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i. INTRODUCTICON

Matrices such as
x, Dx, -+ Dx,

R:R(D, X1, xz,...,xn)z xi2 'x.:l. .. Zix3 (1)
xn xn—] xl

are called quasi-cyclic matrices. These matrices were introduced and studied in [2] and [5]. We
can obtain these matrices by multiplying every element of the upper triangular part (not including
the diagonal) of the cyclic matrices (see {4])

X X, X2
C=|% " X3
Xn  Xpoy X
by D.
In this paper we will prove that, for n>2,
det(R(Ln; F;n-l’ F;n—Z’ cres En)) = l’

where L, and F, denote, as usual, the n* Lucas and Fibonacci numbers, respectively, and det(R)
denotes the determinant of R. In addition, if we let

Rn, = R(Ln; I:2n—l+kr ‘F2n—2+k’ L) F;1+k)
for integral &, then

det(R,, ) = (- L, ' + FLLy.

The motivation for studying these determinants comes from Pell's equation. It is well known that
the solution of Pell's equation x?—dy? = +1 is closely related to the unit of the quadratic field
O(Jd). We may extend the conclusion to fields of higher degree. If we rewrite x2 —dy® = +1 as

det(x dy) =tl,
y x

we can easily do this. The equation

x, Dx, Dx,
det| 2 % Dy @)
Xn  Xn-1 X

is called Pell's equation of degree n. Using our results, we can obtain solutions to an infinite
family of Pell equations of higher degree based on Fibonacci and Lucas numbers.
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To prove our results, we will need two propositions. These two propositions came from [2]
and [5].

Proposition 1:

det(R) = ﬁ (Z x,.d"-‘g’f“-‘)), 3)

k=0 \i=1

where d =%/D and £=e*"'". Also, each factor ¥, x,d"'e**D of the right-hand side of (3) is
an eigenvalue of the matrix R.

Proposition 2: Let n and D be fixed. Then the sum, difference, and product of two quasi-cyclic
matrices is also quasi-cyclic. The inverse of a quasi-cyclic matrix is quasi-cyclic.
2. THE MAIN RESULTS AND THEIR PROOFS
We are now ready to state and prove the first theorem.
Theorem 1: Let n>2. Then
det(R(L,; Fyp1s Fopgs --» F)) =1, )
where L, and F, denote, as usual, the n Lucas and Fibonacci numbers, respectively.
Proof: For n=2, we have that
2 3
det(R(L,; F, ) = det(1 2) =1,

so the result of the theorem holds. If n>2, let

1 -1 -1 O 0 O
0o 1 -1 -1 0 O

r=| 0 0 P20 ©®)
o 0 0o 0 .+ 1 -1
o 0 0 0 -« 0 1

By multiplication of matrices and properties of Fibonacci and Lucas numbers, we have
By By I

RT=| ;o - ©
E1+l F, 0 et 0
" F, 0 0

Taking the determinant of both sides of (6) and noting that det(T) =1, we have
det(R) =det(R)det(T) =det(RT)
Fy F 0 = 0
E.F, 0 = 0
= (— 1)2n-—4 det En—l F&n—2
E B (— l)nl -2
F‘n+2 EH'I
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=det(1}:l I;il)det((q)"z*,,_z)
=(FuF = EE) 2 = (-1)"(=1)" =1,
where I, denotes the identity matrix of order n. Thus, Theorem 1 is true.
Corollary 1: If D = L, then (F,,_,, F,,_,, ..., F,) is a solution of Pell's equation (3).
Corollary 2: Letd=12[L,, £=¢*™'". Then
ﬁ (‘V"_: B, di—lgk(i—l)J -1
k=0 \i=1
Proof: This is obvious by Theorem 1 and Proposition 1.

We now make the following conclusion.

Theorem 2: The matrix R= R(L,, F,,_,, ..., F,) is invertible. In addition,

Rl'=(1)"YJ+E-E?), (7
where = [, and
0 0 0 L,
. 1 0 0 O
E=E,=|0 1 0 0]
o o0 - 1 0

Proof: Since det(R) =1 0, the inverse R™! exists. Obviously,
R=R(Ly; Fypyy o0 ) = By ] + By B + By sE 4o+ FE™
Hence,
RED)"Y I +E-E?Y
= ()" Byl + Py oy E+ By sE? + o+ EE™ 4 Py (\E+ Fy, gE? + -
+FyE" + FE" — Py, \E? = = F, ,E"" = F, \E" - FE"")
= ()" (Fyp] + FypgE + Fy \E + F,E" - F, \E" ~ F,E™")
= ()" (Fopd + FyE+ F, LI - F,,L,] - F,L,E)
= (V™! Byl + Byl + By~ Fyptl (=11
- (__ 1)n—l (_ 1)n+11 — I
In the above, the three following facts have been used:

1. F,3+F, ,-F, ,=0,..,F,+F, —F,,=0. This is obvious from the definition of
Fibonacci numbers.

2. E"=L,, E™ =L E. This can be verified easily by multiplication of matrices.

3. LF,=F,and LF,, =F,, +(-1)". These are well-known properties of Fibonacci
and Lucas numbers.
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Corollary 3: Let n23 be an odd number and D= L,. Then
(e, %9, %5, %45, %)= (L, -10,...,0)
is a solution of Pell's equation (3) of degree n.
Let n>4 be an even number and D= L. Then
(e, %5, %3, %, ..., %) =(-1,-1,1,0,...,0)
is a solution of Pell's equation (3) of degree n.
Proof: Based on Theorem 2, when » is odd, we have
det(R(L,;1,1,-1,0,...,0)det(R(L,; By, ..., B))) =det(D) = 1

and
det(R(Ln;Fén—i’ i ‘Fn)) =1
from Theorem 1, so
det(R(L,;1,1,-1,0,...,0)) =1

and, by definition of solution, the conclusion is true. For even #, the proof is similar.

3. MORE RESULTS ABOUT THE DETERMINANTS

Let R, = R(L,; Fopyips Fonpir s Fpp )y =0, 21,12, .., be square matrices of degree 7.
Then Theorem 1 has the form det(R, ) =1. For det(R, ), det(R, ,),...,det(R, ), det(R, _,),
..., we can also obtain corresponding results, but the values of these determinants are not 1, so
that the inverses R}, of R, ,, k =+1,+2, .., are not matrices with integer elements.

Th 3
Fore det(R, ) =2"~ L,

de&(ﬁn,—-g = (_ l)n‘l(‘{’n - l)s
det(R, o) =1,
det(R, ) =(-D"'L,
det(R, ;) =(-D""'L,+1
The result in the middle of Theorem 3, i.e., det(R, ¢) =1 is just Theorem 1. The other results

are closely related to L,, so we list them here. In fact, they can be deduced from the more exten-
sive following results.

Theorem 4: Let n>2 be an integer and let & be an integer. Then
det(R,, .} = (-1 L, Fl + Ly,
To prove Theorem 4, set

‘Fémk-i ‘Fém-k—z ("E)nﬂ:—i
En+k—2 an+k—3 (_ E)an
: s -'Fyls ®
-D"F,
]

gn,k =

Fur  Buin 0
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Py CO)'F, (F)'F,y

Fypi—a 0 -D"F,
h=| : =D"F,_, > )
-D"F,

0

Fn+k 0 0

where the elements in the middle are zero in every determinant. Now the proof of Theorem 4
consists of the following four points:

1 det(R, )= &ni +hy 5

2. gy =FL+C)TELR +C)'FTEF

3. Ry =CD"TE T

4. g th, =)L +F,

We can obtain the above four points from five lemmas.
Lemma 1: Suppose g, ; and h, ; are defined as in (8) and (9). Then det(R, ;) =g, +h, .

Proof: Let Tbe as in (5). Then, by properties of determinants, we have
det(R, ;) = det(R, ;) det(T)

=det(R, ;- T)
Pkt Bk *C0'E, (-D)F
172n+_-k—2 F;n-.l-k—fi (_l)nFI::
= 3 D" By
: : -I'F,
F ) P 0 0
=&uith i

This completes the proof of Lemma 1.

Lemma 2 (the recurrence of g, ,):
&k = )™ F R+ B8y (10)

Proof: By subtracting the second column from the first column of g, ,, the first column
becomes (F, 43> Fopri—as--» Fasgz)’ by the properties of Fibonacci numbers, where T in the
superscript denotes the transpose of a matrix or vector. By subtracting the first column from the
second column, and so on, after n+k —1 subtractions between the two columns, the first two
columns become

F N

n n-1

Next we exchange the first two columns if #+k is even and we keep the matrix if n+k is odd.
Hence, the first two columns become

F_, F - R

n-1 n-2
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Thus,
n e GO
B EL R
& =(1) : : . (DE
P C1rF,
Ho R 0 0
£ B B
Ea B B
= (’Dk—l : B
5 B
H K 0 0
Expanding the last determinant by the first row and noting that F, = 0, we have
Eni = D -F,, : BB :
- E, : :
FE F 0 = 0 FE K 0

=D EL D R B (G g, ) = GO R LR 4 Fg e

Thus, Lemma 2 is proved.

Lemima 3: a " 2
B = B+ DB F + ()RR,
Proof: By induction on n.

(A) On the one hand, by the definition of g, ; , we have

— E’a+k E+k

E = BB — B = G = (1P
24k ik

On the other hand, the right side of (11) becomes
P+ (DR R+ (P REF = Bl - R+ Bk,

=F ~F F-F=F_F,-F= (-DFL

Hence, Lemma 3 holds when n=2.
(B) Assume (11) holds for n—1, i.e.,

AR KB N GO Vit A9 DAl T €3 ) L DAY oy DA
We will prove that (11) holds for n. By (12) and recurrence (10), we have

£y

g
0

&1k = Y F L+ B (B + ()7 E B + () F LR F)

= B+ GO D R B+ ()RR R R + (C) TR L FT R

= B+ GO R (YT E, L - (B - B )R B + B FL)
=R+ () B HY Ry - (B - B )R F + F L)

2002]
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=FL+C)'FEEDEy+ ) E (B - BB + B F L+ FL)
=FL+ ()" EF7F +C)TE R

Hence, (11) holds for n. According to the induction principle, (11) holds for any number n>2.
Thus, Lemma 3 is true.
Corollary 4: g, ,=F]

n-1-

Proof: Let k=nin(11).

L 4
e B = (C)E B (13)

Proof: We obtain this by expanding the 7™ row of the right side of (9).

Lemma 5: _ .
gn,k +hn,k = (_l)n anEcn + k-1- (14)

Proof: By (11) and (13), and noticing that F,,, = F,,F, + F,F,_,, we have
Eut +hyp = Byt (BB + () B Fyy + (<) By + FF ) F
= By I E B+ (<) E, B
=R+ ()" F o+ B F =L+ (C)LE,

Hence, Lemma 5 holds.

Corollary 5:
v Fyy LFy o LiFy,
det(R, ) =| Pz Pt T Bl = B2+ OB B
Fén F;n+l F_;,nq

Proof: Let k =n in Theorem 4 and note that F,, = L F,.

Remark: We can verify that our lemmas and Theorem 4 are also true for negative £.
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