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1. IK'/RODUCTION AND RESULTS 

The set nw of all permutations of (1,2,...,«), i.e., of all one-to-one mappings n from N -
{1,2,..., n) onto N, can be made to a metric space by defining 

||;r = n'|| = max{|;r(i)-flr'(0l: \<i<«}. 

This space has been studied by Lagrange [1] with emphasis on the number of points contained in a 
sphere with radius k around the identity, i.e., 

q>(k9 n) = \{x e I F : |;r(i)-i| < k, 1 <i <n}\9 

where \A\ denotes the cardinality of the set A. 
These numbers have been calculated in [1] for k e {1,2,3} and all WGN, the set of positive 

integers. For k = 1, it is fairly easy to show that <p(];n-l), n e N, <p(X 0) = 1, is the sequence of 
Fibonacci numbers. For k = 2 and k = 3, the enumeration is based on quite involved recurrences. 
The corresponding sequences are listed in Sloane and Puffle [4] as series Ml600 and Ml671, 
respectively. 

The main purpose of this note is to supplement these findings by providing a closed formula 
for <p(k\ri) when k-\-2<m<2k + 2. Note that, for « < £ + l, one obviously has (p(k;n) = n\; 
thus, the cases n > 2k + 3, k > 4, remain unresolved. 

As a by-product, we obtain a formula for the permanent of specially patterned (0,1)-matrices. 
The connection to the problem above is as follows: Let n, k GM, k<n~~l, be fixed, and for 
i e JV, Bj = {j GZ:i-k<j <i-hk}r\N, where Z is the set of all integers. 

Then <p(k;n) is the same as the number of systems of distinct representatives for the set 
{Bl9 B2,..., BJ. Defining now for ?, j e N 

one has, for the permanent of the matrix A = (a^) (cf. Mine [2], p. 31), 

Ver(A) = q>(k;n). (1.1) 

Remark: The recurrence formula for.^(2; n) has also been derived by Mine using properties of 
permanents (see [2], p. 49, Exercise 16). 

The matrix A defined in this way is symmetric and has, when k + 2 <#i<2^ + 2, the block 
structure 

( \ 1 A \ 
&mxm lmxs ^mxm 
1 1 1 
5xm *sxs ^sxm 

i AT 1 1 
V fflw ±mxs ^mxm J 

(1.2) 
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where m = n-l-k, s = 2k + 2-n, laxb is the ax6-matrix with all elements equal to one and 
Amxm is the m x m-matrix with zeros on and above the diagonal and ones under the diagonal. For 
n = 2k+2, the second row and column blocks cancel. The matrix Amxm has been studied by 
Riordan ([3], p. 211 ff.) in connection with the rook problem. Riordan proved that the numbers 
of ways to put r non-attacking rooks on a triangular chessboard are given by the Stirling number 
of the second kind. This will be crucial for the calculation of <p(k\ n) and of Per(/4) for matrices A 
of a slightly more general structure than that given in (1.2). The results we will prove in Section 2 
are as follows: Let S" denote the Stirling numbers of the second kind, i.e., the number of ways to 
partition an w-set into r nonempty subsets. 

Theorem 1: Let k,n G N , k+2<n<2k + 2y m = n-k-l. Then 

<p(k; n) = X (-l)m"r(« - 2m+r)\(n- 2m+r)mS"r. J r+1 
r=0 

Furthermore, let the matrix AA be defined as 

AA = 

( \ 1 A ^ 
Am2*/Wi ^WJXWJ ^n^xmj 
1 1 1 
^Wjxmj i /w3xm3

 xnh)y.m1 

(1.3) 

where we'N, n = ml-\-m2+m3, n^ GN^{0} , 1 < J < 3 , Aaxa as above; for m^ =0, the correspond-
ing row and column blocks cancel. 

Theorem 2: Let AA be defined by (1.3). Then 

Per(̂ A) = f.i-iy-'fa + /•)!(«% +/T^,+1 • 

Remarks: 
(a) Since the permanent is invariant with respect to transposing a matrix and to multiplication by 
permutation matrices, AA as given in (1.3) is only a representative of a set of matrices for which 
Theorem 2 holds. In particular, it follows that, for all mh ^m^e N^,{0}, 

Wj mi 

£ (-!)""-'(/», + r)\(mi + rrS%1 = 2(-ir»-r(»» +OK"% + ' f C ' 
r=0 r=0 

Specializing further one gets, for v\ = 0, m^ = 1, m^ +1 = HI, the well-known relation 

i=£(-irrHsr
m 

(Jj Since the matrix A given in (1.2) is a special case of the matrix AA, in view of (1.1), Theorem 
1 is a special case of Theorem 2. Therefore, we have to prove only Theorem 2. 

2» PROOFS 

By a suitable identification of the rook problem discussed in Riordan [3], chapters 7 and 8, 
with the problem considered here, part of the proof of Theorem 2 could be derived from results in 
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[3]. In view of a certain consistence of the complete proof, we prefer however to develop the 
necessary details from the beginning. 

The problem of determining <p(k\ n) can be seen as a problem of finding the cardinality of an 
intersection of unions of sets. We will do this by applying the principle of inclusion and exclusion 
to its complement. Therefore, the sets 11^ = {n G W : n(i) = j], ij G N - {1,2,..., n) are rele-
vant. Let 3V(J) for J a H denote the set of all I a J with \I\ = k and £ the set of all ^-tuples 
in N^ with pairwise different components. For k,neN, k<n, (ilJ2,...Jk)eN^r\Nk, and 
j v G N, 1 < v < k, one obviously has 

\(n-k)\ \£{JiJ2,...,h)^K, 
0 otherwise. 

Therefore, one gets from the principle of inclusion and exclusion that, for k, n G N, k < n, J aN 
with \J\ = k, and Bt a N, i GJ, 

U Und=t(-irv-r)! x \{Ui,-Jr)^K-Ji^f^^}\ 
ieJjeBj \ r=l I*®r(J) 

For the sets on the right-hand side of (2.1), it holds that 
1 

(2.1) 

| {C / i , . . . > 7 r )GN-7 / e ^V / e /} t = - ( / |_J t ) ! 

For n eM, k eNJO}, * < «, 51;S,,...,B„ c iV, let 

f l k e l T r ^ O e ^ } 
J€J 

(2.2) 

BZ(B1,...,B„) = 
Z | { 0 1 , . . . , A ) e ^ : 7 ; e 5 , V / e J } | , for* s i , 

1, for * = 0. 
(2.3) 

[If one considers a chessboard on which pieces may be placed only on positions (i, j) for which 
j G Bi9 then R%(Bh..., J?w) is the number of ways of putting k non-attacking rooks on this board.] 

Lemma 1: Let k, n G N, j < n, B{ c JV for i G JV. Then it holds that 

I 
Je9k(N) 

= K - i r I ( / i - r ) ! ^ : j j / ? ' ( 5 l , . . . , 5 B ) . 

/Voo/: With the help of (2.1), one gets 

Z 
Je®k(N) 

f'eJ y e ^ 

= Z ( - i r 1 (» - ' - ) ! Z Z l U ^ . ^ ^ e N - ^ G ^ V / G / } ! 
r=l Je<3>k(N) leW^J) 

= i,(-iy-\n-r)\ Z |{a. . . ,7r)GN;:j / e J8, .V/G/} | |{Je^(iV):/cy}| 

k 

=E(T^-r)i[j/r)m..^). n 
20021 431 



ON THE NUMBER OF PERMUTATIONS WITHIN A GIVEN DISTANCE 

In the next lemma It Is shown how the numbers Rl{Bh..., Bn) are related to RZ(B£9..., 2J£), 
where Bf denotes the complement of Bt w.r.t. N. (In terms of the rook problem, one thus con-
siders the complement of the chessboard.) The lemma is equivalent to Theorem 2 In RIordan ([3], 
p. 180). 

Lemma 2: Let k9n G N , k <n, Bt aN, i e N. Then It holds that 

i?£(i?1?...?iy = X ( ^ ^ 

Proof: By (2.2) and (2.3), one has 

IPI&ZW'.X^GBM (n~k)\R^Bh^Bn) = £ 
Je9k(N) 

= I 
Je9k{N) 

ieJ 

( 
n\- UIK-

ieJ je.Bf 

The assertion then follows with the help of Lemma 1. • 
Lemma 2 will become useful for calculating Per(^4A) in the following manner: Let AA - (a^) 

and put Bt = {j GN: atj = 1}. Since by (2.2) and (2.3) 

Ver(AA)= X f k * < o 

one obtains from Lemma 2 that 

"^"•UaiM0 = 1 
i=l 

^"(A,...,^), 

Per(4) = X(-l) r(«-/-)!^n(Ac, .- , Bc
n). (2.4) 

r=0 

The matrix corresponding to jBf,..., Bc
n is 4A = lwxw - AA, which is easier to handle because It has 

mainly blocks of zero-matrices. A further simplification is obtained by considering instead of AA 

the matrix 

AA = ^mjxwj T̂O2*fM2 ^m2xm3 

^m^xm^ ^m3xm2 ^m^xm^ 

(2.5) 

where Aaxa = laxa - Â  a • ifA is obtained from 4A by suitable permutations of rows and columns. 
By Remark (a) one has Per(ylA) = Per(yfA). 

Now we turn to the special structure related to the matrices of the form Awxm, that Is, we 
consider Bt = {1,2,..., i}, i e Nm = {1,2,..., w}. One can easily show by Induction on k that 

| U , . . . , A ) ^ y v G A , , l ^ * } | = l I ( I A > l - > ' ) 
v=l 

if k,meN, k<m, and D1?...?Z\ c Nm such that DvaDv¥l9 \<v<k, so that 
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We denote the right-hand side of (2.6) by of, 1 < * < w, a® = 1, a™ = 0, for k < 0 or k > m. 

Lemma 3: For a™ defined as above, it holds that 
(a) a^ = aT~l + (m-hl-k)a^:l for dl k GI, mGM, m>2. 
(h) a^ = S^lkfordlmGM,kGNu{0}?k<m. 

Proof: Part (a) follows Immediately from the definition of a™. Assertion (b) obvlolisly holds 
true for m= 1. Since the Stirling numbers of the second kind.satisfy the recursion S™ = S™zl + 
kS^1"1, the assertion Is a consequence of (a). • 

It now follows from Lemma 3 and (2.6) that, for Bi = {1,2,..., /} , \<i<my 

Rm(R iSRU, for all m e N,k e Nu{0>, k < my 
Rk(lil,...,Bm) = < „ (2.7) 

[0, otherwise. 
To deal with the two A-blocks of the matrix AA, the following lemma Is helpful. 

Lemma 4: Let m1? % H G N , n>ml+m2, and ChC2>...,Gn czN such that: 
(a) q c f t 2 , . . , / n } , 1 < I < # I I ; 

fSj Cy cz{iwl + l,...,m+/ii2}, /fi1 + l<i<wl+#%; 
(e) Q = 0, m + ̂ 2 +1 < i < «. 

Furthermore, let Z), = {j e{l, . . . ?I%} : 7 + ^ eCJ+OTi}, 1 <i <i%. Then It holds that 

[0, /Wj+wij+ ! < & < « . 

Proof: Let iV, = {1,...,/»!), JV2 = {mx + l,...,ml + m2}, N3 = {mx +1% +1,...,n) and, for Je 
^(Af), /*(•/) = I (t/i, •••> A) e N* : jf, e q Vi e J} |. Since q = 0 for 1 e ^ 3 , one has fk(J) = 0 if 
J e 9>t(JV) and J n JV3 * 0. This implies 

(̂Q,...,q,) = t I S AW^J2). 

Since ( U q ) n ( U q ) = 0 one has, for J, e ^ ( t y ) , J2 e ^ ( J l f , ) , that 

The assertion thee follows from 

and 

J2e9k_r(Ni) 

Finally, the following identity will become useful: 
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q = 

X ( - l ) r ( ^ - r ) ! ^ / _ r = (^»w)!(w-w)mforw5^Gf^{0}3 n>m. (2.8) 

Identity (2.8) can easily be proved by induction on m using the recurrence formula for the Stirling 
numbers. Now we are ready to prove Theorem 2. Consider the matrix AA = (a/;) defined in 
(2.5). Putting 

fO,...,/}, i<i<#il3 
{mt +1,..., ml +i-mx), ml + l<i<ml + i% 

[0, ml-¥m2-hl<i <n, 

one has afj = 1 if and only if j e Q. Note that for Q,-..., Q the assumptions of Lemma 4 are sat-
isfied and that Dt = {!,...,*'} for l<f ^/w^ Put n-n^-n^^m^. Then, from (2.4), Lemma 4, 
(2.7), and (2.8), one gets that 

Per04A) = t(-m*-r)\R?(Ch..., Q 
r=0 

= X (-i)r(»-'')iZ^(Q,-,c;)/^,(A,...,A,) 

= I (-l)r(«-'-)!l^+t^:U,= I $#-, S (-l)r(»-0!̂ +
+i-r+, 

= X(-ir">,-^i+^~^)K^-w14-v-w2)'w2^1 
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