PERFECT SQUARES IN THE LUCAS NUMBERS

Minoru Yabuta

Nichiyodogawa High School, Osaka, 555-0031, Japan (Submitted September 2000-Final Revision August 2001)

1. INTRODUCTION

We consider two sequences defined by the recursion relations

$$u_0 = 0, \ u_1 = 1, u_{n+2} = a u_{n+1} - b u_n, \tag{1}$$

$$v_0 = 2, v_1 = a, v_{n+2} = av_{n+1} - bv_n,$$
 (2)

where a and b are integers which are nonzero, $D = a^2 - 4b \neq 0$. Then

$$u_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad v_n = \alpha^n + \beta^n, \tag{3}$$

where α and β are distinct roots of the polynomial $f(z) = z^2 - \alpha z + b$. Each u_n is called a *Lucas* number, which is an integer. A Lucas sequence $\{u_n\}$ is called *degenerate* if the quotient of the roots of f is a root of unity and nondegenerate otherwise. Throughout this paper we assume that α and b are coprime.

The problem of determining all the perfect squares in a Lucas sequence has been studied by several authors: Cohn, Halton, Shorey, Tijdeman, Ribenboim, Mcdaniel, among others. In 1964, Cohn [1], [2] proved that when a = 1 and b = -1, the only squares in the sequence $\{u_n\}$ are $u_0 = 0$, $u_1 = u_2 = 1$, and $u_{12} = 144$, and the only squares in the sequence $\{v_n\}$ are $v_1 = 1$ and $v_3 = 4$. In 1969, by using the theory of elliptic curves, London and Finkelstein [5] proved that the only cubes in the Fibonacci sequence are $F_0 = 0$, $F_1 = F_2 = 1$, and $F_6 = 8$. Shorey and Tijdeman [9] proved for nondegenerate Lucas sequences that given $d \neq 0$ and $e \geq 2$, where d and e are integers, if $u_m = dU^e$ with $U \neq 0$ (U integral), then m is bounded by an effectively computable constant. In 1996, Ribenboim and Mcdaniel [8] proved that, if a and b are odd and coprime and if $D = a^2 - 4b$ is positive, then u_n is a perfect square only if n = 0, 1, 2, 3, 6, or 12, v_n is a perfect square only if n = 1, 3, or 5.

The aim of this paper is to give an elementary proof of a special case of the above result obtained by Shorey and Tijdeman [9]. Developing the argument of London and Finkelstein [5], we obtain the following results.

Proposition 1: Let $n \ge 0$ be an integer of the form n = 4m + r with $0 \le r < 4$. If u_n is a perfect square, then the rational point $(Ds^2/b^{2m}, Dst/b^{3m})$ lies on the elliptic curve $y^2 = x^3 + 4Db^r x$, where $D = a^2 - 4b$, $s^2 = |u_n|$, $t = v_n$, all of which are prime to b.

Proposition 2: Let $0 \le r < 4$ be a fixed integer. If b is even and the group of rational points on the elliptic curve $y^2 = x^3 + 4Db^r x$ has rank zero or rank one, then u_{4m+r} is a perfect square only for finitely many $m \ge 0$.

[NOV.

2. PROOFS OF PROPOSITIONS 1 AND 2

Proof of Proposition 1

Let α and β be distinct roots of the polynomial $f(z) = z^2 - az + b$. Since $\alpha\beta = b$ and $D = (\alpha - \beta)^2$ we obtain, from (3), $v_n^2 - Du_n^2 = 4b^n$. Suppose that the *n*th term u_n is a perfect square. Putting $|u_n| = s^2$ and $v_n = t$, from the equality above we have $t^2 = Ds^4 + 4b^n$. Multiplying through by D^2s^2 , we see

$$(Dst)^2 = (Ds^2)^3 + 4D(Ds^2)b^n$$
.

Writing n = 4m + r with $0 \le r < 4$, we obtain

$$\left(\frac{Dst}{b^{3m}}\right)^2 = \left(\frac{Ds^2}{b^{2m}}\right)^3 + 4Db^r \left(\frac{Ds^2}{b^{2m}}\right).$$

Next we shall show that Ds^2/b^{2m} and Dst/b^{3m} are in lowest terms. Let p be an arbitrary prime divisor of b. Then, from (1) and (2), we have $u_n \equiv a^{n-1} \pmod{p}$ and $v_n \equiv a^n \pmod{p}$. Since a and b are coprime, $u_n \neq 0 \pmod{p}$ and $v_n \neq 0 \pmod{p}$; furthermore, $D = a^2 - 4b \equiv a^2 \neq 0 \pmod{p}$. We have thus completed the proof. \Box

Before proceeding to the proof of Proposition 2, we will need the following information.

Let c be a nonzero integer and let C be the elliptic curve given by the equation $y^2 = x^3 + cx$. We denote by Γ the additive group of rational points on C and by O the zero element of Γ .

Definition 1: For $P = (x, y) \in \Gamma$, we write x = p/q in lowest terms and define the logarithmic height of P by

$$h(P) = \log \max(|P|, |q|).$$

Definition 2: For $P \in \Gamma$, the quantity

$$\hat{h}(P) = \lim_{n \to \infty} \frac{h(2^n P)}{4^n}$$

is called the canonical height of P.

The following two fundamental theorems on the height are well known, so the proofs are omitted (see [4] or [10]).

Theorem 1: There is a constant κ_0 that depends on the elliptic curve C, so that

$$|h(2P) - 4h(P)| \le \kappa_0 \text{ for all } P \in \Gamma.$$
(4)

Theorem 2 (Néron): There is a constant κ_1 that depends only on the elliptic curve C, so that for all positive integers *n* and for all $P \in \Gamma$ we have

$$|h(nP) - n^2 \hat{h}(P)| \le \kappa_1. \tag{5}$$

Definition 3: For P = (x, y) in Γ , we write x = p/q in lowest terms and denote by $\lambda(P)$ the exponent of the highest power of 2 that divides the denominator q. By convention, we define $\lambda(Q) = 0$.

Lemma 1: Let $P \in \Gamma$ with $P \neq (0, 0)$. If $\lambda(P) \neq 0$, then $\lambda(2P) = \lambda(P) + 2$.

2002]

461

Proof: We can write $P = (x, y) = (m/e^2, n/e^3)$, where m/e^2 and n/e^3 are in lowest terms with e > 0. Then the x coordinate of 2P is given by

$$x(2P) = -2x + \left(\frac{3x^2 + c}{2y}\right)^2 = \frac{(m - ce^4)^2}{(2en)^2}.$$

Since *e* is even and *m*, *n* are odd, $\lambda(2P) = \lambda(P) + 2$. \Box

Lemma 2: Let P_1 and P_2 be in Γ with $P_1 \neq (0, 0)$ and $P_2 \neq (0, 0)$. If $0 \le \lambda(P_1) < \lambda(P_2)$, then $\lambda(P_1 + P_2) \le \lambda(P_2)$.

Proof: If $P_1 = O$, then $\lambda(P_1 + P_2) = \lambda(P_2)$. So let us write $P_1 = (x_1, y_1) = (m/e^2, n/e^3)$ and $P_2 = (x_2, y_2) = (\overline{m}/f^2, \overline{n}/f^3)$, where m/e^2 , n/e^3 , \overline{m}/f^2 , and \overline{n}/f^3 are in lowest terms with e > 0 and f > 0. Then the x coordinate of $P_1 + P_2$ is given by

$$\begin{aligned} x(P_1+P_2) &= -x_1 - x_2 + \left(\frac{y_1 - y_2}{x_1 - x_2}\right)^2 \\ &= \frac{(nf^3 - \overline{n}e^3)^2 - (mf^2 - \overline{m}e^2)^2(mf^2 + \overline{m}e^2)}{e^2 f^2 (mf^2 - \overline{m}e^2)^2}. \end{aligned}$$

Since $0 \le \lambda(P_1) < \lambda(P_2)$, we can write $e = 2^s e'$ and $f = 2^t f'$, where e' and f' are odd and s and t are integers with $0 \le s < t$. Then $x(P_1 + P_2)$ becomes

$$\frac{(2^{3t-3s}nf'^3 - \overline{n}e'^3)^2 - (2^{2t-2s}mf'^2 - \overline{m}e'^2)^2(2^{2t-2s}mf'^2 + \overline{m}e'^2)}{2^{2t}e'^2f'^2(2^{2t-2s}mf'^2 - \overline{m}e'^2)^2}$$

Since e', f', \overline{m} , and \overline{n} are odd, we have $\lambda(P_1 + P_2) \le 2t$. Combining this with $\lambda(P_2) = 2t$, we obtain $\lambda(P_1 + P_2) \le \lambda(P_2)$. \Box

Lemma 3: Assume that Γ has rank one, and let P be a generator for the infinite cyclic subgroup of Γ . Let t_0 denote the least positive value of the integer t such that $\lambda(tP) \neq 0$. Then, for any integer $l \geq 0$, if $2^l t_0 \leq n < 2^{l+1} t_0$, then $\lambda(nP) \leq \lambda(2^l t_0 P)$.

Proof: We use strong induction on *l*. First we show that the result is true for l = 0. Suppose $t_0 \le n < 2t_0$. Then we can write $n = t_0 + r$ with $0 \le r < t_0$. Since $\lambda(rP) = 0$ and $\lambda(t_0P) > 0$, by Lemma 1 we have $\lambda(nP) = \lambda(t_0P + rP) \le \lambda(t_0P)$.

Next we suppose that the result is true for each l = 0, 1, 2, ..., k. For any integer *n* satisfying $2^{k+1}t_0 \le n < 2^{k+2}t_0$, there exists an integer *r* such that $n = 2^{k+1}t_0 + r$ and $0 \le r < 2^{k+1}t_0$. The induction hypothesis gives $\lambda(rP) \le \lambda(2^k t_0 P)$. By Lemma 1 we have $\lambda(2^k t_0 P) < \lambda(2^{k+1}t_0 P)$. Therefore, $\lambda(rP) < \lambda(2^{k+1}t_0 P)$; thus, by Lemma 2 we have $\lambda(nP) = \lambda(2^{k+1}t_0 P + rP) \le \lambda(2^{k+1}t_0 P)$, which shows that the result is true for l = k + 1. Hence, the result is true for every integer $l \ge 0$ and the proof is complete. \Box

Proof of Proposition 2

We put $R_m = (Ds^2 / b^{2m}, Dst / b^{3m})$, where $s^2 = |u_{4m+r}|$ and $t = v_{4m+r}$. Assume that Γ has rank zero. Then it is a finite cyclic group, and so the rational point R_m lies on the elliptic curve C only for finitely many $m \ge 0$; therefore, u_{4m+r} is a perfect square only for finitely many $m \ge 0$.

[NOV.

Next assume that Γ has rank one. Then $\Gamma \cong Z \oplus F$, where Z is an infinite cyclic group and F is a torsion group of order two or four (see [4] or [10]). Let $P \in \Gamma$ be a generator for Z and $Q \in \Gamma$ for F. Now suppose that the rational point R_m lies on the elliptic curve C. Then there are integers *i* and *j* such that

$$R_m = iP + jQ. \tag{6}$$

Since 4Q = O, where O is the zero element of Γ , we obtain

$$4R_m = 4iP. \tag{7}$$

The essential tool for the proof is the logarithmic height. Since h(4iP) = h(-4iP), we can assume i > 0 without loss of generality. Let k_0 be the least positive value of the integer k such that $\lambda(kP) \neq 0$. Then there is an integer $l \ge 0$ such that $2^l k_0 \le 4i < 2^{l+1}k_0$. From Lemmas 1 and 3, we find $\lambda(4iP) \le \lambda(2^l k_0 P) = \lambda(k_0 P) + 2l$. Since $\lambda(4iP) = \lambda(4R_m) > 2m$, putting $\lambda_0 = \lambda(k_0 P)$, we obtain $2l > \lambda(4iP) - \lambda_0 > 2m - \lambda_0$. Hence, $4i \ge 2^l k_0 > 2^{m-\lambda_0/2}$.

Now, Theorem 2 tells us that there is a constant K_1 depending only on the elliptic curve C, so that

$$h(4iP) \ge (4i)^2 \hat{h}(P) - K_1 > 2^{2m - \lambda_0} \hat{h}(P) - K_1.$$
(8)

Next we estimate for $h(4R_m)$. Let α and β be distinct roots of the polynomial $f(z) = z^2 - az + b$. Putting $\gamma = \max(|\alpha|, |\beta|) \ge 1$, we find

$$|b^{2m}| = |\alpha\beta|^{2m} \le \gamma^{4m},$$

$$|Ds^2| = |Du_{4m+r}| = |\alpha - \beta| |\alpha^{4m+r} - \beta^{4m+r}|$$

$$\le (|\alpha| + |\beta|)(|\alpha|^{4m+r} + |\beta|^{4m+r}) \le 4\gamma^{4m+4}$$

Therefore, $h(R_m) \le \log 4\gamma^{4(m+1)} = 4(m+1)\log \gamma + 2\log 2$. Hence, by Theorem 1,

$$h(4R_m) \le 16h(R_m) + 5K_0 \le 64(m+1)\log\gamma + 32\log2 + 5K_0,$$
(9)

where K_0 is a constant depending only on the elliptic curve C.

It follows that, if the rational point R_m lies on the elliptic curve C, then m satisfies the following inequality:

$$64(m+1)\log\gamma + 32\log2 + 5K_0 > 2^{2m-\lambda_0}\hat{h}(P) - K_1.$$
⁽¹⁰⁾

However, there exists a constant N > 0 such that inequality (10) is false for every $m \ge N$, so the rational point R_m is not found on C for every $m \ge N$. We conclude from Proposition 1 that u_{4m+r} is not a perfect square for every $m \ge N$. We have thus completed the proof. \Box

3. APPLICATIONS

Following Silverman and Tate [10], we describe how to compute the rank r of the group Γ of rational points on the elliptic curve C: $y^2 = x^3 + cx$ with integral coefficients. Let \mathbb{Q}^* denote the multiplicative group of nonzero rational numbers, and let $\mathbb{Q}^{*2} = \{u^2 : u \in \mathbb{Q}^*\}$. Now consider the map $\varphi : \Gamma \to \mathbb{Q}^* / \mathbb{Q}^{*2}$ defined by the rule:

$$\varphi(O) = 1 \pmod{\mathbb{Q}^{*2}}$$

$$\varphi(0, 0) = c \pmod{\mathbb{Q}^{*2}}$$

$$\varphi(x, y) = x \pmod{\mathbb{Q}^{*2}} \text{ if } x \neq 0.$$

2002]

On the other hand, let $\overline{\Gamma}$ denote the group of rational points on the elliptic curve $\overline{C}: y^2 = x^3 - 4cx$. Using the analogous map $\overline{\varphi}: \overline{\Gamma} \to \mathbb{Q}^*/\mathbb{Q}^{*2}$, we obtain the formula for the rank of Γ :

$$2^{r} = \frac{\#\varphi(\Gamma) \cdot \#\overline{\varphi}(\overline{\Gamma})}{4},\tag{11}$$

where $\#\phi(\Gamma)$ and $\#\overline{\phi}(\overline{\Gamma})$ denote the order of $\phi(\Gamma)$ and the order of $\overline{\phi}(\overline{\Gamma})$, respectively.

Next we describe how to determine the order of $\varphi(\Gamma)$. It is obvious from the rule of the map φ that $\{1, c \pmod{\mathbb{Q}^{*2}}\} \subset \varphi(\Gamma)$.

Now, for $P = (x, y) \in \Gamma$ with $y \neq 0$, the coordinates x and y are written in the form

$$x = \frac{c_1 M^2}{e^2}, \quad y = \frac{c_1 M N}{e^3}$$

in lowest terms with $M \neq 0$ and e > 0, where c_1 is an integral divisor of c, so that $c = c_1c_2$. Here M, e, and N must satisfy the equation

$$N^2 = c_1 M^4 + c_2 e^4, (12)$$

and also the conditions

$$gcd(M, e) = gcd(N, e) = gcd(c_1, e) = 1$$

 $gcd(c_2, M) = gcd(M, N) = 1.$

Hence, for a factorization $c = c_1c_2$, if the equation $N^2 = c_1M^4 + c_2e^4$ has a solution (M, e, N) with $M \neq 0$ that satisfies the side conditions above, then $c_1 \pmod{\mathbb{Q}^{*2}}$ is in $\varphi(\Gamma)$, otherwise it is not.

Proposition 3: Let p be a prime and let C be the elliptic curve $y^2 = x^3 - 4px$. If $p \equiv 3 \pmod{4}$, then the group Γ of rational points on C has rank zero or rank one.

Proof: Since c = -4p, the possibilities for c_1 are $c_1 = \pm 1, \pm 2, \pm 4, \pm p \pm 2p, \pm 4p$. So we see that $\varphi(\Gamma) \subset \{\pm 1, \pm 2, \pm p, \pm 2p \pmod{\mathbb{Q}^{*2}}\}$. We shall show first that $-1 \notin \Gamma$. Let us consider the equation

$$N^2 = -M^4 + 4pe^4. (13)$$

This implies the congruence $N^2 \equiv -M^4 \pmod{p}$. Since $p \equiv 3 \pmod{4}$, we have (-1/p) = -1, where (-1/p) is the Legendre symbol of -1 for p; hence, the congruence above has no solutions with $M \neq 0 \pmod{p}$. So equation (13) has no solutions in integers with gcd(M, N) = 1. Similarly, the equation $N^2 = -4M^4 + pe^4$ has no solutions in integers with gcd(M, N) = 1. Therefore, $-1 \notin \rho(\Gamma)$, and hence $\#\rho(\Gamma) = 2$ or $\#\rho(\Gamma) = 4$.

On the other hand, let \overline{C} be the elliptic curve $y^2 = x^3 + 16px$, and let $\overline{\Gamma}$ denote the group of rational points on \overline{C} . Since $\overline{c} = 16p$, we have $\overline{\varphi}(\overline{\Gamma}) \subset \{1, 2, p, 2p \pmod{\mathbb{Q}^{*2}}\}$. We shall show by contradiction that $2 \notin \overline{\varphi}(\overline{\Gamma})$. Let us consider the equation

$$N^2 = 2M^4 + 8pe^4. (14)$$

Suppose equation (14) has a solution in integers with $M \neq 0$ and gcd(M, N) = 1. Then N is even. Putting $N = 2N_1$, we have $2N_1^2 = M^4 + 4pe^4$, showing that M is even, contrary to the hypothesis that M and N are coprime. Hence, equation (14) has no solutions in integers with gcd(M, N) = 1. Similarly, the equation $N^2 = 8M^4 + 2pe^4$ has no solutions in integers with gcd(N, e) = 1. Thus, $2 \notin \overline{\varphi}(\overline{\Gamma})$, and so $\#\overline{\varphi}(\overline{\Gamma}) = 2$. By formula (11), we find

NOV.

$$2^r = \frac{\#\varphi(\Gamma) \cdot \#\overline{\varphi}(\overline{\Gamma})}{4} = 1 \text{ or } 2.$$

Therefore, Γ has rank zero or rank one. \Box

Proposition 4: Let p, q be primes and let C be the elliptic curve $y^2 = x^3 - 4pqx$. If $p \equiv 5 \pmod{8}$, $q \equiv 3 \pmod{8}$, and (p/q) = -1, then the group Γ of rational points on C has rank zero or rank one.

Proof: Since c = -4pq, we have $\varphi(\Gamma) \subset \{\pm 1, \pm 2, \pm p, \pm q, \pm 2p, \pm 2q, \pm pq, \pm 2pq \pmod{\mathbb{Q}^{*2}}\}$. We shall show, for instance, that $-2p \notin \Gamma$. The hypotheses give

$$\left(\frac{-1}{p}\right) = 1, \quad \left(\frac{2}{p}\right) = \left(\frac{-1}{q}\right) = \left(\frac{2}{q}\right) = -1, \quad \left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) = -1.$$

Hence, the congruence $N^2 \equiv -2pM^4 \pmod{q}$ has no solutions with $M \neq 0 \pmod{q}$ because (-2p/q) = (-1/q)(2/q)(p/q) = -1, so $N^2 = -2pM^4 + 2qe^4$ has no solutions in integers with gcd(M, N) = 1. Therefore, $-2p \notin \Gamma$. By using the same argument, we can show that $\varphi(\Gamma)$ does not have any elements of $\{-1, \pm 2, \pm p, \pm q, -2p, pq, 2pq\}$. Thus, we obtain $\#\varphi(\Gamma) \leq 4$.

On the other hand, let \overline{C} be the elliptic curve $y^2 = x^3 + 16pqx$, and let $\overline{\Gamma}$ denote the group of rational points on \overline{C} . Since $\overline{c} = 16pq$, we have $\overline{\alpha}(\overline{\Gamma}) \subset \{1, 2, p, q, 2p, 2q, pq, 2pq \pmod{\mathbb{Q}^{*2}}\}$. By using an argument similar to the one above, we can show that $p \notin \overline{\varphi}(\overline{\Gamma})$ and $q \notin \overline{\varphi}(\overline{\Gamma})$. Furthermore, by using an argument similar to the one we gave in the proof of Proposition 3, we can show that $\overline{\varphi}(\overline{\Gamma})$ does not have any elements of $\{2, 2p, 2q, 2pq\}$. Thus, we obtain $\#\varphi(\Gamma) = 2$. Therefore, by formula (11), we find $2^r \leq 2$. In conclusion, Γ has rank zero or rank one. \Box

In addition, the following proposition holds. The proof is completely analogous to that of Proposition 4.

Proposition 5: Let p, q be primes and let C be the elliptic curve $y^2 = x^3 - 4pqx$. If $p \equiv 1 \pmod{8}$, $q \equiv 7 \pmod{8}$, and (p/q) = -1, then the group Γ of rational points on C has rank zero or rank one.

Now let us consider the Lucas sequence determined by $u_0 = 0$, $u_1 = 1$, $u_{n+2} = au_{n+1} - bu_n$, where a and b are coprime integers that are nonzero, $D = a^2 - 4b \neq 0$. Assume that b is even. If D = -p < 0, where p is a prime, then $p \equiv 3 \pmod{4}$. If D = -pq < 0, where p and q are primes, then $(p,q) \equiv (3,5) \pmod{8}$ or $(p,q) \equiv (1,7) \pmod{8}$. Hence, the following three corollaries hold.

Corollary 1: Assume b is even and D = -p < 0, where p is a prime. Then there are only finitely many perfect squares in the subsequence $\{u_{4m}\}$.

Corollary 2: Assume b is even and D = -pq < 0, where p and q are primes with (p/q) = -1. Then there are only finitely many perfect squares in the subsequence $\{u_{4m}\}$.

Corollary 3: Assume b is of the form $b = (2d)^4$ for some integer d. If D = -p, where p is a prime, or if D = -qr < 0, where q and r are primes with (q/r) = -1, then there are only finitely many perfect squares in the sequence $\{u_n\}$.

2002]

Proof: Suppose that the nth term, u_n , is a perfect square. As mentioned above, we have $t^2 = Ds^4 + 4(2d)^{4n}$, where $s^2 = |u_n|$ and $t = v_n$. This implies

$$\left\{\frac{Dst}{(2d)^{3n}}\right\}^2 = \left\{\frac{Ds^2}{(2d)^{2n}}\right\}^3 + 4D\left\{\frac{Ds^2}{(2d)^{2n}}\right\}.$$

From Propositions 3, 4, and 5, we obtain that the elliptic curve $y^2 = x^3 + 4Dx$ has rank zero or rank one. It follows that u_n is a perfect square only for finitely many $n \ge 0$. \Box

ACKNOWLEDGMENT

The author is grateful to the anonymous referee for a careful reading of the manuscript and for many valuable suggestions.

REFERENCES

- 1. J. H. E. Cohn. "On Square Fibonacci Numbers." Proc. London Math. Soc. 39 (1964):537-41.
- J. H. E. Cohn. "Square Fibonacci Numbers, etc." The Fibonacci Quarterly 2.2 (1964):109-113.
- 3. J. H. Halton. "Some Properties Associated with Square Fibonacci Numbers." The Fibonacci Quarterly 5.4 (1967):347-55.
- 4. A. W. Knap. *Elliptic Curves*. Princeton: Princeton University Press, 1992.
- 5. H. London & R. Finkelstein. "On Fibonacci and Lucas Numbers which Are Perfect Powers." *The Fibonacci Quarterly* 7.4 (1969):476-81.
- 6. P. Ribenboim. "Square Classes of Fibonacci and Lucas Numbers." Port. Math. 46 (1989): 159-75.
- 7. P. Ribenboim & W. L. Mcdaniel. "Square Classes of Lucas Sequences." Port. Math. 48 (1991):469-73.
- 8. P. Ribenboim & W. L. Mcdaniel. "The Squares Terms in Lucas Sequences." J. Number Theory 58 (1996):104-23.
- 9. T. N. Shorey & R. Tijdeman. Exponential Diophantine Equations. Cambridge: Cambridge University Press, 1986.
- 10. J. H. Silverman & J. Tate. *Rational Points on Elliptic Curves*. New York: Springer-Verlag, 1992.

AMS Classification Numbers: 11B39, 14G05

[NOV.