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For consistency, we adopt the same notations and formats developed in our previous work 
on line-sequences, see [2]. 

A line-sequence is expressed as 
\J(c,b):..M_3,u_2,u_h[u0,ullu2,u3,u4,..., (1) 

«o.«i 

where un9 n G Z , denotes the /1th term, the generating pair is given by [% i/J, and the recurrence 
relation is 

cun+hun+l = un+2y (2) 

where c,h GR are not zero. Since (2) is valid for any value of n, we also have 

™n+l+hun+2=un+3. 

From these two relations, we find 

* = ( I W ^ 3 - H H . I , ^ + 2 ) / ( I W ^ 2 - ( V ) 2 ) ' (3) 
c = ((lW2)2-HH-iI'Wf3)/(lWl^i-(Vi)2)- X4) 

The product (see, e.g., [1], [4], [5]), abbreviated as "product" here, of two line-sequences 
does not necessarily satisfy a recurrence relation. We will give some conditions under which it 
does. 

A generalized Fibonacci line-sequence is given by 

{J(c,b):...[0,l],h,c+b2,..., (5) 
0,1 

and a generalized Lucas line-sequence is given by 

\J(c9 *): . . . [2,b], 2c+h\3ch + b\... (6) 
2,b 

see (4.3) and (4.12) in [2]. Let 

U(y^)=Ufe*)Ufe*)- 0) 
0,b 0,1 2,b 

Substituting (5) and (6) into (7) and multiplying corresponding terms produces 

\J(y,x):...[0,hl2cb+h\3c2b + 4cb3+h\.... (8) 
0,b 

Putting n = 0 in (3) and (4) and applying to (8), we obtain 

x = 2c+b2, y = -c2. (9) 
So (7) becomes 

U(-c2 ,2c+*2) = Ufef t )Ufe*) - (10) 
0,6 0,1 %b 
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Let 

-6,0 1,0 -b,2c 

Following the same procedure, we fied 

{J(-c2,2c+b2) = {J(c,b)\J(c,b). 
-b,0 1,0 -b, 2c 

From (10) and (12), we-have the following pair: 

\J(-c\2c+h2) = -(l/b)[J(c,b) \J(c,b), 
1,0 1,0 -b,2c 

[j(-c2,2c+b2) = (Vb)\J(c, b)[j(c, b). 
0,1 0,1 2,6 

( i i ) 

(12) 

(13) 

(14) 

So we obtain the formula: 

U(-C2,2C + &2) = I U K 2 > 2 C + A 2 ) + J U ( - ^ 5 2 C + *2) 
ij 1,0 0,1 

= (1/4) -i\J(c,b) \J(c,b) + j\J(c,b)[j(c,b) 
1,0 -bt2c 0,1 2,b 

(15) 

Example: Letc = b = l in (15) and put MUJ = U. / -1,3) and FUJ = UUj{\ 1), then 

where M denotes Morgan-Voyce numbers, see (1) in [3]. 
Let mu^n and yjJ;„ be the rfi term of MUj and i^-, respectively. Then 

mUj\n = ~~* fib, nf-12; n + J fo, 1; nfl, 1; n = "'/n-l'w-1 +JfJn> 

(16) 

(17) 

where /w and 4 denote the /i* Fibonacci and the /1th Lucas numbers, respectively. In particular, 
ml0;n = "fn-lL-l = "fln-l* 

mQ,ln = fJn -fin-

Since the generating function of A//f • is (J - f/) / (1 - 3f + /2), we have 

/ / ( l -3 r + / 2 ) = X / 2 ^ " " 1
5 

/ I * l 

and 

For M u , 

and for M»1?1, 

l/(l-3/ + *2) = X / 2 / w-l 

«£1 

a-o/o-3r+/2)=x/2„_r-1
) n£l 

(l + 0/0-3^/2) = I/2„_A! 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
f f ^ l 
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