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1. INTRODUCTION 

Consider the set of points (i,j) given by nonnegative integers / and/ This lattice may be 
viewed as an unbounded rectangle with boundary consisting of points (/', 0) on a horizontal x-axis 
and points (0, j) on a vertical j-axis. There are many systematic ways to draw paths from this 
boundary into the interior of the lattice. Enumerations of such paths yield arrays associated with 
Fibonacci numbers and other recurrence sequences. Such enumerations also apply to various 
classes of compositions of nonnegative integers. In order to investigate such enumerations, we 
begin with some notation: 

R = {(/, j): / and j are nonnegative Integers}, 
R+ = {('*> j) '• i ancU are positive integers}, 
R° = R-R+. 

Suppose G is a circuit-free graph on R, directed so that for each (/, j) in R+ every path to 
(i, j) is rooted in a vertex in R°. Each edge entering (/, j) has a tail (x, y); let 

E(i, j) = {(xtJ(k), y,Jk)):k = \,2,...,n(i, j)} 

be the set of tails. Suppose now that a number R(i,j) Is assigned to each (/, j ) in R°9 and for 
each (i, j) in R+ define inductively 

<i,j) 

R(r,j)= H^iPkl (i) 
k=l 

where the points pk are the vertices in E(i, j). The numbers R(i, j) comprise a rectangular array: 

i?(0,'2) R{\,2) R(2,2) R(3,2) -
R(0,l) R(l,l) R(2,l) R(3,l) ... 
R(0,0) R(l,0) R(2,0) R(3,0) -

which can be expressed in triangular form: 
R(0,0) 

R(l,0) R(0,l) 
R(2,0) R(l,l) R(0,2) 

or 
7X0,0) 

r(i,o) r(i,i) 
7(2,0) 7(2,1) 7(2,2) 

Explicitly, 
T(i,j):=R(i-j,j) for 0< j<i. (2) 
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Henceforth, except for Examples 3C and 3D, we posit that for all (i,f) in R°, the number 
R(i, j) is the out-degree of (/, j), satisfying 

/?(/,0) = l and R(0,j)e{0,l}. (3) 

Then, for (/, j) in J?+, the number of paths to (/', j) is R(i, j), hence T(i 4-7, 7). The initial values 
R(i,j) for (1,7) in i?° imply initial values r(i,0) and r(/,/) for i >0; these values occupy the 
outermost wedge of the triangular array T. We call {/?(/', 7)} the path-counting rectangle ofG, 
and {I(i, 7) } the path-counting triangle of G for the given initial values. For reasons of nota-
tional convenience hereafter, define 

i ? ( i ,7 ) -0 i f i<0or7<0; (4) 

T(iJ) = 0 if / <0 ory <0 ory >/. (5) 

2e INTEGER STRINGS AND COMPOSITIONS 

In this section we restrict attention to path-counting under these conditions: 
(i) T(i, 0) = 1 for 1 >0; 
(ii) for (i, 7) in i?+, each (x, y) in E(i, 7) has the form (/' -1,7 + q), where q is an element 

of a prescribed set Q of nonnegative integers. 

By (1) and (2), 

R&jl^W-Xj+qkl (6) 
k=l 

m,j) = tlT(f-qk-11j + qk). (7) 

Theorem 1: Let Q be a nonempty set of nonnegative integers, and let / and7 be positive integers. 
If 0 e Q, then the number of strings(sh %..., sm) of nonnegative integers sk satisfying the three 
conditions, 
(a) sk~sk_lGQfork = 2,3,...,m, 
(b) sm=j, 
(c) /w = / + l, 
is given as in (6) by R(i, 7) or, equivalently, by I(i + j , 7). If 0 g g> then the number of strings 
(sh %, ...9sm) of nonnegative integers sk satisfying (a), (b), and 

(c)' m<i + \ 
is given as in (6) by R(i, 7) or, equivalently, by T(i+j, 7). 

Proof: 
Case 1: CJ e g . The paths counted by R(i9 7) consist of edges (k -1, jk)-to-(k, jk+i), where 

Jh+i-Jk eQ for* = 1,2,...,/, andy/+1 = y. Let sk = j k + l - jk for k = l,2,...,i + l. Then fo,^, 
...,^m) is a string of the sort described. Conversely, for m = i + l, each such string yields a path 
with initial point (0,7^ for some j \ > 0 and terminal point (1,7), where 7 = ̂ .+1. This one-to-one 
correspondence between the paths and strings establishes that the number of strings is R(i, j). 

2002] 329 



PATH-COUNTING AND FIBONACCI NUMBERS 

Case 2% 0 &Q. Here, the initial point of a path can be of the form (?0,0), where 0 < i0 < i -1. 
The one-to-one correspondence holds, but the length of a string can be < i +1. D 

Corollary 1A: Suppose T(i, i) = 0 for / > 1. If 0 e Q, then R(i, j), hence also T(i + y, j ) , is the 
number of compositions of/ consisting of i parts in the set Q. If 0 gQ, then i?(/, y), hence also 
T(j+j, j), is the number of compositions of; consisting of at most i parts, all in the set Q. 

Proof: If 0 G Q, the i differences j k + l - jk in the proof of Theorem 1 lie in Q and have sum/ 
Thus, there is a one-to-one correspondence between the paths counted by R(i9 j) and the compo-
sitions. If 0 £ Q, the same argument applies, except that the root of a path to (i, j) may be a 
point (/?, 0) for 0 < h < i'-1, and the corresponding number of parts is i - h. D 

The following two corollaries have similar, omitted, proofs. 

Corollary IB: Suppose h > 1, T(i, i) = 1 for / < h, and T(i, i) = 0 for i > h. If 0 e g , then i?(i, j ) , 
hence also 7(i + j , j ) , is the number of compositions of the numbers j,j-l9j-2,...,j-h con-
sisting of # parts in the set Q. If Ogg, then R(i,j), hence also T(i+j,j), is the number of 
compositions of the numbers j,j-l,j~2,...,j-h consisting of at most / parts, all in the set Q. 

Corollary 1C: Suppose T(i9i) = 1 for all / > 0. If 0 e g , then R(i, j), hence also T(i +j, j), is 
the number of compositions of the numbers 0,1,2, . . . , j consisting of / parts in the set Q. 
If Ogg, then R(i,j), hence also T(i+j,j), is the number of compositions of the numbers 
0,1,2,..., j consisting of at most i parts, all in the set Q. 

Theorem 2: Suppose n > 2 and Q is a set of n nonnegative integers qk. Suppose also that 
qi<q2<"'<cln- Let St be the sum of numbers in row i of array T(i,j). Then (Sf) is a linear 
recurrence sequence of order qn +1. 

Proof: 

Si = iT(iJ) = T(i,0) + T(iJ) + fdiT(i-qk-lJ-qk) 
y=0 ;=1 k=l 

= r(/,0) + r( i ,0 + Z 'tT(i-qk-lJ-qkl 

so that, by (5), 

,s;. = r(/)o)+7'(/,/)+X I ^ - ^ - i , 7 ) 

= l + 7(/,/) + fc=l y=o 

mo+Xs-, 
*=i 

?*-i ifft = 0, 

i + ^ O + E - W i i f f t>a n 
fc=l 
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The proof of Theorem 2 shows that, If qx = 0 and T(i, i) = 0 for all / greater than some i0, 
then the linear recurrence is homogeneous for / > i0. This is illustrated by Example 1C. 

We turn now to applications of Theorems 1 and 2, in the form of Examples 1A-E, with par-
ticular interest in the appearance of Fibonacci and Lucas numbers in row sums or the central 
column. 

Example 1A: A011973 In Sloame [5] 

Initial values 
\Q 

Recurrence 
Row sums 

T(i, 0) = 1 for i > 0, T(i, i) = 0 for i > 1 
{0,1} 
T(iJ) = T{i - 1, j) + T(i - 2, j - 1) for 1 < j < i - 1 
1,1,2,3,5,8,. . . (Fibonaccinumbers) 

This is essentially the triangular array of coefficients of the Fibonacci polynomials [1], having 
rows (1), (1), (1,1), (1,2), (1,3,1), ... . The two arrays have identical nonzero entries. Note that 
the southeast diagonals of nonzero entries form Pascal triangle: T(i, j) = C(i-j, j). 

1 
1 0 

1 1 0 
1 2 0 0 

1 3 1 0 0 
1 4 3 0 0 0 

1 5 6 1 0 0 0 
1 6 10 4 0 0 0 0 

For example, 7(6,2) = 6 counts the compositions of 2 into 4 parts, each a 0 or 1, and it also 
counts strings of length 5, starting with 0 and ending in 2, with gaps of size 0 or 1: 

compositions 
strings 

0011 
00012 

0101 
00112 

0110 
00122 

1001 
01112 

1010 
01122 

1100 
01222_ 

Example IB: A005794 in Sloane [5] 

Initial values 
Q 
Recurrence 
Row sums 
Central column 

T(i, 0) = 1 for i > 0; T(i, i) = 1 for 0 < i < 3, else T(i, i) = 0 "1 
{0,1} 
T(iJ) = T{i - 1, j) + T(i - 2, j - 1) for 1 < j < i - 1 
1, 2,4,7,11,18,29,47, ... (Lucas numbers) I 
1,2,4, 8,15,26,42,64, ... (Cake numbers, A000125 in Sloane [5]) 

1 
1 1 

1 2 1 
1 3 2 1 

1 4 4 2 0 
1 5 7 4 1 0 

1 6 11 8 3 0 0 
1 7 16 15 7 1 0 0 

1 8 22 26 15 4 0 0 0 

For exaimple, 7(7,4) = 7 counts the compositions of 1, 2, 3 into 3 parts, each a 0 or 1, and it also 
counts strings of length 4 starting with 0, 1, 2, or 3 and ending in 4, with gaps of size 0 or 1: 
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compositions 
strings 

001 
3334 

010 
3344 

100 
3444 

011 
2234 

101 
2334 

110 
2344 

111 
1234 

Regarding row sums, for n > 2, the number of strings fo, %,..., sm) having gap sizes 0 or 1 
and m + sm = n +1 is the 71th Lucas number; e.g., for n = 4, the L4 = 11 strings are as follows: 

00000; 0001,0111,1111; 012,112,122,222; 33,23. 
Example 1C: A052509 in Sloane [5] 

Initial values 
Q 
Recurrence 
Row sums 
Central column 

T(z,0) = T( i , i ) = 1 fori > 0 
{0,1} 
T ( z ! j ) - r ( z - l , ; ) + T ( z - 2 , j - l ) fori <3<i-
1,2,4,7,12, . . . (Fibonacci numbers minus 1) 
1,1,2,4,8,16, ...(powers of 2) 

- 1 

1 
1 1 

1 2 1 
1 3 2 1 

1 4 4 2 1 
1 5 7 4 2 1 

1 6 1 1 8 4 2 1 
1 7 16 15 8 4 2 1 

1 8 22 26 16 8 4 2 1 

For example, 7(5,2) = 7 counts the compositions of 0, 1, 2 into 3 parts, each a 0 or 1, and it also 
counts strings of length 4 ending in 2 with gaps of size 0 or 1: 

compositions 
strings 

000 
2222 

001 
1112 

010 
1122 

100 
1222 

011 
0012 

101 
0112 

110 
0122 

By Theorem 2, St, = 1 + 5J_, + S,_2 for / > 2. As a first step in an induction argument, we have 
S0 = F3 -1 and S, = F4 -1. The hypothesis that Sk = Fk+3 -1 for all * < / - 1 yields S,. = 1 + Fi+2 -
l + ^ + i -l = 3 + 3 - l -

Example ID: A055215 in Sloane [5] 

Initial values 
Q 
Recurrence 
Central column 

T{i,6)=: T(i70~=T for i > 0 1 
{1,2} 1 
T(iJ) = T(z - 2, j - 1) + T(i - 3, j - 2) for 1 < j < i - 1 ! 
1 ,1 ,2 ,3 ,5 ,8 , . . . (Fibonacci numbers) 

1 
1 1 

1 1 1 
1 1 2 1 

1 1 2 2 1 
1 1 2 3 2 1 

1 1 2 3 4 2 1 
1 1 2 3 5 4 2 1 

1 1 2 3 5 7 4 2 1 
1 1 2 3 5 8 8 4 2 1 

1 1 2 3 5 8 12 8 4 2 1 
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r(8,5) = 7 counts the compositions of the integers 1, 2, 3, 4, 5 into 3 parts, each a 1 or 2, and it 
also counts strings of length 4 ending in 5 with gaps of sizes 1 or 2: 

compositions 
strings 

111 
2345 

112 
1235 

121 
1245 

211 
1345 

122 
0135 

212 
0235 

221 
0245 

In accord with Theorem 2, the sequence (St) of row sums satisfies the recurrence £,. = S_2 + 
SM+2. ' " 

Example IE: A056216 In Sloane [5] 

Initial values 
Q 
Recurrence 
Central column 

r ( i , 0 ) = r ( M ) = l f o r i > 0 
{0,1,2} 
T{itj) = T(i-hJ) + T{i-2J-
A027914inSloanc[4] 

-l) + T{i-3;j-- 2) for 1 < j < i - 1 

1 
1 1 

1 2 . 1 . . 
1 3 3 1 

1 4 6 3 1 
1 5 10 8 3 1 

1 6 15 17 9 3 1 
1 7 21 31 23 9 3 1 

1 8 28 51 50 26 9 3 1 
1 9 36 78 96 66 27 9 3 1 

7(5, 3) = 8 counts the compositions into 2 parts, each a 0, 1, or 2, of nonnegative integers < 3, 
and it also counts strings of length 3 ending in 3 with gaps of size 0, 1, or 2: 

compositions 
strings 

00 
333 

01 
223 

10 
233 

11 
123 

02 
133 

20 
113 

12 
023 

21 
013 

The array in Example IE has interesting connections with the array of coefficients of (1 + x + x2)" 
considered by Hoggatt and Bicknell [3]. That array, UQJ) consists of trinomial coefficients. 
Written in left-justified form as in Comtet [2], we have 

1 1 1 
1 2 3 2 1 
1 3 6 7 6 3 1 
1 4 10 16 19 16 10 4 1 
1 5 15 30 45 51 45 30 15 5 1 

For example, the partial row-sums, X%iU(iJ), beginning with 1, 2, 6, 17, 50, form the central 
column of the preceding array. 

Example 2A: A055800 In Sloane [5] 

Initial values 
Q 

Recurrence 

Row sums 
Central column 

T(i, 0) = 1 for i > 0; T(i , i) = 0 for i > 1 
{1 ,3 ,5 ,7 ,9 , . . . } 

CO 

r ( i , j ) = E r ( i - 2 f e , j - 2 f c + l ) f o r l <j<i-l 1 

$ = 2IV2J (powers of 2) 
1,1,1, 2, 3, 5, 8,.... (Fibonacci numbers) 
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1 
1 0 

1 1 0 
1 1 0 0 

1 1 1 1 0 
1 1 1 1 0 0 

1 1 1 2 2 1 0 
1 1 1 2 2 1 0 0 

1 1 1 2 3 4 3 1 0 
1 1 1 2 3 4 3 1 0 0 

1 1 1 2 3 5 7 7 4 1 0 For example, 7(10,5) = 5 counts the compositions of 5 into parts in the set {1,3,5}, and it also 
counts strings ending in 5 with gaps of size 1, 3, or 5: 

compositions 
strings 

11111 
012345 

113 
0125 

131 
0145 

311 
0345 

5 
05 

Example 2A points toward a more general result. 

Theorem 3: The number of compositions of the positive integers < n into odd parts is Fn. 

Proof: By Corollary 1A, the number of compositions of 0,1,2,...,n into odd parts is 
T(2n, ri). Therefore, it suffices to prove that T(2n, n) = Fn. We shall prove somewhat more: that 
the first n +1 terms of row In are 1, Fl9 F2,..., Fn_2, Fn_l9 Fnforn>l. Assume for arbitrary n > 2 
that this has been established for all m < n-1. Then, for row 2w, we have T(2n, 0) = 1 and for 
\<j<n, 

T(2nJ) = f^T(2n-2kJ-2k + l)= j^Fj^^Fj. D 
k=l h=Q 

Example 2B: A055801 in Sloaiie [5] 

Initial values 
Q 

Recurrence 

Central column 

T(i, 0) = T(i, i) = 1 for i > 0 
{ 1 , 3 , 5 , 7 , 9 , . . . } 

oo 
T(h j) = £ T ( i - 2k, j - 2k + 1) for 1 < j < i • 

1 ,1 ,1 ,2 ,3 ,5 ,8 , . . . (Fibonacci numbers) 

- 1 

1 
1 1 

1 1 1 
1 1 1 1 

1 1 1 2 1 
1 1 1 2 2 1 

1 1 1 2 3 3 1 
1 1 1 2 3 4 3 1 

1 1 1 2 3 5 6 4 1 
1 1 1 2 3 5 7 7 4 1 

1 1 1 2 3 5 8 11 10 5 1 For example, 7(9,6) = 7 counts the compositions of numbers < 6 using up to 3 parts, each an 
odd number, and it also counts strings of length < 4 ending in 6 with no even gap sizes: 
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compositions 
strings 

111 
3456 

113 
1236 

131 
1256 

311 
1456 

33 
036 

15 
016 

51 1 
056 

3, ARRAYS BASED ON RECTANGULAR SETS E(i$ j) 

In Section 2, the tall-set E(i, j) as defined in Section 1 is of the form {(* - 1 , j + q)}. That is 
to say, all edges into vertex (ij) emanate from a single column of array {RQJ)}. In Section 3, 
we consider paths for which £(/, j) is a rectangle of more than one column. 

Example 3A: A055807 in Sloane [5] 

Initial values 

Recurrence 

Row sums 

R(i, 0) = 1 for i > 0, R(0t j) = 0 for j > 1 

R(iJ) = 2 EB( i ' / ) for i > 1, j > 1; T{iJ) = 
t'=o y=o 

1,1,2,5,13,...(odd-indexed Fibonacci numbers) 

= R(i-- j , j) 

1 
1 0 

1 1 0 
1 3 1 0 

1 7 4 1 0 
1 15 12 5 1 0 

1 31 32 18 6 1 0 
1 63 80 56 25 7 1 0 

The array obtained by reflecting this one about its central column appears as A050143 in Sloane 
[5]. In order to see that the row sums in Example 3A are odd-indexed Fibonacci numbers, we 
first record an identity having an easy omitted proof: 

R(iJ)=2R(i-lJ)+R(iJ-l)-R(i-lJ-l)fori>l,j>2. 

y=2 

by (8), so that 

S=2 2n-2 + l + ntdR(n-j-lJ)Ul+R(n-2,l) 
J=2 J 

y=2 ;=2 

= ( 2 5 ^ + l) + (2 - 2 - l + S ^ - 2 " - 2 -1)-
n-4 

2"-3-l + ^R(n-j-2J) 
j=2 

(8) 

(9) 
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Since both sequences (Sn) and (F2n_l) are uniquely determined by initial values S0 = l and 5i = 2 
together with the recurrence in (9), we have Sn = F2n_l for n > 0. 

Example 3B: A055818 In Sloane [5] 

Initial values 

Recurrence 

Row sums 

R{i,0) = R{0,i) = 1 fori > 0 

R(hJ) = S £flW,f)foTi> 1, j > 1; T(iJ) = R(i-jJ) 
1, 2, 4,10, 26 , . . . (twice odd-indexed Fibonacci numbers) 

1 
1 1 

1 2 1 
1 5 3 1 

1 11 9 4 1 
1 23 24 14 5 1 

1 47 60 43 20 6 1 
1 95 144 122 69 27 7 1 

The recurrences (8) hold for this array and can be used to prove that the row sums are given by 

Next, we break free of the initial values (3). When counting paths into the point (3,0), for 
example, rather than counting only the edge (0,0)-to-(3,0) as a path, we can treat each of the 
following as paths: 

(0,0)-to-(3,0), 
(0,0)4o-(2,0)-to-(3,0), 
(0,0)4o-a0)-to-(3,0), 
(0,0)-to-(l,0)-to-(2,0)-to-(3,0). 

More generally, for this sort of path, the number of paths entering (i, 0) is 21"1 for / > 1. Using as 
initial values RQ, 0) = 2I_1, we count certain paths over rectangular tail-sets and obtain another 
array. 

Example 3C: A049600 in Sloane [5] 

Initial values 

Recurrence 

Row sums 
Alternating row sums 

E(0,0) = 1, R{i, 0) = 2r-T and R(0, i) = 0 for i > 1 

R(iJ) = 2 E«(*'. /) f o r * £ i. i Z l; T(ij) = R(i - jj) 1 
t v =0/=0 

1,1 ,3 ,8 ,21,55, . . . (even-indexed Fibonacci numbers) 
1 ,1 ,1 ,2 ,3 ,5 ,8 , . . . (Fibonacci numbers) 

1 
1 0 

2 1 0 
4 3 1 0 

8 8 4 1 0 

This array and its connections to compositions are considered in [4]. Again, the recurrences (8) 
prevail and can be used to prove that the row sums are given by S„ = F2n for n > 1, and that alter-
nating rows sums defined by 
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4 = T(n, 0) - T(n, 1) + T(n, 2) - • • • + (-If T(n, ri) 

satisfy 4 , = -^ for w > 1. 
Next, we consider rectangular tail-sets restricted to just two columns. On the x-axis the 

initial values R(\ 0) = 1 and R(2,0) = 1, together with the two-column recurrence, determine the 
Fibonacci sequence for values of R(i, 0). 

Example 3D: A0S5830 in Slmm [5] 

Initial values 

Recurrence 

1st diagonal 

fl(O.b) ="l, jR(if.O) = 2 ^ i for i > 1, fl(0,j) = Oforj > 1 1 

R(h3) = E £R(i'J) for i > 1, J > 1; r ( t , i ) = #(* - 3,3) 

1,1 ,1 ,2 ,3 ,5 ,8 , . . . (Fibonacci numbers) 

1 
1 0 

2 1 0 
3 3 1 0 

5 7 4 1 0 
8 15 12 5 1 0 

13 30 31 18 6 1 0 
21 58 73 54 25 7 1 0 

In [4], this sort of array is discussed not only for 2-column tail-sets, but also for w-column tail-
sets for m>2. 

4. A SYMMETRIC ARRAY 

We consider one more array, this one given by one recurrence for points beneath the line 
y = x and another, symmetric to the first, for the points above the line y = x. 

Example 4: A038792 in Sloane [5] 

Initial values 
Recurrence 
Central column 

r(tlo) = r(i l 
WJ) = T(i 
1,2,5,13,34, 

i) = 1 for i > 0 
- 1, j ) + T(i - 2, j - 1 ) if t < j / 2 , elseT(z,j) = 
.. (odd-indexed Fibonacci numbers) 

= T(i,i-- 1 ) 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 5 4 1 
1 5 8 8 5 1 

1 6 12 13 12 6 1 
1 7 17 21 21 17 7 1 

Note thai the recurrence can be written in symmetric form, as follows: 
r r ( i ~ i , j ) + r ( i » 2 , j - i ) i f2 /< j , 

T(iJ) = T(i-l,j-l) + T(i-2J-l) i£2i>j. 
It is easy to prove that the central column of this array is the sequence of odd-indexed Fibonacci 
numbers, in conjunction with the fact that each column adjacent to the central one is the even-
indexed Fibonacci sequence. 
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