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1. INTRODUCTION 
The study of GCD matrices was initiated by Beslin and Ligh [5]. In that paper the authors 

investigated GCD matrices in the direction of their structure, determinant, and arithmetic in Zn. 
The determinants of GCD matrices were investigated in [6] and [11]. Furthermore, many other 
results on GCD matrices were established or conjectured (see [2]-[4], [7]-[10], and [12]). 

In this paper we define an nxn matrix S = (sij), where stj =%p, and call S the "almost 
Hilbert-Smith matrix." In the second section we calculate the determinant and the inverse of the 
almost Hilbert-Smith matrix. In the last section we consider a generalization of the almost Hilbert-
Smith matrix. 

29 THE STRUCTURE OF THE ALMOST HILBERT-SMITH MATRIX 

The nxn matrix S = ($.), where s/;. = ̂ jp-9 is called the almost Hilbert-Smith matrix. In this 
section we present a structure theorem and then calculate the value of the determinant of the 
almost Etilbert-Smith matrix. The following theorem describes the structure of the almost Hilbert-
Smith matrix. 

Theorem 1: Let S = (stJ) be the nxn almost Hilbert-Smith matrix. Define the nxn matrix 
A = (flij) by 

[0 otherwise, 

where (j> is Euler's totient function. Then S = AAT. 

Proof: The //-entry in AAT is 

k=\ k\i J lJ k\(i,J) U 
k\J 

Corollary 1: The almost Hilbert-Smith matrix is positive definite, and hence invertible. 
Proof: The matrix A - (o^) is a lower triangular matrix and its diagonal is 

{ 1 ' 2 — n j 
It is clear that det A = ^[#1)4(2)... 0(n)]m and #1) >0forl<i<n. Since det A > 0, rank(S) = 
rank{AAT) = mnk(A) = n. Thus, S is positive definite. D 
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Corollary 2: If S is the n x n almost Hilbert-Smith matrix, then 

detS = -^-3-#l)rt2)...#/i). 

Proof: By Theorem 1, and since the matrix 4̂ is a lower triangular matrix, the result is 
immediate. D 

The matrix A in Theorem 1 can be written as A = EA112, where the n x n matrices E = (ey) 
and A = diag(Xx, X2,..., A,n) are given by 

etj=i 
1 if/U 

[0 otherwise, 

and Xj = tfj). Thus, S = AAT = (EAV2)(EAy2)T = EAET. 

(1) 

Theorem 2: Let S = (fy) be the nxn almost Hilbert-Smith matrix. Then the inverse of Sis the 
matrix B = (bu) such that 

'"-'^wA^B 
j\k 

where ju denotes the Mobius function. 

Proof: Let E = (e^) be the matrix defined in (1) and the n x n matrix U - {utj) be defined as 
follows: 

ty = < 
JM\j\ ftj\U 

10 otherwise. 

Calculating the //-entry of the product EU gives 

ijil; e^=i**-E>i7j=f?*HJ r " *./• 
/ i * 

Hence, t/ = E~\ If A = «fe>g(#l), #2),... , #»)), then 5 = EAET. Thus, 5"1 = UTA~lU = (btJ), 
where 

j\k 

Example 1: Let 5 - (sfJ) be the 4 x 4 almost Hilbert-Smith matrix, 

$ = 

1 2 3 4 
1 1 1 1 
2 2 6 4 
1 1 1 J_ 
3 6 3 12 
1 1 _L 1 
.4 4 12 4 By Theorem 2, S = {btj)9 where 
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b -i i (M(J)MV) , M2)//(2) ju(3)M(3) M4)M4)V 5 
I *0) *(2) *(3) + 0(4) J" 2' 

ftu = 1 ; ^(2)M0 , M4M2) 
I 0(2) *(4) 

-_2 A -1 1 M3)M0 _ 3 

= 6, &23 = 0, h - i j M4)M1)_Q A .22|>(l)Ml),^(2)//(2) 

*--14 ^ -a * 2 2 ~ 2 H~^ "i^r 
_ M2)M1)_ _ Ml)//Q)_9 , _ . _ Ml)Ml)_o 

* 2 4 - 2 4 0(4) - 4 , ^ 3 - 3 3 ^ ( 3 ) - 2 , Z>34-0, * 4 4 - 4 - 4 — ^ — 8 . 
Therefore, since S'1 is symmetric, we have 

S~l = 

5 
2 

2 
3 
2 

0 

-2 
6 
0 

-4 

3 
2 

0 
9 
2 

0 

0 
-4 

0 
8 

3* GENERALIZATION OF THE ALMOST HILBERT-SMITH MATRIX 
In this section we consider an n x n matrix, the //-entry of which is the positive m^ power of 

the //-entry of the almost Hilbert-Smith matrix: 

ij fijm ' 

Let m be a positive integer and let S = (stJ) be the nxn almost Hilbert-Smith matrix. Define 
an n x n matrix Sm, the //-entry of which is s™-. Then 

ij jm jm Zm*i f-m jm ? 

1 J k\{ij) l J 

where Jm is Jordan's generalization of Eulerss totient function [1], given by 

Theorem 3: Let C = (ci;/) be an w x n matrix defined by 
C-- = < fvspi „ „_ 

otherwise. 
Then Sm = CCT. 

Proof: The //-entry in CCT is 

J N l Arli ' 

V^wVCT) 
r 

= ± y j ( i ) = y ^ = j j » , n 
1 i *!(/,/) l J 
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Corollary 3: The matrix Sm = (s™) is positive definite, and hence invertible. 
Proof: The matrix C = (c^) is a lower triangular matrix and its diagonal is 

(JJJ5 JJJZ) JJJn)) 

It is clear that 
v T ' 2m '""' nm j 

detC = ̂ [ J w ( l ) J m (2) . . . / w ( / i ) ] 1 / 2 

and Jm(i) > 0 for 1 < i < n. Since detC > 0, rank{Sm) = rank(CCT) = rank{C) = n. Thus, Sm is 
positive definite. • 

Corollary 4: If Sm = (s™) is the n x n matrix whose //-entry is ^ = ~^-, then 

detSm = - 1 -Jm(l)Jm(2)...Jm(p). 
(n\)2m 

Proof: By Theorem 3, and since the matrix C is a lower triangular matrix, the result is imme-
diate. D 

Example 2: Consider S3, where S is the 5 x 5 almost Hilbert-Smith matrix. Then 
i 1 _i_ J_ _J_" 
1 8 27 64 125 
1 1 _1_ _i_ 1 
8 8 216 64 1000 

?3 _ | JL _L_ _L _ 1 _ _ 1 _ 
27 216 27 1728 3375 
J_ J- l _!_ l 
64 64 1728 64 8000 
1 1 1 1 1 

.125 1000 3375 8000 125. By Corollary 4, we have 

detS3 ^J3(l)J3(2)J3(3)J3(4)J3(5) = MJ™1^ • • 
p i j b - ^ - ^ / ^ w - ^ v ^ v / 46656000000' 

We now define the n x n matrices D = {dtj) and Q = diag(col, o)2, . , £>„) by 
1 if/1', 

otherwise, 
(2) 

and CO j = Jm{j). Then the matrix C = (cfj) can be written as C = DQm. Thus, we have 

sm = ccT = (Dnl/2)(Dnl/2)T = DQDT. 

Theorem 4: The inverse of the matrix Sm = (s™) is the matrix G = (g^), where 

J\k 

Proof: Let D = (dtj) be the matrix defined in (2) and the n x n matrix V = (v^) be defined as 
follows: 
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V-. = { J
mM\l-\ ifj\i, 

10 otherwise. 

Calculating the //-entry of the product DV gives 

k=i k\il \J. 

Hence, V = D~X. If n = diag(Jm(i),Jm(2\...,Jm(n)), then Sm = DODT. Therefore, (5")"1 = 
F r n - 1 r = G = (gy), where 

Example 3: If S2 is the 4 x 4 almost Hilbert-Smith matrix, then 

D 

1 1 1 JL" 
1 4 9 16 
1 1 _L _L 
4 4 36 16 
1 1 1 1 
9 36 9 144 
1 1 1 1 

16 16 144 16. 

Moreover 

(fi(\)M(l) , M2M2) , MQ)M&) I M4)M4)" 
1 1 " ' \ J2(l) 72(2) J2(3) J2(4) _ 24' 

d _12f//(2)Ml),M4)M2) 
12 I 4(2) 4(4) 

_ 4 . _ M3)M1) _ 9 
— 3 ' ^ - 1 , 3 ~ ^ - " 8 ' 

d _, 1 //(4Ml)_n , _g2rMl)Ml),M2)M2)>l_20 _ 
14 4(4) " ' 22 1^2)" 4(4) J~T' ^23-°' 

. M2M1)_ 16 //(!)//(!) _ 81 _ /i(l)//(l) _ 64 
a 2 4 - 2 - 4 — -——, a^-i-i- - , a 3 4 -u , a 4 4 - # 4 -4(4) 3 ' JJ J2(3) 8 

Therefore, since (S2)~l is symmetric, we have 

4(4) 

(S2) ' 2 \ - l , 

35 _ ! _ 9 . A 
24 3 8 u 

_ 1 20 A _16 
3 3 u 3 

- I • o f o 
o -f o f 
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