ON FAREY SERIES AND DEDEKIND SUMS

Wenpeng Zhang and Yuan Yi

Research Center for Basic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
(Submitted March 2000-Final Revision September 2001)

1. INTRODUCTION

As usual, the Farey series \mathscr{F}_{n} of order n is the ascending series of irreducible fractions between 0 and 1 whose denominators do not exceed n. Thus, h / k belongs to $\mathscr{F}_{n}=\left\{\rho_{0}, \rho_{1}, \rho_{2}\right.$, $\left.\ldots, \rho_{m}\right\}$, where $m=\phi(1)+\phi(2)+\cdots+\phi(n)$, if $0 \leq h \leq k \leq n,(h, k)=1$; the numbers 0 and 1 are included in the forms $\frac{0}{1}$ and $\frac{1}{1}$. For example, \mathscr{F}_{5} is:

$$
\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1} .
$$

The many characteristic properties of \mathscr{F}_{n} can be found in references [1] and [3]. In this paper, we shall study the distribution problems of Dedekind sums for Farey fractions, and obtain some interesting identities. For convenience, we first introduce the definition of the Dedekind sum $S(h, q)$. For a positive integer q and an arbitrary integer h, we define

$$
S(h, q)=\sum_{a=1}^{q}\left(\left(\frac{a}{q}\right)\right)\left(\left(\frac{a h}{q}\right)\right),
$$

where

$$
((x))= \begin{cases}x-[x]-\frac{1}{2} & \text { if } x \text { is not an integer; } \\ 0 & \text { if } x \text { is an integer. }\end{cases}
$$

The various arithmetical properties of $S(h, k)$ were investigated by many authors. Perhaps the most famous property of $S(h, k)$ is the reciprocity formula (see [2], [4], and [6]):

$$
\begin{equation*}
S(h, q)+S(q, h)=\frac{h^{2}+q^{2}+1}{12 h q}-\frac{1}{4} \tag{1}
\end{equation*}
$$

for all $(h, q)=1, h>0, q>0$. Regarding Dedekind sums and uniform distribution, G. Myerson [5], Z. Zheng [10], and I. Vardi [7] have also obtained some meaningful results. But for any fraction a_{i} / b_{i} belonging to the Farey series \mathscr{F}_{q}, the authors are not aware of the study of the properties of $S\left(a_{i}, b_{i}\right)$. The main purpose of this paper is to study the properties of $S\left(a_{i}, b_{i}\right)$ for a_{i} / b_{i} belonging to the Farey series \mathscr{F}_{q}, and give an interesting identity. That is, we shall prove the following two main theorems.

Theorem 1: Let $0<a \leq q$ be a positive integer with $(a, q)=1$. Then we have the identity

$$
S(a, q)=\frac{1}{12} \sum_{k=1}^{n}\left(\frac{b_{k-1}}{b_{k}}+\frac{b_{k}}{b_{k-1}}\right)+\frac{a}{12 q}-\frac{n}{4},
$$

where n is the position of $\rho_{n}=a / q=a_{n} / b_{n}$ in the Farey series $\mathscr{F}_{q}, b_{i}(0 \leq i \leq n)$ is the denominator of $\rho_{i}=\frac{a_{t}}{b_{i}}$ with $\frac{a_{i}}{b_{i}} \leq \rho_{n}=\frac{a}{q}$ in the Farey series \mathscr{F}_{q}.

Theorem 2: Let p be a prime and let a be a positive integer with $a<p$, then we have the identity

$$
\sum_{\chi(-1)=-1} \chi(a)|L(1, \chi)|^{2}=\frac{\pi^{2}(p-1)}{12 p}\left[\sum_{k=1}^{n}\left(\frac{b_{k-1}}{b_{k}}+\frac{b_{k}}{b_{k-1}}\right)+\frac{a}{p}-3 n\right],
$$

where χ is the Dirichlet character $\bmod p$ and $L(1, \chi)$ is the Dirichlet L-function corresponding character χ.

For $a=2$ and 3, from Theorem 2 and the properties of character, we immediately obtain the following two corollaries.
Corollary 1: Let p be a prime and χ be the Dirichlet odd character $\bmod p$. Then we have

$$
\sum_{\chi(-1)=-1} \chi(2)|L(1, \chi)|^{2}=\frac{\pi^{2}(p-1)^{2}(p-5)}{24 p^{2}}
$$

Corollary 2: Let p be a prime and χ be the Dirichlet character modulo p. Then

$$
\sum_{\chi(-1)=-1} \chi(3)|L(1, \chi)|^{2}= \begin{cases}\frac{\pi^{2}}{36} \cdot \frac{(p-1)^{2}(p-10)}{p^{2}} & \text { if } p \equiv 1 \bmod 3 ; \\ \frac{\pi^{2}}{36} \cdot \frac{(p-1)(p-2)(p-5)}{p^{2}} & \text { if } p \equiv 2 \bmod 3 .\end{cases}
$$

It is clear that these two corollaries are an extension of Walum [8].

2. SOME LEMMAS

To complete the proof of Theorems 1 and 2, we need the following two lemmas.
Lemmal 1: If h / k and h^{\prime} / k^{\prime} are two successive terms in \mathscr{F}_{n}, then $k h^{\prime}-h k^{\prime}=1$.
Proof: See Theorem 5.5 of [1].
Lemma 2: Let k and h be integers with $k \geq 3$ and $(h, k)=1$. Then we have

$$
S(h, k)=\frac{1}{\pi^{2} k} \sum_{d \mid k} \frac{d^{2}}{\phi(d)} \sum_{\substack{x \text { mod } d \\ x(-1)=-1}} \chi(h)|L(1, \chi)|^{2}
$$

where $\phi(k)$ is Euler's function.
Proof: See [9].

3. PROOF OF THE THEOREMS

In this section, we shall complete the proof of the theorems. First, we prove Theorem 1. We write the Farey fractions \mathscr{F}_{q} as follows:

$$
\frac{0}{1}, \frac{a_{1}}{b_{1}}, \ldots, \frac{a_{n}}{b_{n}}, \ldots, \frac{1}{1},
$$

and suppose $\frac{a_{n}}{b_{n}}=\frac{a}{q}$.
For the successive terms $\frac{a_{n}}{b_{n}}$ and $\frac{a_{n-1}}{b_{n-1}}$, from Lemma 1 we know that

$$
\begin{equation*}
a_{n} b_{n-1}-b_{n} a_{n-1}=1 \tag{2}
\end{equation*}
$$

Using the properties of Dedekind sums and (2), we get

$$
\begin{align*}
S\left(a_{n}, b_{n}\right) & =S\left(a_{n} b_{n-1} \overline{b_{n-1}}, b_{n}\right) \\
& =S\left(\overline{b_{n-1}}\left(1+a_{n-1} b_{n}\right), b_{n}\right) \tag{3}\\
& =S\left(\overline{b_{n-1}}, b_{n}\right)=S\left(b_{n-1}, b_{n}\right) .
\end{align*}
$$

Similarly, we also have

$$
\begin{align*}
S\left(a_{n-1}, b_{n-1}\right) & =S\left(a_{n-1} b_{n} \overline{b_{n}}, b_{n-1}\right) \\
& =S\left(\left(a_{n} b_{n-1}-1\right) \overline{b_{n}}, b_{n-1}\right) \tag{4}\\
& =S\left(-\overline{b_{n}}, b_{n-1}\right)=-S\left(b_{n}, b_{n-1}\right),
\end{align*}
$$

where \bar{b}_{n} denotes the solution x of the congruence equation $x b_{n} \equiv 1\left(\bmod b_{n-1}\right)$.
So, from (3), (4), and the reciprocity formula (1), we obtain

$$
\begin{equation*}
S\left(a_{n}, b_{n}\right)-S\left(a_{n-1}, b_{n-1}\right)=S\left(b_{n-1}, b_{n}\right)+S\left(b_{n}, b_{n-1}\right)=\frac{b_{n}^{2}+b_{n-1}^{2}+1}{12 b_{n} b_{n-1}}-\frac{1}{4} . \tag{5}
\end{equation*}
$$

Hence, by expression (5) and Lemma 1, we obtain

$$
\begin{align*}
S\left(a_{n}, b_{n}\right)= & S\left(a_{n-1}, b_{n-1}\right)+\frac{1}{12}\left(\frac{b_{n-1}}{b_{n}}+\frac{b_{n}}{b_{n-1}}\right)+\frac{1}{12 b_{n} b_{n-1}}-\frac{1}{4} \\
& =S\left(a_{n-1}, b_{n-1}\right)+\frac{1}{12}\left(\frac{b_{n-1}}{b_{n}}+\frac{b_{n}}{b_{n-1}}\right)+\frac{1}{12}\left(\frac{a_{n}}{b_{n}}-\frac{a_{n-1}}{b_{n-1}}\right)-\frac{1}{4} \tag{6}\\
& \cdots \\
& =\frac{1}{12} \sum_{k=1}^{n}\left(\frac{b_{k-1}}{b_{k}}+\frac{b_{k}}{b_{k-1}}\right)+\frac{a}{12 q}-\frac{n}{4} .
\end{align*}
$$

From (6) and the fact that $a_{n} / b_{n}=a / q$, we immediately have

$$
S(a, q)=\frac{1}{12} \sum_{k=1}^{n}\left(\frac{b_{k-1}}{b_{k}}+\frac{b_{k}}{b_{k-1}}\right)+\frac{a}{12 q}-\frac{n}{4} .
$$

This completes the proof of Theorem 1.
Proof of Theorem 2: Using Lemma 2, we have

$$
\begin{equation*}
\sum_{\substack{\chi \text { mod } p \\ \chi(-1)=-1}} \chi(a)|L(1, \chi)|^{2}=\frac{\pi^{2}(p-1)}{p} S(a, p) . \tag{7}
\end{equation*}
$$

Then from Theorem 1 and (7), we can easily obtain

$$
\begin{aligned}
\sum_{\substack{\chi \text { mod } p \\
\chi(-1)=-1}} \chi(a)|L(1, \chi)|^{2} & =\frac{\pi^{2}(p-1)}{p}\left[\frac{1}{12} \sum_{k=1}^{n}\left(\frac{b_{k-1}}{b_{k}}+\frac{b_{k}}{b_{k-1}}\right)+\frac{a}{12 p}-\frac{n}{4}\right] \\
& =\frac{\pi^{2}(p-1)}{12 p}\left[\sum_{k=1}^{n}\left(\frac{b_{k-1}}{b_{k}}+\frac{b_{k}}{b_{k-1}}\right)+\frac{a}{p}-3 n\right] .
\end{aligned}
$$

This completes the proof of Theorem 2.

Proof of the Corollaries: If $a=2$, then the position of $2 / p$ in the Farey fractions \mathscr{F}_{p} is $\frac{p+3}{2}$, so $n=\frac{p+3}{2}$. Thus, from Theorem 2, we have

$$
\begin{align*}
\sum_{k=1}^{\frac{p+3}{2}}\left(\frac{b_{k-1}}{b_{k}}+\frac{b_{k}}{b_{k-1}}\right)= & \frac{1}{p}+\frac{p}{p-1}+\cdots+\frac{p-\frac{p-1}{2}+1}{p-\frac{p-1}{2}}+\frac{p-\frac{p-1}{2}}{p} \\
& +p+\frac{p-1}{p}+\frac{p-2}{p-1}+\cdots+\frac{p-\frac{p-1}{2}}{p-\frac{p-1}{2}+1}+\frac{p}{p-\frac{p-1}{2}} \tag{8}\\
= & p+1+2 \cdot \frac{p-3}{4}+\frac{2 p-\frac{p-1}{2}+1}{p-\frac{p-1}{2}}+\frac{p-\frac{p-1}{2}}{p}
\end{align*}
$$

So, from (8) and Theorem 2, we have

$$
\begin{aligned}
\sum_{x(-1)=-1} \chi(2)|L(1, \chi)|^{2} & =\frac{\pi^{2}(p-1)}{12 p}\left[\sum_{k=1}^{\frac{p+3}{2}}\left(\frac{b_{k-1}}{b_{k}}+\frac{b_{k}}{b_{k-1}}\right)+\frac{2}{p}-\frac{3(p+3)}{2}\right] \\
& =\frac{\pi^{2}(p-1)}{12 p}\left[p+1+2 \cdot \frac{p-3}{4}+\frac{2 p-\frac{p-1}{2}+1}{p-\frac{p-1}{2}}+\frac{p-\frac{p-1}{2}}{p}+\frac{2}{p}-\frac{3(p+3)}{2}\right] \\
& =\frac{\pi^{2}(p-1)^{2}(p-5)}{24 p^{2}} .
\end{aligned}
$$

This proves Corollary 1.
Using Theorem 2, or the reciprocity formula (1) and Lemma 2, we may immediately deduce

$$
\sum_{\chi(-1)=-1} \chi(3)|L(1, \chi)|^{2}= \begin{cases}\frac{\pi^{2}}{36} \frac{(p-1)^{2}(p-10)}{p^{2}} & \text { if } p \equiv 1 \bmod 3 ; \\ \frac{\pi^{2}}{36} \cdot \frac{(p-1)(p-2)(p-5)}{p^{2}} & \text { if } p \equiv 2 \bmod 3 .\end{cases}
$$

This completes the proof of Corollary 2.

ACKNOWLEDGMENTS

The authors express their gratitude to the anonymous referee for very helpful and detailed comments.

REFERENCES

1. Tom M. Apostol. Modular Functions and Dirichlet Series in Number Theory. New York: Springer-Verlag, 1976.
2. L. Carlitz. "The Reciprocity Theorem for Dedekind Sums." Pacific J. Math. 3 (1953):52327.
3. G. H. Hardy \& E.M. Wright. An Introduction to the Theory of Numbers. Oxford: Clarendon Press, 1960.
4. L. J. Mordell. "The Reciprocity Formula for Dedekind Sums." Amer. J. Math. 73 (1951): 593-98.
5. G. Myerson. "Dedekind Sums and Uniform Distribution." J. Number Theory 28 (1991): 1803-07.
6. H. Rademacher. "On the Transformation of $\log \eta(\tau)$." J. Indian Math. Soc. 19 (1955):2530.
7. I. Vardi. "A Relation between Dedekind Sums and Kloosterman Sums." Duke Math. J. 55 (1987):189-97.
8. H. Walum. "An Exact Formula for an Average of L-Series." Illinois J. Math. 26 (1982):1-3.
9. Wenpeng Zhang. "On the Mean Values of Dedekind Sums." Journal de theorie des nombres de Bordeaux 8 (1996):429-42.
10. Z. Zheng. "Dedekind Sums and Uniform Distribution (mod 1)." Acta Mathematica Sinica 11 (1995):62-67.

AMS Classification Numbers: 11B37, 11B39, 11N37

