A NOTE ON THE DIVISIBILITY OF THE GENERALIZED LUCAS SEQUENCES

Pingzhi Yuan
Dept. of Math. and Mechanics, Central South University, Hunan Changsha, 410075, P.R. China
e-mail: yuanpz@csru.edu.cn

(Submitted January 2000-Final Revision March 2001)
In this paper we discuss the divisibility theory of the generalized Lucas sequences U_{n} and V_{n} which were defined by $\mathbb{D} . \mathrm{H}$. Lehmer [1] as follows:

$$
\begin{gather*}
U_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta), \tag{1}\\
V_{n}=\alpha^{n}+\beta^{n}, \quad V_{0}=2, \tag{2}
\end{gather*}
$$

where $\alpha=(\sqrt{R}+\sqrt{\Delta}) / 2, \beta=(\sqrt{R}-\sqrt{\Delta}) / 2$ are the roots of $x^{2}-R^{1 / 2} x+Q=0, R$ and Q are coprime integers, $R>0$, the discriminant $\Delta=R-4 Q$, and $n \geq 0$ is an integer.

The main theorem of this paper is a complement of that of Lehmer [1], and this result is essential in the applications to exponential Diophantine equations, as we will show in another paper. Moreover, the main results of McDaniel [2] will be extended, and this can be deduced easily from the main theorem of this paper.

It is easy to see that $U_{2 k+1}$ and $V_{2 k}$ are rational integers and that $U_{2 k}$ and $V_{2 k+1}$ are integral multiples of $R^{1 / 2}$. Let Z be the set of integers, $R^{1 / 2} Z=\left\{a R^{1 / 2} \mid a \in Z\right\}$. If we define the divisibility of the elements of the set $Z \cup R^{1 / 2} Z$ as follows: For any $A, B \in Z \cup R^{1 / 2} Z, A \mid B \Leftrightarrow B=A \cdot C$, and $C \in Z \cup R^{1 / 2} Z$, then most of the propositions below are well known (see, e.g., [3], Chapter 2). Proposition 1(e) was recently proved in [2]; however, as we will show, this proposition is not true for the most general definition of the generalized Lucas sequences as defined above.

Proposition 1: Let m and n be arbitrary integers:
(a) $V_{n}^{2}-\Delta U_{n}^{2}=4 Q^{n}$.
(b) If $m \mid n$, then $U_{m} \mid U_{n}$; if n / m is odd, then $V_{m} \mid V_{n}$.
(c) $U_{2 n}=U_{n} V_{n} ; V_{2 n}=V_{n}^{2}-2 Q^{n}$.
(d) If $d=\operatorname{gcd}(m, n)$, then $\operatorname{gcd}\left(U_{m}, U_{n}\right)=U_{d}$.
(e) If $d=\operatorname{gcd}(m, n)$, then $\operatorname{gcd}\left(V_{m}, V_{n}\right)=V_{d}$ if m / d and n / d are odd, and 1 , or 2, otherwise.
(f) If p is a prime and ω is the minimal positive integer with $p \mid U_{\omega}$ ([1] defined ω to be the appearance of p in U_{n}), then for any positive integers k and λ, we have $p^{\dot{\lambda}+1} \mid U_{k \omega p^{\lambda}}$.
(g) If an odd prime p, with $p \nmid R \Delta, \varepsilon=(\Delta R / p)$ is the Kronecker symbol, then $U_{p-\varepsilon} \equiv 0(\bmod p)$.

For any prime $p, A \in Z \cup R^{1 / 2} Z$, ord ${ }_{p} A$ is defined to be the rational number s with $2 s$ being an integer and $p^{2 s} \| A^{2}$, denoted by $\operatorname{ord}_{p} A=s$. We now have the following theorem.

Theorem 1: If p, q are odd primes and s, t are positive integers with $p^{s}\left\|\Delta, q^{t}\right\| R$, then:
(al) If $p^{s}>3$, then $\operatorname{ord}_{p} U_{m}=\operatorname{ord}_{p} m$, $\operatorname{ord}_{p} V_{m}=0$.
(b) For $q^{t}>3$: if m is odd, then $\operatorname{ord}_{q} U_{m}=0, \operatorname{ord}_{q} V_{m} / V_{1}=\operatorname{ord}_{q} m$; if m is even, then $\operatorname{ord}_{q} V_{m}=0$, $\operatorname{ord}_{q} U_{m}=\operatorname{ord}_{q} m+t / 2$.
(c) Suppose $p^{s}=3$ and λ is an integer with $3^{\lambda} \| 3 R+\Delta$, then $\operatorname{ord}_{3} V_{m}=0, \operatorname{ord}_{3} U_{3 m}=\lambda+\operatorname{ord}_{3} m$; if $3 \nmid m$, then $\operatorname{ord}_{3} U_{m}=0$.
(d) Suppose now that $q^{t}=3$ and μ is an integer with $3^{\mu} \| 3 \Delta+R$. If m is odd, then $\operatorname{ord}_{3} U_{m}=0$, $\operatorname{ord}_{3} V_{3 m} / V_{1}=\operatorname{ord}_{3} m+\mu$, and $\operatorname{ord}_{3} V_{m} / V_{1}=0$ with $3 \mid m$; if m is even, then $\operatorname{ord}_{3} V_{m}=0, \operatorname{ord}_{3} U_{3 m}=$ $\operatorname{ord}_{3} m+\mu+1 / 2$, and $\operatorname{ord}_{3} U_{m}=1 / 2$ with $3 \nmid m$.
(e) Let $2 \| R$: if $2 \nmid m$, then $\operatorname{ord}_{2} U_{m}=\operatorname{ord}_{2} V_{m} / V_{1}=0(2 \nmid m)$; if $2 \| m$, then $\operatorname{ord}_{2} V_{m}=\operatorname{ord}_{2} V_{2}$ and $\operatorname{ord}_{2} U_{m}=1 / 2$; if $4 \mid m$, then $\operatorname{ord}_{2} V_{m}=1 / 2$ and $\operatorname{ord}_{2} U_{m}=\operatorname{ord}_{2} m-1 / 2$.
(f) Let $4 \mid R$: if m is odd, then $\operatorname{ord}_{2} U_{m}=0$ and $\operatorname{ord}_{2} V_{m}=\operatorname{ord}_{2} V_{1}$; if m is even, then $\operatorname{ord}_{2} U_{m}=$ $\operatorname{ord}_{2} m+\frac{1}{2} \operatorname{ord}_{2} R-1$ and $\operatorname{ord}_{2} V_{m}=1$.

Proof: We divide the proof of the theorem into three parts:
(I) If m is odd, subtracting the $m^{\text {th }}$ power of $2 \beta=R^{1 / 2}-\Delta^{1 / 2}$ from the $m^{\text {th }}$ power of $2 \alpha=$ $R^{1 / 2}+\Delta^{1 / 2}$, we get

$$
\begin{equation*}
2^{m-1} U_{m}=\sum_{i=0}^{(m-1) / 2}\binom{m}{2 i+1} \Delta^{i} R^{(m-2 i-1) / 2}=m R^{(m-1) / 2}+\sum_{i=1}^{(m-1) / 2} \frac{m}{2 i+1}\binom{m-1}{2 i} \Delta^{i} R^{(m-2 i-1) / 2} \tag{3}
\end{equation*}
$$

Let u be a positive integer with $p^{u} \| m, u>0$, and notice that

$$
\begin{equation*}
\operatorname{ord}_{p} \frac{m}{2 i+1} \Delta^{i}=s i+u-\operatorname{ord}_{p}(2 i+1) \geq s i+u-\log _{p}(2 i+1) \tag{4}
\end{equation*}
$$

If $p^{s} \neq 3$, then $p^{s i}>2 i+1$ for any $i \geq 1$, so from (4) we know that every term of the summation of (3) is a multiple of p^{u+1}; therefore, $\operatorname{ord}_{p} U_{m}=\operatorname{ord}_{p} m=u$. This result together with Proposition 1 (a) and $(R, Q)=1$ implies that $\operatorname{ord}_{p} V_{m}=0$, i.e., Theorem 1 (a) holds for odd m.

If $p^{s}=3$, then $4 U_{3}=3 R+\Delta$, so from (3) we conclude that $3 \mid U_{m}$ when $3 \mid m$. Subtracting the $m^{\text {th }}$ power of $2 \beta^{3}=V_{3}-\Delta^{1 / 2} U_{3}$ from the $m^{\text {th }}$ power of $2 \alpha^{3}=V_{3}+\Delta^{1 / 2} U_{3}$, we get

$$
\begin{equation*}
2^{m-1} U_{3 m} / U_{3}=\sum_{i=0}^{(m-1) / 2}\binom{m}{2 i+1}\left(\Delta U_{3}^{2}\right)^{i} V_{3}^{m-2 i-1} \tag{5}
\end{equation*}
$$

Similar to the above, we have $\operatorname{ord}_{3} U_{3 m} / U_{3}=\operatorname{ord}_{3} m$ and $\operatorname{ord}_{3} V_{m}=0$, i.e., Theorem 1(c) holds for odd m.

If m is odd, from [1] and Proposition 1(a) we have

$$
\begin{gather*}
2^{m-1} V_{m} / V_{1}=\sum_{i=0}^{(m-1) / 2}\binom{m}{2 i+1} R^{i} \Delta^{(m-2 i-1) / 2} \tag{6}\\
R\left(V_{m} / V_{1}\right)^{2}-\Delta U^{2}=4 Q^{m} \tag{7}
\end{gather*}
$$

Symmetrically, from (6) and (7) we conclude that Theorem 1(b) and (d) hold for odd m.
(II) Now suppose that m is even, then $U_{2}^{2}=R$, so $R \mid U_{m}^{2}$ for any even m; therefore, $\operatorname{ord}_{p} V_{m}=$ $0=\operatorname{ord}_{q} V_{m}$ by Proposition 1(a). Let $m=2^{a} m_{1}, 2 \nmid m_{1}, a \geq 1$, be an integer, and notice that by Proposition 1(c) we have

$$
\begin{equation*}
U_{2^{a} m_{1}}=U_{m_{1}} V_{m_{1}} V_{2 m_{1}} \ldots V_{2^{a-1} m_{1}} \tag{8}
\end{equation*}
$$

Thus, $\operatorname{ord}_{p} U_{m}=\operatorname{ord}_{p} U_{m_{1}}$ and $\operatorname{ord}_{q} U_{m}=\operatorname{ord}_{q} V_{m_{1}}$, and from the above result of the odd number m_{1} we know that Theorem 1(a)-(d) hold for even m.
(III) For Theorem $1(e)$, it is well-known that $\left\{\dot{U}_{m}\right\}$ satisfies the following recurrence relation,

$$
\begin{equation*}
U_{m+2}=R^{1 / 2} U_{m+1}-Q U_{m}, \quad U_{0}=0, U_{1}=1 \tag{9}
\end{equation*}
$$

Since $(R, Q)=1$ and $2 \| R$, we have $Q \equiv 1(\bmod 2)$ and $\Delta=R-4 Q \equiv 2(\bmod 4)$. Taking modulo 2 for the sequence (9), we obtain a sequence with a period 4 ,

$$
\begin{equation*}
U_{m} \equiv 0,1, R^{1 / 2}, 1,0,1, R^{1 / 2}, 1, \ldots \tag{10}
\end{equation*}
$$

If $2 \nmid m$, then (10) implies that $\operatorname{ord}_{2} U_{m}=0$, and from $2 \| \Delta$ and $V_{m}^{2}-\Delta U_{m}^{2}=4 Q^{m}$ we have $\operatorname{ord}_{2} V_{m}=1 / 2$; if $4 \mid m$, then (10) implies that $\operatorname{ord}_{2} U_{m} \geq 1$, and from $2 \| \Delta$ and $V_{m}^{2}-\Delta U_{m}^{2}=4 Q^{m}$ we have $\operatorname{ord}_{2} V_{m}=1$. Then from (8) we have

$$
\operatorname{ord}_{2} U_{m}=\operatorname{ord}_{2} U_{m_{1}}+\operatorname{ord}_{2} V_{m_{1}}+\sum_{i=1}^{a-1} \operatorname{ord}_{2} V_{2^{\prime} m_{1}}=0+\frac{1}{2}+(a-1)=\operatorname{ord}_{2} m-\frac{1}{2} .
$$

If $2 \| m$, say, $m=2 m_{1}, 2 \nmid m_{1}$, then $V_{2} \equiv R-2 Q \equiv 0(\bmod 4)$, and adding the $m^{\text {th }}$ powers of $2 \alpha^{2}=V_{2}+(R \Delta)^{1 / 2}$ and $2 \beta^{2}=V_{2}-(R \Delta)^{1 / 2}$, we get

$$
\begin{equation*}
2^{m_{1}-1} V_{2 m_{1}} / V_{2}=\sum_{i=0}^{\left(m_{1}-1\right) / 2}\binom{m_{1}}{2 i+1} V_{2}^{2 i}(\Delta R)^{\left(m_{1}-2 i-1\right) / 2} \tag{11}
\end{equation*}
$$

and $\operatorname{ord}_{2}\left(V_{2}^{2 i}(\Delta R)^{\left(m_{1}-2 i-1\right) / 2}\right) \geq m_{1}-1$, and the equality holds if and only if $i=0$. Thus, by taking modulo $2^{m_{1}}$ for (11), we get $\operatorname{ord}_{2} V_{2 m_{1}} / V_{2}=0$, and from (8) we have $\operatorname{ord}_{2} V_{2 m_{1}}=\operatorname{ord}_{2} V_{m_{1}}=1 / 2$. Summing the above result we complete the proof of Theorem $1(e)$.

For Theorem $1(\mathrm{f})$, if $4 \mid R$, put $R=4 R_{1}$, then $\Delta=R-4 Q=4 \Delta_{1}$ and Q is odd, so $2 \mid R_{1} \Delta_{1}$, and if m is odd,

$$
U_{m}=\sum_{i=0}^{(m-1) / 2}\binom{m}{2 i+1} \Delta_{1}^{i} R_{1}^{(m-2 i-1) / 2}=m R_{1}^{(m-1) / 2}+\sum_{i=1}^{(m-3) / 2} \frac{m}{2 i+1}\binom{m-1}{2 i} \Delta_{1}^{i} R_{1}^{(m-2 i-1) / 2}+\Delta_{1}^{(m-1) / 2}
$$

Therefore, $\operatorname{ord}_{2} U_{m}=0$. Similarly, $\operatorname{ord}_{2} V_{m}=\operatorname{ord}_{2} V_{1}$. If m is even, then from (8) we have $2 \mid U_{m}$, and $V_{m}^{2} / 4-\Delta_{1} U_{m}^{2}=Q^{m}$ implies that $V_{m} / 2$ is odd, i.e., ord $V_{m}=1$. From the results for odd m and again using (8) we have $\operatorname{ord}_{2} U_{m}=\operatorname{ord}_{2} m-1+\operatorname{ord}_{2} V_{1}=\operatorname{ord}_{2} m+\frac{1}{2} \operatorname{ord} 2 R-1$. This completes the proof of Theorem 1.
Remarll 1: Put $\alpha_{1}=\alpha^{m}, \beta_{1}=\beta^{m}, R_{1}=\alpha_{1}+\beta_{1}, \Delta_{1}=\left(\alpha_{1}-\beta_{1}\right)^{2}, U_{n}^{(1)}=\left(\alpha_{1}^{n}-\beta_{1}^{n}\right) /\left(\alpha_{1}-\beta_{1}\right)$, and $V_{n}^{(1)}=\alpha_{1}^{n}+\beta_{1}^{n}$. Then we have $U_{n}^{(1)}=U_{m n} / U_{m}, V_{n}^{(1)}=V_{m n}$, and $\Delta_{1}=\Delta U_{m}^{2}$. Applying Theorem 1 to $U_{n}^{(1)}, V_{n}^{(1)}$, we obtain the largest power of q in U_{n} or V_{n} if $q \mid U_{m}$ or $q \mid V_{m}$.

Now let us remark that if $2 \nmid R$ then $2 \nmid \Delta$, since U_{n} and V_{n} satisfy recurrence relation (9) and the following one, respectively,

$$
\begin{equation*}
V_{n+2}=R^{1 / 2} V_{m+1}-Q V_{m}, \quad V_{0}=2, V_{1}=R^{1 / 2} . \tag{12}
\end{equation*}
$$

Taking modulo 2, we have $2 \nmid U_{m} V_{m}$ when $m>0$, and if $2 \mid Q$ then $2 \mid U_{m}$ and $2 \mid V_{m}$ if and only if $3 \mid m$ and $3 \mid n$, respectively. Hence, from Remark 1 and the above discussion, we need only consider the case of $2 \mid R$ when we study the behavior of the 2-part of U_{m} and V_{n}.

We will now prove the following corollary which is an extension of Proposition 1(e) above.

Corollary: If $d=\operatorname{gcd}(m, n)$, then $\operatorname{gcd}\left(V_{m}, V_{n}\right)=V_{d}$ if m / d and n / d are odd, and $1, \sqrt{2}$, or 2 , otherwise.

Proof: For $d=\operatorname{gcd}(m, n)$, we may suppose without loss of generality that $k m=d+\ell n$, where k and ℓ are positive integers. If k is odd, notice that $V_{m} \mid V_{k m}$ and $\left.\left(U_{m}, V_{m}\right)\right|_{0} ^{2}$ for any $m \geq 0$ and

$$
\begin{equation*}
2 V_{k m}=\left(\alpha^{d}-\beta^{d}\right)\left(\alpha^{\ell n}-\beta^{\ell n}\right)+V_{d} V_{\ell n} \tag{13}
\end{equation*}
$$

and $V_{n} \mid V_{\ell n}$ if ℓ is odd, $V_{n} \mid U_{\ell n}$ if ℓ is even. Thus,

$$
\begin{equation*}
\left(V_{m}, V_{n}\right)\left|\left(\left(\alpha^{d}-\beta^{d}\right)\left(\alpha^{\ell n}-\beta^{\ell n}\right), V_{d} V_{\ell n}\right)\right| 8 V_{d} . \tag{14}
\end{equation*}
$$

If k is even, then ℓn is an odd multiple of d, and we see that

$$
\begin{equation*}
2\left(\alpha^{k m}-\beta^{k m}\right) /\left(\alpha^{d}-\beta^{d}\right)=V_{d}\left(\alpha^{\ell n}-\beta^{\ell n}\right) /\left(\alpha^{d}-\beta^{d}\right)+V_{\ell n}, \tag{15}
\end{equation*}
$$

$V_{m} \mid 2\left(\alpha^{k m}-\beta^{k m}\right) /\left(\alpha^{d}-\beta^{d}\right)$, and $V_{n} \mid V_{\ell n}$, so

$$
\begin{equation*}
\left(V_{m}, V_{n}\right) \mid 2 V_{d} \tag{16}
\end{equation*}
$$

Furthermore, for any prime divisor p of $2 V_{d}$ from Remark 1, applying Theorem 1 to V_{m} and V_{n} we obtain the desired results.

Remark 2: Lehmer proved the following theorem.
Theorem A (Lehmer [1], Theorem 1.6): If 2α is a positive integer such that q^{α} is the highest power of a prime q dividing U_{m}, and if k is any integer not divisible by q, then for any integer λ, $U_{k m q^{\lambda}}$ is divisible by $q^{\alpha+\lambda}$, and if $q^{\alpha} \neq 2$, this is the highest power of q dividing $U_{k m q^{\lambda}}$.

Comparing Theorem A with Theorem 1 of this paper, we can easily find out that: If $q^{\alpha}=3$, $m=2,3 \| R$, and $9 \mid 3 \Delta+R$, and we put $\lambda=1$ in Theorem A, then the last conclusion of Theorem A is incorrect. This is indispensable in its applications to exponential Diophantine equations, as will be shown in a future paper.
Example: Let $R=2$ and $\Delta=-1$, then we have

$$
V_{0}=2, V_{1}=\sqrt{2}, V_{2}=4, V_{3}=5 \sqrt{2}, V_{4}=14, V_{5}=19 \sqrt{2}, \ldots,
$$

which means that $\operatorname{gcd}\left(V_{4}, V_{5}\right)=\sqrt{2}$.

ACKNOWLEDGMENT

The author is very grateful to the anonymous referee from valuable suggestions.

REFERENCES

1. D. H. Lehmer. "An Extended Theory of Lucas Functions." Ann. Math. 31 (1930):419-48.
2. W. L. McDaniel. "The g.c.d. in Lucas Sequences and Lehmer Number Sequences." The Fibonacci Quarterly 29.1 (1991):24-29.
3. P. Ribenboim. The Book of Prime Number Records. New York: Springer-Verlag, 1989.

AMS Classification Numbers: 11B37, 11A07

