $x_{n} \pm \alpha_{n}=(x \pm \alpha)^{n}$, we find that

$$
\begin{aligned}
& x_{n}=x^{n}+\binom{n}{2} x^{n-2} \alpha^{2}+\binom{n}{4} x^{n-4} \alpha^{4}+\cdots \\
& \alpha_{n}=n x^{n-1} \alpha+\binom{n}{3} x^{n-3} \alpha^{3}+\binom{n}{5} x^{n-5} \alpha^{5}+\cdots
\end{aligned}
$$

Similarly, expanding $\hat{x}_{n} \pm i \hat{\alpha}_{n}=(x \pm i \hat{\alpha})^{n}$, we obtain

$$
\begin{aligned}
& \hat{x}_{n}=x^{n}-\binom{n}{2} x^{n-2} \hat{\alpha}^{2}+\binom{n}{4} x^{n-4} \hat{\alpha}^{4}-+\cdots, \\
& \hat{\alpha}_{n}=n x^{n-1} \hat{\alpha}-\binom{n}{3} x^{n-3} \hat{\alpha}^{3}+\binom{n}{5} x^{n-5} \hat{\alpha}^{5}-+\cdots
\end{aligned}
$$

For α real, the first few polynomials of x_{n} and α_{n} are:

$$
\begin{gathered}
x_{0}=1, x_{1}=x, x_{2}=x^{2}+\alpha^{2}, x_{3}=x^{3}+3 x \alpha^{2}, x_{4}=x^{4}+6 x^{2} \alpha^{2}+y^{4}, \ldots ; \\
\alpha_{0}=0, \alpha_{1}=\alpha, \alpha_{2}=2 x \alpha, \alpha_{3}=3 x^{2} \alpha+\alpha^{3}, \alpha_{4}=4 x \alpha^{3}+4 x^{3} \alpha, \ldots
\end{gathered}
$$

Similarly, for α imaginary, we can write the first few polynomials of \hat{x}_{n} and $\hat{\alpha}_{n}$.

Special Cases of the Polynomials:

a. Brahmagupta sequences

If $x=2$ and $\alpha=\sqrt{3}$, the Binet forms reduce to

$$
2 x_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n} ; 2 \sqrt{3} u_{n}=(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}
$$

These sequences appear in obtaining Heron triangles with consecutive integer sides [1]; $2 x_{n}$ denotes the middle side and $2 u_{n}$ denotes the height of the triangle.
b. Lucas and Fibonacci sequences \mathbb{L}_{n} and F_{n}

In B_{J} in (1), set $x=y=u=\frac{1}{2}, v=0$, and $t=6$. Then we get $\beta^{2}=\alpha^{2}-x^{2}=1, \alpha=\frac{\sqrt{5}}{2}$, and

$$
2 x_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}=L_{n}, \quad 2 \sqrt{5} u_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}=F_{n}
$$

and, in this case, we have

$$
2 B_{J}\left(L_{n}+i F_{n}, F_{n}\right)=\left[\begin{array}{cc}
L_{n}+i F_{n} & F_{n} \\
6 F_{n} & L_{n}-i F_{n}
\end{array}\right]
$$

c. Pell sequences

In B_{J}, if we set $x=y=u=1, v=0$, and $t=3$, we get $\beta=-1, \alpha=\sqrt{2}$, and x_{n} and u_{n} reduce to Pell sequences given by:

$$
2 x_{n}=(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}, 2 \sqrt{2} u_{n}=(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n} .
$$

Also, B_{n} becomes

$$
B_{J}\left(x_{n}+i y_{n}, y_{n}\right)=\left[\begin{array}{cc}
x_{n}+i y_{n} & y_{n} \\
3 y_{n} & x_{n}-i y_{n}
\end{array}\right]
$$

d. Brahmagupta polynomials

If $v=0=y$, then x_{n} and y_{n} reduce to the Brahmagupta polynomials in the real case:

$$
x_{n}=\frac{1}{2}\left[(x+y \sqrt{t})^{n}+(x-y \sqrt{t})^{n}\right], y_{n}=\frac{1}{2 \sqrt{t}}\left[(x+y \sqrt{t})^{n}-(x-y \sqrt{t})^{n}\right]
$$

The properties of these polynomials have been studied in [7].

e. The Chebyshev polynomials

Set $\beta=1, \alpha=\sqrt{x^{2}-1}$, and $u=1$, then

$$
\begin{aligned}
& x_{n}=\frac{1}{2}\left[\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}\right]=T_{n}(x), \\
& u_{n}=\frac{u}{2 \sqrt{x^{2}-1}}\left[\left(x+\sqrt{x^{2}-1}\right)^{n}-\left(x-\sqrt{x^{2}-1}\right)^{n}\right]=U_{n}(x) .
\end{aligned}
$$

The Chebyshev polynomials occur in many branches of mathematics like Interpolation Theory, Orthogonal Polynomials, Approximation Theory, Numerical Analysis, etc. [6].

f. Polynomials similar to Chebyshev polynomials

If we set $\beta=-1$ and $\alpha=\sqrt{x^{2}+1}$, we obtain polynomials similar to the Chebyshev polynomials:

$$
\begin{aligned}
x_{n} & =\frac{1}{2}\left[\left(x+\sqrt{x^{2}+1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}\right]=V_{n}(x), \\
\frac{\alpha_{n}}{a} & =\frac{1}{2 \sqrt{x^{2}+1}}\left[\left(x+\sqrt{x^{2}+1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}\right]=W_{n}(x) .
\end{aligned}
$$

g. Morgan-Voyce polynomials

If x is replaced by $(x+2) / 2$ and α by $\sqrt{x^{2}+4 x} / 2$ in the matrix A, then the $\operatorname{det} A=1$. If, in addition, $u=1$, then

$$
\begin{gathered}
2 x_{n}=\left(\frac{x+2+\sqrt{x^{2}+4 x}}{2}\right)^{n}+\left(\frac{x+2-\sqrt{x^{2}+4 x}}{2}\right)^{n}, \\
2 \frac{u_{n}}{u} \sqrt{x^{2}+4 x}=\left(\frac{x+2+\sqrt{x^{2}+4 x}}{2}\right)^{n}-\left(\frac{x+2-\sqrt{x^{2}+4 x}}{2}\right)^{n}=B_{n}
\end{gathered}
$$

where B_{n} is the Morgan-Voyce polynomial [4], [9]. The three-term recurrence relation for these polynomials are $B_{n}=(2+x) B_{n-1}-B_{n-2}$. Morgan-Voyce polynomials are used in the analysis of ladder networks and electric line theory [4], [9].

h. Catalan rumbers

If $x=1$ and $\alpha^{2}=1+4 u$ in (5), we find that

$$
\begin{aligned}
& 2 x_{n}=(1+\sqrt{1+4 u})^{n}+(1-\sqrt{1+4 u})^{n}, \\
& 2 u_{n}=\frac{1}{\sqrt{1+4 u}}\left[(1+\sqrt{1+4 u})^{n}-(1-\sqrt{1+4 u})^{n}\right] .
\end{aligned}
$$

Both x_{n} and u_{n} appear in the study of Catalan numbers [2].
Let α be real. Then we find, from (7),

$$
\frac{\partial x_{n}}{\partial x}=\frac{\partial \alpha_{n}}{\partial \alpha}=n x_{n-1}, \quad \frac{\partial x_{n}}{\partial \alpha}=\frac{\partial \alpha_{n}}{\partial x}=n \alpha_{n-1} .
$$

From the above relations, we infer that x_{n} and α_{n} are the polynomial solutions of the wave equation:

$$
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial a^{2}}\right) X=0
$$

On the other hand, let α be imaginary. Put $\alpha=i \hat{\alpha}$. Then we find, from (9),

$$
\begin{align*}
& \frac{\partial \hat{x}_{n}}{\partial x}=\frac{\partial \hat{\alpha}_{n}}{\partial \hat{x}}=n \hat{x}_{n-1}, \\
& \frac{\partial \hat{x}_{n}}{\partial \hat{\alpha}}=\frac{-\partial \hat{\alpha}_{n}}{\partial x}=-n \hat{\alpha}_{n-1} . \tag{13}
\end{align*}
$$

From these relations, we infer that \hat{x}_{n} and $\hat{\alpha}_{n}$ are the polynomial solutions of the Laplace equation:

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial \hat{\alpha}^{2}}\right) X=0
$$

6. GENERATING FUNCTIONS

We shall now show that the generating functions for z_{n} and w_{n} are:

$$
\begin{equation*}
\text { (i) } \sum_{n=0}^{\infty} z_{n} s^{n}=\frac{1-\bar{z} s}{1-2 x s+\beta^{2} s^{2}} \text {; (ii) } \sum_{n=0}^{\infty} w_{n} s^{n}=\frac{w s}{1-2 x s+\beta^{2} s^{2}} \text {. } \tag{14}
\end{equation*}
$$

We shall assume that s is real; then we can separate the real and imaginary parts on both sides to obtain the following generating functions for x_{n} and α_{n} :

$$
\begin{equation*}
\text { (i) } \sum_{n=0}^{\infty} x_{n} s^{n}=\frac{1-x s}{1-2 x s+\beta s^{2}} ; \quad \text { (ii) } \sum_{n=0}^{\infty} \alpha_{n} s^{n}=\frac{\alpha s}{1-2 x s+\beta s^{2}} \text {. } \tag{15}
\end{equation*}
$$

To show (13), we use the standard result: For $\left\|B_{J} s\right\|<1$, we have

$$
\sum_{n=0}^{\infty}\left(B_{J} s\right)^{n}=\left(I-B_{J} s\right)^{-1} .
$$

Now,

$$
\begin{gathered}
I-B_{J} s=\left[\begin{array}{cc}
1-z s & -w s \\
-t \bar{w} s & 1-\bar{z} s
\end{array}\right] \\
\operatorname{det}\left(I-B_{J} s\right)=1-(z+\bar{z}) s+\left(|z|^{2}-t|w|^{2}\right) s^{2}=1-2 x s+\beta s^{2},
\end{gathered}
$$

and

$$
\left(1-2 x s+\beta s^{2}\right) \sum_{n=0}^{\infty}\left(B_{j} s\right)^{n}=\left[\begin{array}{cc}
1-\bar{z} s & w s \\
t \bar{w} s & 1-z s
\end{array}\right] .
$$

The claim (14) follows from the above result.
It is known that, if $F(s)$ and $L(s)$ are generating functions of F_{n} and L_{n}, respectively, then $F(s)=e^{L(s)}$ [3]. This result can be generalized to the generating functions of x_{n} and α_{n}. Let

$$
X(s)=\sum_{k=1}^{\infty} x_{k} s^{k}, \quad A(s)=\sum_{k=1}^{\infty} \frac{\alpha_{k}}{\alpha} s^{k-1}, \quad \chi(s)=\sum_{k=1}^{\infty} x_{k} \frac{s^{k}}{k} .
$$

Notice that $s \chi^{\prime}(s)=X(s)$. Now, we state this result as the following theorem.
Theorem: $e^{2 \chi(s)}=A(s)$.
Proof: Set $\xi=x+\alpha$ and $\eta=x-\alpha$. Then

$$
\xi+\eta=2 x, \quad \xi \eta=x^{2}-\alpha^{2}=\beta, \quad 2 x_{n}=\left(\xi^{n}+\eta^{n}\right), 2 \alpha_{n}=\left(\xi^{n}-\eta^{n}\right) .
$$

Now consider

$$
\begin{aligned}
\chi(s) & =\sum_{k=1}^{\infty} x_{k} \frac{s^{k}}{k} \\
& =\frac{1}{2}\left[\xi s+\xi^{2} \frac{s^{2}}{2}+\cdots+\xi^{n} \frac{s^{n}}{n}+\cdots\right]+\frac{1}{2}\left[\eta s+\eta^{2} \frac{s^{2}}{2}+\cdots+\eta^{n} \frac{s^{n}}{n}+\cdots\right] \\
& =-\frac{1}{2}[\ln (1-\xi s)+\ln (1-\eta s)]=-\frac{1}{2} \ln \left(1-2 x s+\beta s^{2}\right),
\end{aligned}
$$

which implies $2 \chi(s)=\ln A(s)$ or $e^{2 \chi(s)}=A(s)$.

All the infinite series summation properties involving reciprocals of x_{n} and y_{n} developed in [7] can be extended to x_{n} and α_{n} (or $\hat{\alpha}_{n}$). Since the arithmetic goes through without any changes, we do not list them here.

ACKNOWLEDGMENT

The authors thank the anonymous referee for valuable suggestions that led to the improvement of the presentation.

REFERENCES

1. R. A. Beauregard \& E. R. Suryanarayan. "Brahmagupta Triangles." College Math. J. 29 (1998):13.
2. R. L. Graham, D. E. Knuth, \& O. Patashnik. Concrete Mathematics, pp. 204, 344. New York: Addison-Wesley, 1988.
3. R. Honsberger. Mathematical Gems, p. 102. The MAA Publication, 1985.
4. A. F. Horadam. "New Aspects of Morgan-Voyce Polynomials." Applications of Fibonacci Numbers 7:161. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996.
5. J. M. Mahon \& A. F. Horadam. "Infinite Series Summation Involving Reciprocals of Pell Polynomials. Fibonacci Numbers and Their Applications. Dordrecht: Reidel, 1986.
6. T. J. Rivlin. Chebyshev Polynomials. New York: Wiley, 1974.
7. E. R. Suryanarayan. "Brahmagupta Polynomials." The Fibonacci Quarterly 34.1 (1996):30.
8. E. R. Suryanarayan. "Brahmagupta Polynomials in Two Complex Variables." The Fibonacci Quarterly 36.1 (1998):34.
9. M. N. S. Swamy. "Further Properties of Morgan-Voyce Polynomials." The Fibonacci Quarterly 6.2 (1968): 167.
AMS Classification Numbers: 01A32, 11B37, 11B39

