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1. INTRODUCTION 

Matrices such as 

R = R(D;xhx2,...,xn) = 

\Xn 

Dx„ 

*n-l 

Dx, 

*i ) 

(1) 

are called quasi-cyclic matrices. These matrices were introduced and studied in [2] and [5]. We 
can obtain these matrices by multiplying every element of the upper triangular part (not including 
the diagonal) of the cyclic matrices (see [4]) 

C = 
\Xn *n-l HJ 

byD. 
In this paper we will prove that, for n > 2, 

det(R(Ln;F2n_l,F2„_2,...,F„)) = l, 

where Ln and Fn denote, as usual, the 71th Lucas and Fibonacci numbers, respectively, and det(i?) 
denotes the determinant of R. In addition, if we let 

Ki,k - R(Ln'> Fln-l+k' F2n_2+k, •••> F„+k) 
for integral k, then 

det(R^) = (-l)"-1l„Fk"+Fk"_l. 

The motivation for studying these determinants comes from Pell's equation. It is well known that 
the solution of Pell's equation x2-dy2 = ±l is closely related to the unit of the quadratic field 
Qi-fd). We may extend the conclusion to fields of higher degree. If we rewrite x2 - dy2 = ±1 as 

we can easily do this. The equation 

det 

de . ( ; * ) . « . 

Dx„ 
*2 

\Xn *n-l 

Dx2^ 
Dx* 

*I J 

= ±\ (2) 

is called Pell's equation of degree n. Using our results, we can obtain solutions to an infinite 
family of Pell equations of higher degree based on Fibonacci and Lucas numbers. 
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To prove our results, we will need two propositions. These two propositions came from [2] 
and [5]. 

Proposition 1: 
n-l 

k=0 V'=l 
(3) 

where d = ^D and s = e2nll\ Also, each factor Ef=1 x^'1^'^ of the right-hand side of (3) is 
an eigenvalue of the matrix R. 

Proposition 2: Let n and D be fixed. Then the sum, difference, and product of two quasi-cyclic 
matrices is also quasi-cyclic. The inverse of a quasi-cyclic matrix is quasi-cyclic. 

2. THE MAIN RESULTS AND THEM PROOFS 

We are now ready to state and prove the first theorem. 

Theorem 1: Let#i>2. Then 

det(R(Ln;F2rl^F2n^^FJ) = l 

where Ln and Fn denote, as usual, the rfi1 Lucas and Fibonacci numbers, respectively. 

Proof: For n = 2, we have that 

dQt(R(L2;F3,F2)) = det(j ^ = 1, 

so the result of the theorem holds. If n > 2, let 

T = 

f 1 -1 -1 0 
0 1 - 1 - 1 
0 0 1 - 1 
0 0 0 0 
0 0 0 0 

... o 

... o 

... o 

... 1 

... o 
_ _ " . .. J T 

(A 
0 
0 

-1 
V 

By multiplication of matrices and properties of Fibonacci and Lucas numbers, we have 

RT = 

F2n-l ^n-2 ("I)" 

^M-l Fn 
F F 

0 
0 

(-1)" 
0 
0 

(4) 

(5) 

(6) 

Taking the determinant of both sides of (6) and noting that det(7) = 1, we have 
det(i?) = det(i?) det(I) = det(i?7) 

K 0 - 0} (' F , 

= (-l)2"-4det 
F F , 0 
1 n £ n-l 

Fln-\ Fzn-2 

0 

(-1)"/, w-2 
\Fn+2 ln+l 
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= detf F"+l 17 
• n det((-l)"/„_2) 

1 n A n-lj 

= (F^F^ - Fn
2)(-l)"(»-2> = (-!)"(-!)" = L 

where In denotes the Identity matrix of order n. Thus? Theorem 1 Is true. 

Corollary 1: If D = Ln9 then {F2n_h F2n_2,..., Fn) Is a solution of Pell's equation (3). 

Corollary 2: Let d = ̂ Ln, s = e27tiln. Then 
n-\ f n 

£0-1) 1 
&=o V/=i 

Proof: This Is obvious by Theorem 1 and Proposition 1. 
We now make the following conclusion. 

Theorem 2: The matrix R = R(Ln; F2n^h...?Fn) Is Invertlble. In addition, 

RTl = (-iy-l(I + E-E2), 

where / = L and 

£ = £ . 

Proof: Since det(i?) = 1 * 0, the Inverse J? ! exists. Obviously, 

i? = R(Ln, F2„_l5..., F„) = F^I + F^E + F^E2 + • 

r° i 
0 

k° 

0 •• 
0 •• 
1 •• 

0 •• 
r.- l 

0 
0 
0 

1 

L»] 0 
0 

"oj 

+ F„JE"-1. 

Hence, 

i?(-l)"-'(/ + £ - £ 2) 

(7) 

= (~ I)""1 (F2„-J+F2n.2E + F2n_3E2 + ••• + F^"'1 + F2n_xE + F2n_2E* + • • • 
+F„+lE"-1

 +FnE"-F2n_lE2 -...-Fn+2E"-l-F„+1E"-F„E"+l) 

= Hrl(F2n-iI + F2ri_2E + F2n_lE + F„E"-F„+lE"-F„E"+1) 

= Hr1(F2n_lI + F2„E + F„L„I-F„+1L„I-F„L„E) 

= ( - i r 1 0 W + FiJ + F2n_xE - F2n+lI - (-l)»I) 
=(-iy-1(-iy+1i=i. 

In the above, the three following facts have been used: 
1 • F2„_3 + F2„_2 -F2„_l = 0,...,F„ + Fn+l - F„+2 = 0. This is obvious from the definition o 

Fibonacci numbers. 
2. E" = L„I, E"+l = LnE. This can be verified easily by multiplication of matrices. 
3. LnFn = F2n and L„Fn+l = F2n+l + (-1)". These are well-known properties of Fibonacci 

and Lucas numbers. 
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Corollary 3: Let n > 3 be an odd number and B = Ln. Then 

(^,x2,xj,x4,...,xil) = (l,l,»l,0,...,0) 

is a solution of Pell's equation (3) of degree n. 
Let n > 4 be an even number and D- Ln. Thee 

(Xl3 X2? Xj, X4? . . . , Xn) = ( - 1 , - 1, 1, 0 , . . . , 0) 

is a solution of Pelfs equation (3) of degree n. 
Proof: Based on Theorem 2, when w is odd? we have 

det(R(Ln; 1,1,-1,0,..., 0))det(R(Ln;F2n__h..., FJ) = det(J) = 1 
and 

det(i?(Zll;F2^1,...,Fn))=l 
from Theorem 1, so 

det(/?(Zll;l,l,-l,0,...,0))=l 
and? by definition of solution the conclusion is true. For even w, the proof is similar. 

3, if ORE RESULTS ABOUT THE BETERMWANTS 

Let R„tk = R(Ln;F2n^uk, î „_2+£> •••, ^wX ^ = 0, ±1, ±2,..., be square matrices of degree w. 
Then Theorem 1 has the form det(i?W90) = 1. For det(J?wJ), det(/^2X-»>det(^»,-i)> det(/^_2)> 
..., we can also obtain corresponding results, but the values of these determinants are not 1, so 
that the inverses R^k of R„^9 k = ±1, ±2, ..., are not matrices with integer elements. 

TkeoremS: \_nn 

det(i?„;_1) = ( - i r 1 ( 4 - l ) , 
det(i?M>0) = l, 
det(RtlJ = (-ir1Ln, 
det (^ 2 ) = (-l)"-1i,ll + l. 

The result in the middle of Theorem 3, i.e., det(i?„j0) = 1 is just Theorem 1. The other results 
are closely related to L„, so we list thern here. In fact, they can be deduced from the more exten-
sive following results. 

Theorem 4: Let n > 2 be an integer and let k be an integer. Then 

M{Rn>k) = {-irlLnFk" + Fk% 

To prove Theorem 4, set 

on9k 

^2«+Jfc-l 

^2n+k-2 

Fn+k 

^2n+k-2 

^w+ifc-3 

Fn+k-1 

(rWFk-i 
i-iypk ' 

0 

•• <rWFk-
(-lfFk 

0 

(8) 
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Kk = 

F2n+k-y (-l)"Fk (-lYF^ 
Fln+k-2 

1 n+k 0 

Hm 

0 0 

(9) 

where the elements in the middle are zero in every determinant. Now the proof of Theorem 4 
consists of the following four points: 

1- teKKk) = gn,k+hn,k, 
2- g„,k = Fk»_l+(-d"-lF»-lFk"H-iyFk»-1F„Fk_l; 
3 • hn,k = (- W~lF„+kFk

n~l; 
4- gn,k+h^ = (-irlL„Fk" + Fk"_v 

We can obtain the above four points from five lemmas. 

Lemma 1: Suppose gn> k and hnk are defined as in (8) and (9). Then det(i?Wj k) = g„tk + hnk. 

Proof: Let The as in (5). Then, by properties of determinants, we have 
det(/?„>t) = det(i?;i;,)det(D 

= de t (^ u -7) 

[ 2 n + k - l 

•2n+k-2 

Fn+k 

F2n+k-3 (-lTFk 

1n+k-l o 
= s„,k+Kk-

This completes the proof of Lemma 1. 

Lemma 2 (the recurrence ofgnk): 

(10) 

Proof: By subtracting the second column from the first column of gnk, the first column 
becomes (F2n+k_3, F2rj+k_4, '••yFn-i-k-2)T ^y ̂ e properties of Fibonacci numbers, where J i n the 
superscript denotes the transpose of a matrix or vector. By subtracting the first column from the 
second column, and so on, after n + k-l subtractions between the two columns, the first two 
columns become 

Ai-1 Ai-2 ^0 

Next we exchange the first two columns if n+k is even and we keep the matrix if n + k is odd. 
Hence, the first two columns become 

(Fn K-l - FA' 
yFn_x Fn_2 ••• FQJ ' 
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Thus, 

gn,k=(-iy n+k-1 

Fn Fn_x (-IfF^ 
Fn-x F„_2 (-l)»Fk 

(-WFk 
0 

= (-!)' k-\ 
F , F 
1 n-\ J n 

»-2 ^ 

/? 
Expanding the last determinant by the first row and noting that F0 = 0, we have 

« u = (-l> ,jt-i -Fn-, 

F„-i Fk Fk_x 

Fy F0 0 

'k-l 

0 

+^*-l 

K-l Pn-2 *Vl 

F, FQ 0 

K-i 

0 

=(-i)*- i(-^-i(-i)1 M ,"I/^r2+Fk_1Hf-1g„-1,k)=(-ir'F^Fr2+Fk g n_u. 

Thus, Lemma 2 Is proved. 

Lemma 3: , 

Proof: By induction on w. 
(A) On the one hand, by the definition of g„ k, we have 

&,* = i*3+& i*2+& 
is, = F3+kFWc ~ i&* = H ) ' ,*+2-l (-1) 1-1 

&-1 

[ 2+k J 1+* 

On the other hand, the right side of (11) becomes 

F'li H-m-iK2 H~lfF2Ft%-i = Ft-x-Fi+F^ft 
= if_! - Fk_tFk - i f = Fk_tFk+l - F% = (-1)' 

Hence, Lemma 3 holds when n = 2. 
(B) Assume (11) holds for n - 1 , i.e., 

&-u=^i1+(-ir2^2^r1+(-ir1^-i^r,^-i-
We will prove that (11) holds for n. By (12) and recurrence (10), we have 

gn-ik=nr'F^Fr2+Fk.l(Fk%iH~ir2F„.2Frl+(-iriFn.1Fr2Fk_1) 

= Fk% + (-irlFk"-2((-dh-lF„-i - (F„ - Fn-dFk-XFk + /?_,/£,) 
= /?•_,+(-i)-/r2((-i)*"1^-i - ( ^ , - ^ i V i - i ^ +Fn_lF2_l) 
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= Fk\ + (- l )»/ tfr IF t_ I + (-ir1F„_1Fr2(Ffc
2 -F^FM +FkFk.l + i £ 1 ) 

= Fk"_t + {-IfF^F^ + ( - l r ' i v A " . 
Hence, (11) holds for n. According to the induction principle, (11) holds for any number n>2. 
Thus, Lemma 3 is true. 

CoroUaryl: g^n = F^ 

Proof: Let k = n in (11). 

Lemma 4: , VM . „ , , v 

^^c-ir'/w/r1- (13) 
Proof: We obtain this by expanding the FI111 row of the right side of (9). 

Lemmm §: t 

gn.k+Kk = ( " i r ' V ? * +^-1- (14) 
Proof: By (11) and (13), and noticing that Fn+k = Fn+lFk +F„Fk_l9 we have 

=i£,+(-l)-1^, +F„+ 1)F;=^+(-iy-V?-
Hence, Lemma 5 holds. 

F^+c-ir^F;-1. 

Proof: Let £ = n in Theorem 4 and note that Ĵ w = Z ^ . 

Remark: We can verify that our lemmas and Theorem 4 are also true for negative k. 
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Corollary 5: 

det(Rn^) = 
F3M-\ 

Fjm-l 

F2n 

LnF2n
 s 

^ 1 * 

r2n+l 

9 9 ^ ra^3»-2 
9 ' A/*3«~-3 

^ 3 n - l 

286 [JUNE-JULY 


