ON THE NUMBER OF PERMUTATIONS WITHIN A GIVEN DISTANCE

O. Krafft and M. Schaefer
Technical University Aachen, Institute of Statistics, 52056 Aachen, Germany
(Submitted September 2000-Final Revision March 2001)

1. $\mathbb{N}^{\prime} /$ RODUCTION AND RESULTS

The set Π^{n} of all permutations of $(1,2, \ldots, n)$, i.e., of all one-to-one mappings π from $N=$ $\{1,2, \ldots, n\}$ onto N, can be made to a metric space by defining

$$
\left\|\pi=\pi^{\prime}\right\|=\max \left\{\left|\pi(i)-\pi^{\prime}(i)\right|: 1 \leq i \leq n\right\} .
$$

This space has been studied by Lagrange [1] with emphasis on the number of points contained in a sphere with radius k around the identity, i.e.,

$$
\varphi(k ; n)=\left|\left\{\pi \in \mathbb{\Pi}^{n}:|\pi(i)-i| \leq k, 1 \leq i \leq n\right\}\right|
$$

where $|A|$ denotes the cardinality of the set A.
These numbers have been calculated in [1] for $k \in\{1,2,3\}$ and all $n \in \mathbb{N}$, the set of positive integers. For $k=1$, it is fairly easy to show that $\varphi(1 ; n-1), n \in \mathbb{N}, \varphi(1 ; 0)=1$, is the sequence of Fibonacci numbers. For $k=2$ and $k=3$, the enumeration is based on quite involved recurrences. The corresponding sequences are listed in Sloane and Puffle [4] as series M1600 and M1671, respectively.

The main purpose of this note is to supplement these findings by providing a closed formula for $\varphi(k ; n)$ when $k+2 \leq n \leq 2 k+2$. Note that, for $n \leq k+1$, one obviously has $\varphi(k ; n)=n!$; thus, the cases $n \geq 2 k+3, k \geq 4$, remain unresolved.

As a by-product, we obtain a formula for the permanent of specially patterned $(0,1)$-matrices. The connection to the problem above is as follows: Let $n, k \in \mathbb{N}, k \leq n-1$, be fixed, and for $i \in N, B_{i}=\{j \in \mathbb{Z}: i-k \leq j \leq i+k\} \cap N$, where \mathbb{Z} is the set of all integers.

Then $\varphi(k ; n)$ is the same as the number of systems of distinct representatives for the set $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$. Defining now for $i, j \in N$

$$
a_{i j}= \begin{cases}1, & j \in B_{i} \\ 0, & j \notin B_{i}\end{cases}
$$

one has, for the permanent of the matrix $A=\left(a_{i j}\right)$ (cf. Minc [2], p. 31),

$$
\begin{equation*}
\operatorname{Per}(A)=\varphi(k ; n) \tag{1.1}
\end{equation*}
$$

Remarll: The recurrence formula for $\varphi(2 ; n)$ has also been derived by Minc using properties of permanents (see [2], p. 49, Exercise 16).

The matrix A defined in this way is symmetric and has, when $k+2 \leq n \leq 2 k+2$, the block structure

$$
A=\left(\begin{array}{ccc}
\mathbb{1}_{m \times m} & \mathbb{1}_{m \times s} & \Delta_{m \times m} \tag{1.2}\\
\mathbb{1}_{s \times m} & \mathbb{1}_{s \times s} & 1_{s \times m} \\
\Delta_{m \times m}^{T} & \mathbb{1}_{m \times s} & \mathbb{1}_{m \times m}
\end{array}\right)
$$

where $m=n-1-k, s=2 k+2-n, 1_{a \times b}$ is the $a \times b$-matrix with all elements equal to one and $\Delta_{m \times m}$ is the $m \times m$-matrix with zeros on and above the diagonal and ones under the diagonal. For $n=2 k+2$, the second row and column blocks cancel. The matrix $\Delta_{m \times m}$ has been studied by Riordan ([3], p. 211 ff .) in connection with the rook problem. Riordan proved that the numbers of ways to put r non-attacking rooks on a triangular chessboard are given by the Stirling number of the second kind. This will be crucial for the calculation of $\varphi(k ; n)$ and of $\operatorname{Per}(A)$ for matrices A of a slightly more general structure than that given in (1.2). The results we will prove in Section 2 are as follows: Let S_{r}^{n} denote the Stirling numbers of the second kind, i.e., the number of ways to partition an n-set into r nonempty subsets.
Theorem 1: Let $k, n \in \mathbb{N}, k+2 \leq n \leq 2 k+2, m=n-k-1$. Then

$$
\varphi(k ; n)=\sum_{r=0}^{m}(-1)^{m-r}(n-2 m+r)!(n-2 m+r)^{m} S_{r+1}^{m+1} .
$$

Furthermore, let the matrix A_{Δ} be defined as

$$
A_{\Delta}=\left(\begin{array}{lll}
1_{m_{2} \times m_{1}} & 1_{m_{2} \times m_{3}} & \Delta_{m_{2} \times m_{2}} \tag{1.3}\\
1_{m_{3}} \times m_{1} & 1_{m_{3} \times m_{3}} & 1_{m_{3} \times m_{2}} \\
\Delta_{m_{1} \times m_{1}}^{T} & 1_{m_{1} \times m_{3}} & 1_{m_{1} \times m_{2}}
\end{array}\right),
$$

where $n \in \mathbb{N}, n=m_{1}+m_{2}+m_{3}, m_{i} \in \mathbb{N}\{0\}, 1 \leq i \leq 3, \Delta_{a \times a}$ as above; for $m_{i}=0$, the corresponding row and column blocks cancel.
Theorem 2: Let A_{Δ} be defined by (1.3). Then

$$
\operatorname{Per}\left(A_{\Delta}\right)=\sum_{r=0}^{m_{1}}(-1)^{m_{1}-r}\left(m_{3}+r\right)!\left(m_{3}+r\right)^{m_{2}} S_{r+1}^{m_{1}+1} .
$$

Remarks:

(a) Since the permanent is invariant with respect to transposing a matrix and to multiplication by permutation matrices, A_{Δ} as given in (1.3) is only a representative of a set of matrices for which Theorem 2 holds. In particular, it follows that, for all $m_{1}, m_{2}, m_{3} \in \mathbb{N}\{0\}$,

$$
\sum_{r=0}^{m_{1}}(-1)^{m_{1}-r}\left(m_{3}+r\right)!\left(m_{3}+r\right)^{m_{2}} S_{r+1}^{m_{1}+1}=\sum_{r=0}^{m_{2}}(-1)^{m_{2}-r}\left(m_{3}+r\right)!\left(m_{3}+r\right)^{m_{1}} S_{r+1}^{m_{2}+1} .
$$

Specializing further one gets, for $m_{1}=0, m_{3}=1, m_{2}+1=m$, the well-known relation

$$
1=\sum_{r=1}^{m}(-1)^{m-r} r!S_{r}^{m}
$$

(b) Since the matrix A given in (1.2) is a special case of the matrix A_{Δ}, in view of (1.1), Theorem 1 is a special case of Theorem 2. Therefore, we have to prove only Theorem 2.

2. PROOFS

By a suitable identification of the rook problem discussed in Riordan [3], chapters 7 and 8, with the problem considered here, part of the proof of Theorem 2 could be derived from results in
[3]. In view of a certain consistence of the complete proof, we prefer however to develop the necessary details from the beginning.

The problem of determining $\varphi(k ; n)$ can be seen as a problem of finding the cardinality of an intersection of unions of sets. We will do this by applying the principle of inclusion and exclusion to its complement. Therefore, the sets $\Pi_{i j}^{n}=\left\{\pi \in \Pi^{n}: \pi(i)=j\right\}, i, j \in N=\{1,2, \ldots, n\}$ are relevant. Let $\mathscr{P}_{k}(J)$ for $J \subset \mathbb{N}$ denote the set of all $I \subset J$ with $|I|=k$ and $\underset{\neq}{k}$ the set of all k-tuples in \mathbb{N}^{k} with pairwise different components. For $k, n \in \mathbb{N}, k \leq n,\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in \mathbb{N}_{\neq}^{k} \cap N^{k}$, and $j_{v} \in N, 1 \leq v \leq k$, one obviously has

$$
\left|\bigcap_{v=1}^{k} \Pi_{i_{i, j}}^{n}\right|= \begin{cases}(n-k)! & \text { if }\left(j_{1}, j_{2}, \ldots, j_{k}\right) \in \mathbb{N}_{\neq}^{k} \\ 0 & \text { otherwise }\end{cases}
$$

Therefore, one gets from the principle of inclusion and exclusion that, for $k, n \in \mathbb{N}, k \leq n, J \subset N$ with $|J|=k$, and $B_{i} \subset N, i \in J$,

$$
\begin{equation*}
\left|\bigcup_{i \in J} \bigcup_{j \in B_{i}} \Pi_{i j}^{n}\right|=\sum_{r=1}^{k}(-1)^{r-1}(n-r)!\sum_{I \in \mathscr{P}_{r}(J)}\left|\left\{\left(j_{1}, \ldots, j_{r}\right) \in \mathbb{N}_{\neq}^{r}: j_{i} \in B_{i} \forall i \in I\right\}\right| . \tag{2.1}
\end{equation*}
$$

For the sets on the right-hand side of (2.1), it holds that

$$
\begin{equation*}
\left|\left\{\left(j_{1}, \ldots, j_{r}\right) \in \mathbb{N}_{\neq}^{r}: j_{i} \in B_{i} \forall_{i} \in I\right\}\right|=\frac{1}{(n-k)!}\left|\bigcap_{i \in J}\left\{\pi \in \Pi^{n}: \pi(i) \in B_{i}\right\}\right| . \tag{2.2}
\end{equation*}
$$

For $n \in \mathbb{N}, k \in \mathbb{N}_{\cup}\{0\}, k \leq n, B_{1}, B_{2}, \ldots, B_{n} \subset N$, let

$$
R_{k}^{n}\left(B_{1}, \ldots, B_{n}\right)=\left\{\begin{array}{cc}
\sum_{j \in \mathscr{F}_{k}(N)}\left|\left\{\left(j_{1}, \ldots, j_{k}\right) \in \mathbb{N}_{*}^{k}: j_{i} \in B_{i} \forall i \in J\right\}\right|, & \text { for } k \geq 1, \tag{2.3}\\
1, & \text { for } k=0 .
\end{array}\right.
$$

[If one considers a chessboard on which pieces may be placed only on positions (i, j) for which $j \in B_{i}$, then $R_{k}^{n}\left(B_{1}, \ldots, B_{n}\right)$ is the number of ways of putting k non-attacking rooks on this board.]

Lemma 1: Let $k, n \in \mathbb{N}, j \leq n, B_{i} \subset N$ for $i \in N$. Then it holds that

$$
\sum_{J \in \mathscr{P}_{k}(N)}\left|\bigcup_{i \in J} \bigcup_{j \in B_{i}} \Pi_{i j}^{n}\right|=\sum_{r=1}^{k}(-1)^{r-1}(n-r)!\binom{n-r}{k-r} R_{r}^{n}\left(B_{1}, \ldots, B_{n}\right) .
$$

Proof: With the help of (2.1), one gets

$$
\begin{aligned}
& \sum_{J \in \mathscr{P}_{k}(N)}\left|\bigcup_{i \in J} \bigcup_{j \in B_{i}} \Pi_{i j}^{n}\right| \\
= & \sum_{r=1}^{k}(-1)^{r-1}(n-r)!\sum_{J \in \mathscr{P}_{k}(N)} \sum_{I \in \mathscr{F}_{r}(\mathcal{J}}\left|\left\{\left(j_{1}, \ldots, j_{r}\right) \in \mathbb{N}_{\neq}^{r}: j_{i} \in B_{i} \forall i \in I\right\}\right| \\
= & \sum_{r=1}^{k}(-1)^{r-1}(n-r)!\sum_{I \in \mathscr{P}_{r}(N)}\left|\left\{\left(j_{1}, \ldots, j_{r}\right) \in \mathbb{N}_{\neq}^{r}: j_{i} \in B_{i} \forall i \in I\right\} \|\left\{J \in \mathscr{P}_{k}(N): I \subset J\right\}\right| \\
= & \sum_{r=1}^{k}(-1)^{r-1}(n-r)!\binom{n-r}{k-r} R_{r}^{n}\left(B_{1}, \ldots, B_{n}\right) .
\end{aligned}
$$

In the next lemma it is shown how the numbers $R_{k}^{n}\left(B_{1}, \ldots, B_{n}\right)$ are related to $R_{k}^{n}\left(B_{1}^{c}, \ldots, B_{n}^{c}\right)$, where B_{i}^{c} denotes the complement of B_{i} w.r.t. N. (In terms of the rook problem, one thus considers the complement of the chessboard.) The lemma is equivalent to Theorem 2 in Riordan ([3], p. 180).

Lemma 2: Let $k, n \in \mathbb{N}, k \leq n, B_{i} \subset N, i \in N$. Then it holds that

$$
R_{k}^{n}\left(B_{1}, \ldots, B_{n}\right)=\sum_{r=0}^{k}(-1)^{r}(k-r)!\binom{n-r}{n-k}\binom{n-r}{k-r} R_{r}^{n}\left(B_{1}^{c}, \ldots, B_{n}^{c}\right) .
$$

Proof: By (2.2) and (2.3), one has

$$
\begin{aligned}
(n-k)!R_{k}^{n}\left(B_{1}, \ldots, B_{n}\right) & =\sum_{J \in \mathscr{P}_{k}(N)}\left|\bigcap_{i \in J}\left\{\pi \in \Pi^{n}: \pi(i) \in B_{i}\right\}\right| \\
& =\sum_{J \in \mathcal{P}_{k}(N)}\left(n!-\left|\bigcup_{i \in J} \bigcup_{j \in \tilde{B}_{i}} \Pi_{i j}^{n}\right|\right) .
\end{aligned}
$$

The assertion then follows with the help of Lemma 1.
Lemma 2 will become useful for calculating $\operatorname{Per}\left(A_{\Delta}\right)$ in the following manner: Let $A_{\Delta}=\left(a_{i j}\right)$ and put $B_{i}=\left\{j \in N: a_{i j}=1\right\}$. Since by (2.2) and (2.3)

$$
\operatorname{Per}\left(A_{\Delta}\right)=\sum_{\pi \in \Pi^{n}} \prod_{i=1}^{n} a_{i, \pi(i)}=\left|\left\{\pi \in \Pi^{n}: \prod_{i=1}^{n} a_{i, \pi(i)}=1\right\}\right|=R_{n}^{n}\left(B_{1}, \ldots, B_{n}\right),
$$

one obtains from Lemma 2 that

$$
\begin{equation*}
\operatorname{Per}\left(A_{\Delta}\right)=\sum_{r=0}^{n}(-1)^{r}(n-r)!R_{r}^{n}\left(B_{1}^{c}, \ldots, B_{n}^{c}\right) . \tag{2.4}
\end{equation*}
$$

The matrix corresponding to $B_{1}^{c}, \ldots, B_{n}^{c}$ is $\bar{A}_{\Delta}=1_{n \times n}-A_{\Delta}$, which is easier to handle because it has mainly blocks of zero-matrices. A further simplification is obtained by considering instead of \bar{A}_{Δ} the matrix

$$
\hat{A}_{\Delta}=\left(\begin{array}{ccc}
\hat{\Delta}_{m_{1} \times m_{1}} & 0_{m_{1} \times m_{2}} & 0_{m_{1} \times m_{3}} \tag{2.5}\\
0_{m_{2} \times m_{1}} & \hat{\Delta}_{m_{2} \times m_{2}} & 0_{m_{2} \times m_{3}} \\
0_{m_{3} \times m_{1}} & 0_{m_{3} \times m_{2}} & 0_{m_{3} \times m_{3}}
\end{array}\right),
$$

where $\hat{\Delta}_{a \times a}=1_{a \times a}-\Delta_{a, a}^{T} \cdot \hat{A}_{\Delta}$ is obtained from $\overline{A_{\Delta}}$ by suitable permutations of rows and columns. By Remark (a) one has $\operatorname{Per}\left(\bar{A}_{\Delta}\right)=\operatorname{Per}\left(\hat{A}_{\Delta}\right)$.

Now we turn to the special structure related to the matrices of the form $\hat{\Delta}_{m \times m}$, that is, we consider $B_{i}=\{1,2, \ldots, i\}, i \in N_{m}=\{1,2, \ldots, m\}$. One can easily show by induction on k that

$$
\left.\mid\left\{j_{1}, \ldots, j_{k}\right) \in \mathbb{N}_{\neq}^{k}: j_{v} \in D_{v}, 1 \leq v \leq k\right\} \mid=\prod_{v=1}^{k}\left(\left|D_{v}\right|+1-v\right)
$$

if $k, m \in \mathbb{N}, k \leq m$, and $D_{1}, \ldots, D_{k} \subset N_{m}$ such that $D_{v} \subset D_{v+1}, 1 \leq v<k$, so that

$$
\begin{equation*}
R_{k}^{m}\left(B_{1}, \ldots, B_{m}\right)=\sum_{1 s_{i_{1}}<\cdots<i_{k} \leq m} \prod_{v=1}^{k}\left(i_{v}+1-v\right) \tag{2.6}
\end{equation*}
$$

We denote the right-hand side of (2.6) by $\alpha_{k}^{m}, 1 \leq k \leq m, \alpha_{0}^{m}=1, \alpha_{k}^{m}=0$, for $k<0$ or $k>m$.
Lemma 3: For α_{k}^{m} defined as above, it holds that
(a) $\alpha_{k}^{m}=\alpha_{k}^{m-1}+(m+1-k) \alpha_{k-1}^{m-1}$ for all $k \in \mathbb{Z}, m \in \mathbb{N}, m \geq 2$.
(b) $\alpha_{k}^{m}=S_{m+1-k}^{m+1}$ for all $m \in \mathbb{N}, k \in \mathbb{N},\{0\}, k \leq m$.

Proof: Part (a) follows immediately from the definition of α_{k}^{m}. Assertion (b) obviously holds true for $m=1$. Since the Stirling numbers of the second kind satisfy the recursion $S_{k}^{m}=S_{k-1}^{m-1}+$ $k S_{k}^{m-1}$, the assertion is a consequence of (a).

It now follows from Lemma 3 and (2.6) that, for $B_{i}=\{1,2, \ldots, i\}, 1 \leq i \leq m$,

$$
R_{k}^{m}\left(B_{1}, \ldots, B_{m}\right)= \begin{cases}S_{m+1-k}^{m+1}, & \text { for all } m \in \mathbb{N}, k \in \mathbb{N},\{0\}, k \leq m \tag{2.7}\\ 0, & \text { otherwise }\end{cases}
$$

To deal with the two Δ-blocks of the matrix \hat{A}_{Δ}, the following lemma is helpful.
Lemma 4: Let $m_{1}, m_{2}, n \in \mathbb{N}, n \geq m_{1}+m_{2}$, and $C_{1}, C_{2}, \ldots, C_{n} \subset N$ such that:
(a) $C_{i} \subset\left\{1,2, \ldots, m_{1}\right\}, 1 \leq i \leq m_{1}$;
(b) $C_{i} \subset\left\{m_{1}+1, \ldots, m_{1}+m_{2}\right\}, m_{1}+1 \leq i \leq m_{1}+m_{2}$;
(c) $C_{i}=\emptyset, m_{1}+m_{2}+1 \leq i \leq n$.

Furthermore, let $D_{i}=\left\{j \in\left\{1, \ldots, m_{2}\right\}: j+m_{1} \in C_{i+m_{1}}\right\}, 1 \leq i \leq m_{2}$. Then it holds that

$$
R_{k}^{n}\left(C_{1}, \ldots, C_{n}\right)= \begin{cases}\sum_{v=0}^{k} R_{v}^{m_{1}}\left(C_{1}, \ldots, C_{m_{1}}\right) R_{k-v}^{m_{2}}\left(D_{1}, \ldots, D_{m_{2}}\right), & 0 \leq k \leq m_{1}+m_{2} \\ 0, & m_{1}+m_{2}+1 \leq k \leq n\end{cases}
$$

Proof: Let $N_{1}=\left\{1, \ldots, m_{1}\right\}, N_{2}=\left\{m_{1}+1, \ldots, m_{1}+m_{2}\right\}, N_{3}=\left\{m_{1}+m_{2}+1, \ldots, n\right\}$ and, for $J \in$ $\mathscr{P}_{k}(N), f_{k}(J)=\left|\left\{\left(j_{1}, \ldots, j_{k}\right) \in \mathbb{N}_{\neq}^{k}: j_{i} \in C_{i} \forall i \in J\right\}\right|$. Since $C_{i}=\emptyset$ for $i \in N_{3}$, one has $f_{k}(J)=0$ if $J \in \mathscr{P}_{k}(N)$ and $J \cap N_{3} \neq \emptyset$. This implies

$$
R_{k}^{n}\left(C_{1}, \ldots, C_{n}\right)=\sum_{r=0}^{k} \sum_{J_{1} \in \mathscr{F}_{r}\left(N_{1}\right)} \sum_{J_{2} \in \mathscr{F}_{k-r}\left(N_{2}\right)} f_{k}\left(J_{1} \cup J_{2}\right)
$$

Since $\left(\bigcup_{i \in N_{1}} C_{i}\right) \cap\left(\bigcup_{i \in N_{2}} C_{i}\right)=\emptyset$ one has, for $J_{1} \in \mathscr{P}_{r}\left(N_{1}\right), J_{2} \in \mathscr{P}_{k-r}\left(N_{2}\right)$, that

$$
f_{k}\left(J_{1} \cup J_{2}\right)=\left|\left\{\left(j_{1}, \ldots, j_{r}\right) \in \mathbb{N}_{\neq t}^{r}, j_{i} \in C_{i} \forall i \in J_{1}\right\}\right|\left|\left\{\left(j_{r+1}, \ldots, j_{k}\right) \in \mathbb{N}_{\neq}^{k-r}: j_{i} \in C_{i} \forall i \in J_{2}\right\}\right|
$$

The assertion then follows from

$$
R_{r}^{m_{1}}\left(C_{1}, \ldots, C_{m_{1}}\right)=\sum_{J_{1} \in \mathscr{P}_{r}\left(N_{1}\right)}\left|\left\{\left(j_{1}, \ldots, j_{r}\right) \in \mathbb{N}_{\neq}^{r}: j_{i} \in C_{i} \forall i \in J_{1}\right\}\right|
$$

and

$$
R_{k-r}^{m_{2}}\left(D_{1}, \ldots, D_{m_{2}}\right)=\sum_{J_{2} \in \mathscr{S}_{k-r}\left(N_{2}\right)}\left|\left\{\left(j_{r+1}, \ldots, j_{k}\right) \in \mathbb{N}_{\neq}^{k-r}: j_{i} \in C_{i} \forall i \in J_{2}\right\}\right| .
$$

Finally, the following identity will become useful:

$$
\begin{equation*}
\sum_{r=0}^{m}(-1)^{r}(n-r)!S_{m+1-r}^{m+1}=(n-m)!(n-m)^{m} \text { for } m, n \in \mathbb{N}\{0\}, n \geq m \tag{2.8}
\end{equation*}
$$

Identity (2.8) can easily be proved by induction on m using the recurrence formula for the Stirling numbers. Now we are ready to prove Theorem 2. Consider the matrix $\hat{A}_{\Delta}=\left(\hat{a}_{i j}\right)$ defined in (2.5). Putting

$$
C_{i}= \begin{cases}\{1, \ldots, i\}, & 1 \leq i \leq m_{1}, \\ \left\{m_{1}+1, \ldots, m_{1}+i-m_{1}\right\}, & m_{1}+1 \leq i \leq m_{1}+m_{2}, \\ \emptyset, & m_{1}+m_{2}+1 \leq i \leq n,\end{cases}
$$

one has $\hat{a}_{i j}=1$ if and only if $j \in C_{i}$. Note that for C_{1}, \ldots, C_{n} the assumptions of Lemma 4 are satisfied and that $D_{i}=\{1, \ldots, i\}$ for $1 \leq i \leq m_{2}$. Put $n-m_{1}-m_{2}=m_{3}$. Then, from (2.4), Lemma 4, (2.7), and (2.8), one gets that

$$
\begin{aligned}
\operatorname{Per}\left(A_{\Delta}\right) & =\sum_{r=0}^{n}(-1)^{r}(n-r)!R_{r}^{n}\left(C_{1}, \ldots, C_{n}\right) \\
& =\sum_{r=0}^{m_{1}+m_{2}}(-1)^{r}(n-r)!\sum_{v=0}^{r} R_{v}^{m_{1}}\left(C_{1}, \ldots, C_{m_{1}}\right) R_{r-v}^{m_{2}}\left(D_{1}, \ldots, D_{m_{2}}\right) \\
& =\sum_{r=0}^{m_{1}+m_{2}}(-1)^{r}(n-r)!\sum_{v=0}^{r} S_{m_{1}+1-v}^{m_{1}+1} S_{m_{2}+1-r+v}^{m_{2}+1}=\sum_{v=0}^{m_{1}+m_{2}} S_{m_{1}+1-v}^{m_{1}+1} \sum_{r=v}^{m_{1}+m_{2}}(-1)^{r}(n-r)!S_{m_{2}+1-r+v}^{m_{2}+1} \\
& =\sum_{v=0}^{m_{1}} S_{m_{1}+1-v}^{m_{1}+1} \sum_{r=0}^{m_{2}}(-1)^{r+v}(n-r-v)!S_{m_{2}+1-r}^{m_{2}+1}=\sum_{v=0}^{m_{1}}(-1)^{v} S_{m_{1}+1-v}^{m_{1}+1}\left(n-v-m_{2}\right)!\left(n-v-m_{2}\right)^{m_{2}} \\
& =\sum_{v=0}^{m_{1}}(-1)^{m_{1}-v}\left(n-m_{1}+v-m_{2}\right)!\left(n-m_{1}+v-m_{2}\right)^{m_{2}} S_{v+1}^{m_{1}+1} \\
& =\sum_{v=0}^{m_{1}}(-1)^{m_{1}-v}\left(m_{3}+v\right)!\left(m_{3}+v\right)^{m_{2}} S_{v+1}^{m_{1}+1} .
\end{aligned}
$$

ACKNOWLEDGMENT

We wish to thank the anonymous referee for a critical reading of the manuscript and for a series of constructive comments.

REFERENCES

1. M. R. Lagrange. "Quelques résultats dans la métrique des permutations." Ann. Sci. Ec. Norm. Sup., Ser. 3, 79 (1962):199-241.
2. H. Minc. Permanents. Math. Appl., Vol. 6. Reading, MA: Addison-Wesley, 1978.
3. J. Riordan. An Introduction to Combinatorial Analysis. New York: Wiley, 1958.
4. N. J. A. Sloane \& S. Puffle. The Encyclopedia of Integer Sequences. New York: Academic Press, 1995.
AMS Classification Numbers: 05A15, 05A05
