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1. INTRODUCTION 

We consider two sequences defined by the recursion relations 
«o = 0, «! = 1, w„+2 = aun+l-bun, (1) 

v0 = 2, v, = a, v„+2 = avn+x -bv„, (2) 

where a and b are integers which are nonzero, D = a2 - Ab * 0. Then 
a" - Bn 

u»=^Tjf> v„ = <*"+?", (3) 

where a and fi are distinct roots of the polynomial f(z) = z2-az+b. Each un is called a Lucas 
number, which is an integer. A Lucas sequence {un} is called degenerate if the quotient of the 
roots off is a root of unity and nondegenerate otherwise. Throughout this paper we assume that 
a and b are coprime. 

The problem of determining all the perfect squares in a Lucas sequence has been studied by 
several authors: Cohn, Halton, Shorey, Tijdeman, Ribenboim, Mcdaniel, among others. In 1964, 
Cohn [1], [2] proved that when a = l and b--\9 the only squares in the sequence {un} are 
UQ = 0, % = f#2 = 1, and ul2 = 144, and the only squares in the sequence {vj are vx = 1 and v3 = 4. 
In 1969, by using the theory of elliptic curves, London and Finkelstein [5] proved that the only 
cubes in the Fibonacci sequence are F0 = 0, Fl = F2 = l, and F6 = S. Shorey and Tijdeman [9] 
proved for nondegenerate Lucas sequences that given d*0 and e>2, where d and e are inte-
gers, if um = dUe with U & 0 (U integral), then m is bounded by an effectively computable con-
stant. In 1996, Ribenboim and Mcdaniel [8] proved that, if a and b are odd and coprime and if 
D = a2 -4b is positive, then un is a perfect square only if n = 0,1,2,3,6, or 12, vn is a perfect 
square only if n = 1,3, or 5. 

The aim of this paper is to give an elementary proof of a special case of the above result 
obtained by Shorey and Tijdeman [9]. Developing the argument of London and Finkelstein [5], 
we obtain the following results. 

Proposition 1: Let n > 0 be an integer of the form n = 4m+r with 0 < r < 4. If un is a perfect 
square, thee the rational point (Ds1 i!b2m',Dsti!b3m) lies on the elliptic curve y2 = x3+4Dbrx, 
where D = a2 - 46, s2 = \un |, t = vn, all of which are prime to b. 

Proposition 2: Let 0 < r < 4 be a fixed integer. If b is even and the group of rational points on 
the elliptic curve y2 = x3 + 4D¥x has rank zero or rank one, then u4m+r is a perfect square only 
for finitely many m > 0. 
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2. PROOFS OF PROPOSITIONS 1 AND 2 

Proof of Proposition 1 
Let a and fi be distinct roots of the polynomial f{z) = z2-az+b. Since afi = b and D~ 

{a-(J)2 we obtain, from (3), v2-Du2 = 4bn. Suppose that the n^ term un is a perfect square. 
Putting \un\ = s2 and vn = i, from the equality above we have t2 = Ds4 +4bn. Multiplying through 
by Z)V, we see 

(Dstf = (B$zf+4D(Bs2)bn. 

Writing n = 4m + r with 0 < r < 4, we obtain 

Next we shall show that Ds2 lb2m and Dst lb3m are in lowest terms. Let p be an arbitrary 
prime divisor of b. Then? from (1) and (2), we have un = an~l (mod/?) and vn = an (mod/?). Since 
a and b aire coprime, un 4 0 (mod p) and vn # 0 (mod /?); furthermore, D = a2 - 46 = a2 # 0 (mod 
p). We have thus completed the proof. D 

Before proceeding to the proof of Proposition 2, we will need the following information. 
Let c be a nonzero integer and let C be the elliptic curve given by the equation y2 - x3 + ex. 

We denote by T the additive group of rational points on C and by O the zero element of T. 

Definition 1: For P = (x,y)eT, we write x = plq in lowest terms and define the logarithmic 
height of P by 

A(P) = logmax(|P|,|g|). 

Definition 2: For P eT, the quantity 

h(P) = 11m hirp) 
X / n-»ao 4n 

Is called the canonical height of P. 
The following two fundamental theorems on the height are well known, so the proofs are 

omitted (see [4] or [10]). 

Theorem 1: There is a constant K0 that depends on the elliptic curve C, so that 

\h(2P)-4h(P)| < KQ for all P e F . (4) 

Theorem 2 (Neron): There is a constant KX that depends only on the elliptic curve C, so that for 
all positive integers n and for all P e T we have 

\h{nP)-n2h{P)\<Kv (5) 

Definition 3: For P = (x,y) in T, we write x = plq in lowest terms and denote by X(P) the 
exponent of the highest power of 2 that divides the denominator q. By convention, we define 
1(0) = 0. 

Lemma 1: Let PGT with P^(0,0). If A(P)*0, then l(2P) = l (P) + 2. 
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Proof: We can write P = (x, y) = (m/e2, nle3), where m/e2 and n/e3 are in lowest terms 
with e > 0. Then the x coordinate of 2P is given by 

3x 2 +cf _(m-ce4)2 
x(2P) = -2x +, - — , - , -; { 2y ) (2enf 

Since e is even and m, n are odd, X(2P) = A(P) + 2. D 

L^mifia 2; Let i^ and P2 be in F with Px * (0,0) and P2 * (0,0). If 0 < A(PX) < A(P2), then 
A(Pl + P2)<A(P2). 

Proof: If /J = 0 , then ^ + P2) = A(P2). So let us write Px = (xhyx) = {mle2,nle3) and 
Pi = ( x 2>y i )~^I f 2 ^ I f 3 )^ where m/e2, n/e3, mlf2, and ?f//3 are in lowest terms with 
e > 0 and / > 0. Then the x coordinate of Px +P2 is given by 

( ^2 
(yi~yi x(Pl + P2) = -xl-x2 + 

= (nf3-ffe3f-(mf2 -me2)2(mf2 + me2) 
e2f2(mf2-me2)2 

Since 0 < A^) < A(P2), we can write e = 2sef and / = 2 f / ' , where e' and / ' are odd and s and f 
are integers with 0 < s < t. Then x(Pt + P2) becomes 

(2*-*nf* -jfe'3)2 - (22t~2srnf>2 -mea)2{22t-2smf>2 +mef2) 
22te'2f>2{22t-2smf'2-me<2)2 

Since e\ / ' , m, and JF are odd, we have A(Pl + P2) < 2t. Combining this with A(P2) = 2t, we 
obtain X(Pl + P2) < A(P2). ' D 

Lemma 3: Assume that T has rank one, and let P be a generator for the infinite cyclic subgroup 
of r . Let tQ denote the least positive value of the integer t such that A(tP) & 0. Then, for any 
integer / > 0, if 2lt0 < n< 2l+%, then l(nP) < X(2ltQP). 

Proof: We use strong induction on /. First we show that the result is true for / = 0. Suppose 
t0 <n<2tQ. Then we can write n = tQ+r with 0<r <t0. Since A(rP) = 0 and A(t0P)>0, by 
Lemma 1 we have X(nP) = A(t0P+rP) < l(tQP). 

Next we suppose that the result is true for each /= 0,1,2,..., k. For any integer n satisfying 
2k+lt0 <n<2k+2tQ, there exists an integer r such that n = 2k+lt0 +r and 0< r <2k+%. The induc-
tion hypothesis gives A(rP) < A(2kt0P). By Lemma 1 we have X{2kt0P) < A(2k+lt0P). Therefore, 
X(rP)<A(2k+ltQP); thus, by Lemma 2 we have A(nP) = A(2k+%P+rP) < l(2k+%P), which 
shows that the result is true for / = k +1. Hence, the result is true for every integer / > 0 and the 
proof is complete. D 

Proof of Proposition 2 
We put Rm = (Ds2 lh2m, Dst lb3m), where s2 = \u4m+r | and f = v4m+r. Assume that F has rank 

zero. Then it is a finite cyclic group, and so the rational point Rm lies on the elliptic curve C only 
for finitely many m > 0; therefore, u4m+r is a perfect square only for finitely many m > 0. 
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Next assume that T has rank one. Then T~Z@F, where Z is an Infinite cyclic group and F 
is a torsion group of order two or four (see [4] or [10]). Let P G F be a generator for Z and 
QGT for F. Now suppose that the rational point Rm lies on the elliptic curve C. Then there are 
integers i and j such that 

Rm = iP+JQ. (6) 
Since 4Q = O, where O is the zero element of T, we obtain 

4Rm=41P. (7) 

The essential tool for the proof is the logarithmic height. Since h(4iP) = h(-4iP), we can 
assume i > 0 without loss of generality. Let kQ be the least positive value of the integer k such 
that X{kP) * 0. Then there is an integer / > 0 such that 2lkQ < 4/ < 2l+lk0. From Lemmas 1 and 3, 
we find l(4iP) < A(2lk0P) = l(k0P) + 21. Since A(4iP) = A(4J?J > 2m, putting A0 = A^P), we 
obtain 2/ > A(4iP) - 20 > 2m ~ 20 . Hence, 4i > 27*0 > 2m~x^11. 

Now., Theorem 2 tells us that there is a constant Kx depending only on the elliptic curve C, so 
that 

h(4iP) > (4ifh(P) -Kx> 22m~x«h(P) - Kv (8) 

Next we estimate for h(4Rm). Let a and ft be distinct roots of the polynomial f(z) = z2 ~ 
az + h. Putting y - max(|a|, |/?|) > 1, we find 

| ^ | = |a^|2m<^4m
5 

IDs21 - |Dii4m+r| = \a-p\\aA^-fl«*»\ 

<(\a\ + \p\)(\a\4m+r+\fi\4m+r)<4y4m+4 

Therefore, h(RJ < log Ay4(m+1) = 4(m +1) log y + 2 log 2. Hence, by Theorem 1, 

h(4Rm)<\6h(Rm) + 5K0 <64(w + l ) lo g r + 321og2 + 5*o, (9) 

where Zg is a constant depending only on the elliptic curve C. 
It follows that, if the rational point Rm lies on the elliptic curve C, then m satisfies the follow-

ing inequality: 
64(iw + l)logr+321og2 + 5^0>22m-AoA(P)-Z1. (10) 

However, there exists a constant N>0 such that inequality (10) is false for every m>N, so 
the rational point Rm is not found on C for every m>N. We conclude from Proposition 1 that 
u4m+r is not a perfect square for every m>N. We have thus completed the proof. D 

3. APPLICATIONS 

Following Silverman and Tate [10], we describe how to compute the rank r of the group T 
of rational points on the elliptic curve C: y2 = x3 + ex with integral coefficients. Let CT denote 
the multiplicative group of nonzero rational numbers, and let €3f2 = {u2 : u eQ*}. Now consider 
the map q>: T —> Q* / CT2 defined by the rule: 

f(0) = l (modQ*2) 
p(0,0) = c (modQ*2) 
<p(x,y) = x (raodCF2) ifx^O. 
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On the other hand, let F denote the group of rational points on the elliptic curve C : y2 = 
x3 - 4cx. Using the analogous map <p: T -> Q* / Cf2, we obtain the formula for the rank of F: 

y = #Kn-^(D> (11) 

where #^(T) and #^(F) denote the order of <p(T) and the order of 7p(T)9 respectively. 
Next we describe how to determine the order of <p(T). It is obvious from the rule of the map 

<p that {1, c(mod Q*2)} c tp(T). 
Now, for P = (x, j ) G F with j * 0, the coordinates x andj are written in the form 

cM1 qMN 

in lowest terms with M& 0 and e > 0, where <\ is an integral divisor of c, so that c = qc2. Here 
M, e, and TV must satisfy the equation 

N2 = ctM4+c2e\ (12) 
and also the conditions 

gcd(M, e) = gcd(TV, e) = gcd(c1? e) = 1, 
gcdfe, M) = gcd(M, TV) = I 

Hence, for a factorization c = qc2, if the equation N2 = cxM4 + c2e4 has a solution (M, e, TV) with 
A/ ^ 0 that satisfies the side conditions above, then ct (mod Q*2) is in ^(F), otherwise it is not. 

Proposition 3: Let p be a prime and let C be the elliptic curve y2 = x3 - 4/wc. If p = 3 (mod 4), 
then the group F of rational points on C has rank zero or rank one. 

Proof: Since c = -4p, the possibilities for cx are q = ±1, ±2, ±4, ±p ±2p, ±4p. So we see 
that q>(T) c {±1, ±2, ±/>, ±2/? (mod©*2)}. We shall show first that -1 £ F . Let us consider the 
equation 

N2 = -M4+4pe\ (13) 

This implies the congruence N2 s -M4 (modp). Since p s 3 (mod 4), we have {-lip) - - 1 , 
where {-Up) is the Legendre symbol of -1 forp; hence, the congruence above has no solutions 
with M# 0 (mod /?). So equation (13) has no solutions in integers with gcd(A#, N) = l. Simi-
larly, the equation N2 = -4M4 + pe4 has no solutions in integers with gcd(M, N) = l. Therefore, 
-1 £0>(r), and hence #p(T) = 2 or #p(T) = 4. 

On the other hand, let C be the elliptic curve y2 = x3 + I6px, and let F denote the group of 
rational points on C. Since c = l6p9 we have <p(T) c {l,2,p,2p (nnodG*2)}. We shall show 
by contradiction that 2 £p( r ) . Let us consider the equation 

N2 = 2M4 + 8pe4. (14) 

Suppose equation (14) has a solution in integers with M * 0 and gcd(M, TV) = 1. Then TV is even. 
Putting TV = 2TV1? we have 2TV2 = M4 +4pe4, showing that Mis even, contrary to the hypothesis 
that M and TV are coprime. Hence, equation (14) has no solutions in integers with gcd(M, TV) = 1. 
Similarly, the equation TV2 = %M4 + 2pe4 has no solutions in integers with gcd(TV, e) = 1. Thus, 
2 £ ?>(r), and so #^(F) = 2. By formula (11), we find 
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2r = M>#gr) = Ior2 
4 

Therefore, r has rank zero or rank one. D 
Proposition 4: Let p9 q be primes and let C be the elliptic curve y2 = x3 - 4pqx. If p = 5 (mod 
8), q = 3 (mod 8), and (p/q) = -l, thee the group T of rational points on C has rank zero or 
rank one. 

Proof: Since c = ~4pq, we have p(T) e {±1, ±2, ±p9 ±q9 ±2p9 ±2q, ±pq9 ±2pq (mod Q*2)}. 
We shall show, for instance, that -2p g l \ The hypotheses give 

$->• G M ? M S H (f)-&)-
Hence, the congruence N2 = -2pM4 (mod #) has no solutions with M ^ 0 (mod f) because 
(~2plq)=(-llq)(2/q)(plq) = ~~l9 so N2 ^-2pM4 +2qe4 has no solutions in integers with 
gcd(M, JV) = 1. Therefore, -2p g l \ By using the same argument, we can show that <p(T) does 
not have any elements of {-1, ±2, ±p, ±q9 ~2p9pq92pq}. Thus, we obtain #*p(T) < 4. 

On the other hand, let C be the elliptic curve y2 = x3 + \6pqx, and let T denote the group of 
rational points on C. Since c = 16pq, we have a(T) c {1,2, p, f, 2p, 2f, pq9 2pq (mod G*2)}. 
By using an argument similar to the one above, we can show that p &!p(Y) and q^(T). 
Furthermore, by using an argument similar to the one we gave in the proof of Proposition 3, we 
can show that $?(T) does not have any elements of {2,2p9 2q9 2pq). Thus, we obtain #tp(T) = 2. 
Therefore, by formula (11), we find 2r < 2. In conclusion, T has rank zero or rank one. D 

In addition, the following proposition holds. The proof is completely analogous to that of 
Proposition 4. 

Proposition 5: Let p9 q be primes and let C be the elliptic curve y2 = x3 - Apqx. If p = 1 (mod 
8), q = 7 (mod 8), and (p/q) = - 1 , then the group T of rational points on C has rank zero or 
rank one. 

Now let us consider the Lucas sequence determined by UQ = 09 ul = l> un+2 = aun+l~-bum 

where a and b are coprime integers that are nonzero, D = a2 - 4b * 0. Assume that b is even. If 
D = -p < 0, where p is a prime, then p s 3 (mod 4). If D = -pq < 0, where p and q are primes, 
then •(/?,#) = (3,5) (mod 8) or (p9q) = (l97) (mod 8). Hence, the following three corollaries 
hold. 

Corollary 1: Assume b is even and D = -p < 0, where/? is a prime. Then there are only finitely 
many perfect squares in the subsequence {u4m}. 

Corollary 2: Assume b is even and D = -pq <0, where p and q are primes with (p/q) = - 1 . 
Then there are only finitely many perfect squares in the subsequence {u4m}. 

Corollary 3: Assume b is of the form b = (2d)4 for some integer d. If D = -/?, where p i s a 
prime, or if D = -qr < 0, where q and r are primes with (qIf) = - 1 , then there are only finitely 
many perfect squares in the sequence {u„}. 
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Proof: Suppose that the rfi1 term, un, is a perfect square. As mentioned above, we have 
t2 = Ds4 + 4(2d)4n, where s1 = \un | and / = vn. This implies 

Dst f { D£ f , AT^\ Ds2 
+ 4D {(Id)3"} [(Id)2"} \(2d)2n\ 

From Propositions 3, 4, and 5, we obtain that the elliptic curve y2 = x3 +4Dx has rank zero or 
rank one. It follows that un is a perfect square only for finitely many n > 0. D 
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