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0. INTRODUCTION 

Let MC be the monoid of all Morse code sequences of dots a(:=®) and dashes b(: = -) with 
respect to concatenation. MC consists of all words in a and b. Let P be the algebra of all polyno-
mials HveMCKv w^h r e a l coefficients. 

We are interested in: 
a) polynomials in P which we call abstract Fibonacci polynomials. They are defined by the 

recursion 
Fn(a, b) = aF^a, b) + bFn_2(a, b) 

with initial values FQ(a, b) = 0, Fx(a, b) = s. 
b) polynomials Fn(x, s, q) in real variables x and s which we call q-Fibonacci polynomials. 

They are defined by the recursion 

Fn(x, s, q) = xF„-i(x, s, q) + t(qn-2s)Fn_2(x, s, q) 

with initial values FQ(x, s9 q) = 0, Fx(x9 s,q) = l, where t(s) ^ 0 is a fiinction of a real variable s 
and q * 0 is a real number. 

We show how these classes of polynomials are connected, generalize some well-known theo-
rems about the classical Fibonacci polynomials, and study some examples. Related results have 
been obtained previously by Al-Salam and Ismail [1], Andrews, Knopfinacher, and Paule [4], 
Carlitz [6], Ismail, Prodinger, and Stanton [11], and Schur [12]. I want to thank Peter Paule for 
his suggestion to formulate all results in terms of Morse code sequences. My thanks are also due 
to the referee for drawing my attention to the paper of Ismail, Prodinger, and Stanton [11] and to 
the polynomials of Al-Salam and Ismail [1]. Most of the cited papersare inspired by the Rogers-
Ramanujan identities (e.g., [1], [4], [11], [12]) or by the connections with the general theory of 
orthogonal polynomials (e.g., [1], [3], [11], [13]), but the aim of this paper is to emphasize the 
analogy with elementary results on Fibonacci numbers and Fibonacci polynomials and to give as 
simple and transparent proofs as possible. 

1. ABSTRACT FIBONACCI POLYNOMIALS 

Let MC be the set of all Morse code sequences of dots (•) and dashes (-). We interpret MC 
as a monoid with respect to concatenation whose unit element is the empty sequence s. If we 
write a for a dot and b for a dash, then MC consists of all words in a and b. Let P be the corre-
sponding monoid algebra over R, i.e., the algebra of all finite sums (polynomials) XVEMCKV W ^ 
real coefficients. 

An important element of P is the binomial 

(P + W = tcn
k(a,b). (1.1) 

£=0 
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Here C£{a, b) is the sum of all words with k dashes and n-k dots. It is characterized by the 
boundary values C°(a, b) = SkQ and Q (a, b) = an and each of the two recursions 

Cr\a,b) = bCn
k_x(a,b)+aC"k(a,b) (1.2) 

or 
CTXa,b) = CU{a,b)b + C"k{a,b)a. (1.3) 

We are mainly interested in a class of polynomials which we call abstract Fibonacci polyno-
mials. They are defined by the recursion 

Fn(a, b) = aFn.M h) + bFn_2(a, b) (1.4) 

and the initial values F0(a,b) = 0 and Fl(a,h) = s. This sequence begins with 0, s, a, a2+b, 
a3+ab + ha,... . 

If we define the length of an element v GMC as 2k+ 1, where k is the number of dashes 
(elements b) and / is the number of dots (elements a) occurring in v, then it is easily shown by 
induction that Fn(a, b) is the sum of all words in MC of length n-1. 

It is now easy to see that they satisfy also another recursion: 
FMb) = Fn_l(a,h)a + Fn_2(a,b)b. (1.5) 

To this end, consider all words of length n - 1 which end with a and those which end with b. 
Both recurrences are special cases of the formula 

F^ia, b) = Fm_,(a, b)bF„(a, b)+Fm(a, b)F„+l(«, b), (1.6) 

which follows from the fact that each word w of length m+n-l can be factored uniquely either 
as w = uhv, where u has length m-2 and v has length n-1, or as w = xy, where x has length 
m-\ andy has lengthn. 

There is a simple formula connecting these Fibonacci polynomials with the Q (a, b): 

Theorem LI: The abstract Fibonacci polynomials are given by 

^(^*) = ZV W (^*) . (1-7) 
For Fn(a, b) is the sum of all monomials v e MC with length n - 1. If such a monomial has 

exactly k dashes, then it has n-1 - 2 k dots; therefore, n-k-I letters and the sum over all such 
words is Cf"*~V?*). 

Consider now the homomorphism $: P -> R[x, s] defined by 0(a) = x, $(h) = s9 where x and 
s are commuting variables. Let Fn(x, s):=$(Fn(a,b)). Then we get the classical Fibonacci poly-
nomials defined by 

Fn(x, s) = xF^x, s) + siv.2(x, s) 
with F0(x, s) = 0, Fj(x, 5) = 1. Since 

we get from (1.7) the well-known formula 

Jk=o v 

- A - l 1 Jfc.jf-2/fc-l 
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2. A CLASS OF f-FIBONACCI POLYNOMIALS 

Now we consider Morse code sequences which are defined on some Interval {m, w + 1, ..., 
m + k -1} c Z. In this case, we say that the sequence starts at place m. We want to associate a 
weight to such a sequence in the following way: Let t(s) * 0 be a function of a real variable s and 
let q ^ 0 be a real number. Let v be a Morse code sequence on some Interval {m, m + 1, ..., 
#1+it -1}. If the place i e {JW, JW +1,..., m+k -1} Is occupied by a dot, we set w(i) = x; If It Is the 
endpoint of a dash, we set w(i) = t(q*s). In the other cases, let w(i) = 1. Now the weight of v Is 
defined as the product of the weights of all places of the interval, i.e., 

m+k-l 

w(v)= Y[w(il 
i-m 

If, e.g., the sequence - • - • • — • starts at m = 4, its weight Is x4t(q5s)t(q*s)t(ql2s)t(ql4s). The 
weight of all Morse code sequences with length » - 1 starting at m = 0 Is denoted by F„(x, $, q) 
and Is our q-analog of the Fibonacci polynomials. 

We can immediately deduce a recursion for Fn (x, $, q). 
We show that the recurrence 

Fn(x, $, q) = xF^(x, s, q) + t{qn"2s)Fn_2(x, s,q) (2.1) 

holds with initial values F0(x9 s, q) = 0, Fx(x9 s,q) = \. This recursion means that we can split a 
Morse code sequence of length n-\ Into two parts, those with a dot In the last position and those 
with a dash there. In the first case, the dot has weight x and the sequence in front has the weight 
Fn_x(x, s, q). Since the weights are multiplicative, the first term is explained. A dash at the end 
gives the weight t{qn~2s). Since the dash occupies two positions, the sequence in front of the 
dash now has length n - 2 and we get the second term in the formula. 

If we split the Morse code sequences Into those with a dot in the first position and those with 
a dash In the beginning, we get in the same way the recursion 

Fn(x9 s9 q) - xiv^x, qs, q) + t(qs)Fn_2(x, q\ q) (2.2) 

with the same initial conditions as before. 
Let 

A(X,s) = (t°s) I) (2.3) 
and 

M„(x, s) = A(x, q"-ls)A(x, q"~2s) • • • A(x, s). (2.4) 
Then we get 

Mn(x,s) = \ . (2.5) 
I t(.s)F„(x, qs, q) Fn+l(x, s, q)J 

From (2.4), it follows that the matrices M„(x, s) satisfy the relation 

Mk+„(x, s) = Mk(x, q"s)Mn(x, s). (2.6) 

If we extend this to negative indices—which is uniquely possible—we get 

M_k(x,s) = (Mk(x,q-k
S))-1; 
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therefore, 

d„(q s) 

which implies 

,̂+i(*> 9 "s, q) ~F„(x, q "s, q) 
t(q-"s)Fn(x, q~"+1s, q) ((q-^F^x, q~"+\ q) 

^^-^'M^r (27) 
Taking determinants in (2.5), we obtain the q-Cassini formula 

K-1& qs9 q)Fn+l(x9 s, q) -Fn(x;s, q)Fn(x, qs, q) = (-Vftiqs) • • • t{qn~ls). (2.8) 
This is a special case of the following theorem. 

Theorem 2A (q-EuIer-Cassim formula): The q-Fibonacci polynomials satisfy the polynomial 
identity 

Fn-i(*> W> q)Fn+k(x9 s9 q) - Fn(x9 s9 q)Fn+k_l(x9 qs, q) 
= (rlYKqs) • • • t(sTls)Fk(x9 <fs9 q). 

This formula is an immediate consequence of (2.6) if we write it in the form 

Mk+n(x9 s)Mn(x9 $yl = Mk(x9 qns) 

and compare the upper right entries of the matrices. 
A more illuminating proof results from an imitation of the construction given in [14]: Con-

sider all pairs of Morse code sequences of the form (w,v), where u starts at 0 and has length 
n + k-l for some k > 1 and v starts at 1 and has length w-2 . If there is a place /, 0<i < « - 2 , 
where a dot occurs in one of the sequences, there is also a minimal J ^ with this property. Then 
we exchange the sequences starting at i ^ +1 

Thus, to each pair (u, v) there is associated a pair (u9 v), where u starts at 0 and has length 
n-\ and v starts at 1 and has length n+k-l. It is clear that the weights of the pairs are the 
same, w(u)w(v) = w(u)w(v). The only pairs where this bijection fails are, for even w, those where 
v has only dashes and in u all places up to w - 1 are occupied by dashes. The weight of these pairs 
is t(qs)"'t(qn~ls)Fk(x9qns9 q). If w is odd, then this bijection fails at those pairs (u9 v) where u 
has only dashes and in v all places up to n -1 are occupied by dashes. Thus, the q-Euler-Cassini 
formula is proved. 

Corollary 2.2: In the special case t(s) = s9 the Euler-Cassiei formula reduces to 

F*-i(x, W9 q)Fn+k(x9 s9 q) - Fn(x9 s9 q)Fn+k^(x9 qs9 q) = (-lfq^^lFk(x, qns9 q). 

This corollary was first proved by Andrews, Knopfmacher, and Paule [4] with other methods. 
Another proof for the more general polynomials of Al-Salam and Ismail was given in [11], and yet 
another combinatorial proof was recently obtained by Berkovich and Paule [5]. 
Remark: If we choose a function x(s) instead of the constant x and define' the weight of the 
place i as x(qfs) if the place is occupied by a dot, then we get apolynomial Kn(s) as the weight of 
the set of all Morse code sequences of length n starting at position 0. We call it the q-continuant 
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corresponding to the set of all Morse code sequences of length n, since for t(s) = 1 and x{qks) = 
xk+i w e obtain the continuants considered in [10]. 

The continuant is intimately connected with continued fractions. If we set x(q's) - xt and 
t(qis) = yi and write 

Y , y\ . y\ yi y* 
x , yi Xl+X2 + X3 + 

1 -w _JL_ 

then it is easy to see that 
y\ yi yn = Kn+l(s) 

Xi+X2+ Xn Kn(^)' 

As a special case, we obtain 

^ 2 ( U g ) =ut(q$)t(q*s) tjffs) 
Fr*i(\qs,q) 1 + 1 + i 

If we let w -> oo, it is easy to see that, at least in the case where t(s) is a formal power series 
with t(0) = 0, we have limn_^aoFn(x, s, q) = F^ix, s9 q) in the sense that the coefficients of each 
power qk remain constant beginning with some index n(k). Therefore, we obtain the infinite 
continued fraction 

FJ&s9q) ^ut(qs)t(q2$) 
FJXqs,q) 1+ 1 + 

and the functional equation i^(x, s, q) = F^x, qs, q) + t(qs)Fa0(x, q\ q). 

3. f-FIBONACCI OPERATORS 

Now we want to establish a connection between the abstract Fibonacci polynomials and the 
^-Fibonacci-polynomials. To this end, we consider the ring R of linear operators on the vector 
space of polynomials R[x, s]. We are interested only in multiplication operators with polynomials 
and the operator tj in R defined by rjf(x9 s) = / (x , qs). 

We define a homomorphism O: P -» R by 

0(a) = xrj, #(6) = t(qs)ri2. 

Then we have 
^{Fn(a,b)) = Fn(x,s,q)i1"-\ (3.1) 

This is easily verified by induction from 
<X>(F„(a, h)) = ^a^F^a, *)) + 0(6)0(F„_2(a, b)) 

= xrfi-i(x, s, q)rf~2 + Kqs)tfF„_2(x, s, q)rf-3 

= **Vi(*. qs, q)rf'1 + t{qs)F„_2(x, q2s, q)rf~l 

= (x/v_,(x, qs, q) + t(qs)F„_2(x, q\ q))rf-1 = F„(x, s, q)if~\ 

As a special case, we see that applying the Fibonacci operators to the polynomial 1 we get 

F„(x, s, q) = Fn(x, s, q)rf-h = ®(F„(a, b))l. (3.2) 
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4. THE ^-FIBONACCI POLYNOMIALS OF L. CARLITZ 

If we choose t(s) = ^ , w e get the ^-Fibonacci polynomials of Carlitz [6]. They are a special 
case of the Al-Salam and Ismail polynomials Un(x;a,b) introduced in [1], which are defined by 
Un+l(x; a, b) = x(l+aqn)Un(x; a, b) - hq^U^x; a, b) for n > 1 with initial values U0(x; a, b) = 1, 
U^x; a, b) = x(l+a). It is clear that Fn(x, s, q) = Un_t(x; 0, - sq~l). 

In this case, the recurrences are 

F0(x9 s, q) = 0, Fx{x9 s, q) = 1, 
and 

Fn(x9 s, q) = xFn_t(x9 qs9 q) + sFn_2(x9 q \ q\ 
F0(x9s9q) = 09 Fl(x,s,q) = l 

The matrix form reduces to 

K$Fn(x9qs9q) Fn+l(x9$9q); 

and the Cassini formula is 

Fn+i(x> s> 4)Fn-i(*> ^ ? 4) ~ Fn(x9 s9 q)Fn(x9 qs, q) = (-Ifq^^1. 

Remark: A special case of these polynomials has already been obtained by Schur [12]. In [4], 
these Schur polynomials are called en and dn. In our terminology, these are en - Fn(l, q9 q) and 
dn = Fn_l{\q2,q). 

For the following, we need the Gaussian g-binomial coefficients [J] (cf, e.g., [3] or [7]). We 
define them by 

\n\fjq—-

They satisfy the following recursions: 

M„{x, s) = 

I-TT2 i forneZandJfcel 

w + 1 
k = q* + n 

and 
w + 1 

k 
+«**it-i]-

The (/-binomial theorem (see, e.g., [3] or [7]) states that, for n e N, 

04+2?)"= I 
k>QL 

BkAn~k if AB = qBA. 

Now we have xrj-srf = qsif - XTJ or, in other words, 0 ( a ) 0 ( i ) = q<bQj)<S>(a). This may be 
stated in the following way 

0(Q"(a,6)) = (siff(xn) n-k (4.1) 

Therefore, from (1.7), we get 
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or, equivalently, 
A:=0 

F„(x, s, q) = ®(F„(a, b))l = I i" ~£ ~ %,??(xrJT*-h 

n - l r. 
Fn(x,s,q)=X 

4=0 L 

n-k-l A2)^cxn-2k-l 

5. ANOTHER INTERESTING CASE 
Another interesting special case is given by 

t(s) = 4 ^ 
K) (l + s)(l+qsy 

We denote the corresponding Fibonacci polynomials by f„(x, s, q). Here we get 

,k\x ~r~ (xrj+tiqsWyi^ 
Yl(l+qJs)(l+qn+JS) 

If we set 

d„,k(s) = -k
 2 - , 

no+^)(i+^+/*) 
we can write this in the form 

It is easy to see that 

7=1 

*=0 *"X*(*). 

<*(*») = 9* 1 +t£?iJ
<W(J> 

and 

1 + 0**1* # K , w ( ^ ) = M"*ni'V<W(J)-

We have to show that 

(X7j+t(qs)7f)±\1i\x"-kd„>k(s) = 2 
fc=0 

II+l 

£=0 

'n + 1' *w+1"X+u(4 
The left-hand side is 

ix\l]x"-kd„tk(qS) + ±\l}x"-kt(qs)dn^S) 
k=0 l J i t=0L J 

k=0L J t=0 L J 

(4 

(5 
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The recurrences of the ^-binomial coefficients imply 

Lk l + ffl A n ll + q^sjn + l 

from which the right-hand side follows. 
From (5.1), it follows that 

<D(q?(a,ft)) = ,n-k 4y(*;v 

In this.case, (1.7) implies the following theorem. 

Theorem 5.1: The g-Fibonacci polynomials fn(x, s9 q) are given by 

/w(x,5,«):=*(FH(a,ft))l 
»-i r, 

4=0 

« - £ - ! ^ - 2 * - ! ^g^V 
no+^xi+9""*+y_i*) 

(5.2) 

6. A CONNECTION WITH THE CATALAN NUMBERS 

The classical Fibonacci polynomials are intimately related to the Catalan numbers 

c = -L ( 2 w l 
" n + An)' 

The Fibonacci polynomials F„(x, 1), n > 0, are a basis of the vector space of polynomials. If we 
define the linear functional L by L(F„+l) = S„0, then we get L(x2n+1) = 0 and L(x2n) = (-1)"C„. 

We will now sketch how this fact can be generalized. The polynomials Fn(x, s, q), n>0, are 
a basis of the vector space IP of all polynomials in x whose coefficients are rational functions in s 
and q. We can therefore define a linear functional L on P by 

L(F„) = S„A. (6.1) 
Let 

f(5)/(gs) — ffc^'s) " 

Then we have xP„ = t(q"s)F„+1 - F„_v 

Now, define the numbers 

an,k=(-l)^L(x»Fk+l), 

where fx] denotes the least integer greater than or equal to x. They satisfy 
a0,k = ^Q,k 

an, k = an-l, Jfc-1 + ' ( f l ^ K - l , *+l. 

where aw>i = 0 if k < 0. 

(6.2) 
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These numbers have an obvious combinatorial interpretation (consider, e.g., [8], [9]). Con™ 
sider all nonnegative lattice paths in IR2 that start in (0,0) with upward steps (1,1) and downward 
steps (1, -1). We associate to each upward step ending on the height k the weight 1 and to each 
downward step ending on the height k the weight t(qk*ls). The weight of the path is the product 
of the weights of all steps of the path. 

Then antk is the weight of all lattice paths from (0,0) to (n9 k). It is clear that a2w4,10 = 0. If 
we set a2n 0 = C„(s9 q)9 then Cn(s9 q) is a f-analog of the Catalan numbers 

r l (2A 
because it is well known that the number of such paths equals C„ (c£, e.g., [10]). It is easy to 
give a recurrence for these ^-Catalan numbers. To this end, decompose each lattice path from 
(0,0) to (2«, 0) into the first path which returns to the x-axis and the rest path. The first path 
goes from (0,0) to (2k +2,0), 0<k<n-l9 and consists of a rising segment followed by a path 
from (0,0) to (2k, 0) (but one level higher) and a falling segment. Thus, 

w - l 

This is a q-analog of the recursion 

for the classical Catalan numbers. 
For 

Q ~ 2^ QQ-*-i> cQ - I, 
k=Q 

t(s) 2— 
(l + s)(l + 0S)' 

the corresponding ^-Catalan numbers Cw(l, q) have been found by Andrews [2] and are given by 
the explicit formula 

Q(U) = i 
[n+i] 

'2ri 
n 

(2q) In 

(i+f)(n-f^)na+f02 
j=2 

The ^-Catalan numbers appear also as coefficients of the following power series associated 
with the Fibonacci polynomials. Consider the ^-Fibonacci polynomials corresponding to ~zt(s) in 
place of t(s). Then we have Fn(\ s9 q, z) = Fn„t(\ qs, q, z) - zt(qs)Fn_2(\ q\ q, z) If we define 

w ? ._F„_l(l9qs9q9z) 
8*S'Z)- Fn(\$9q9z) ? 

then we have gn(s9 z) = l + zt(qs)g^t(qs9 z)gn(s9 z). 
For n -»oo, these formal power series in z converge coordinatewise toward a formal power 

series g(s9 z) which satisfies g(s9 z) = l + zt(qs)g(s9 z)g(qs9 z). Comparing coefficients we see that 
g(s9 z) = 2 Cn(s9 q)zn

9 where the Cn(s9 q) are the q-Catalan numbers defined by 
w - 1 

cnis* 4) = Xc*(?5> qXwyCn-k-iis, q). 

This result is also an easy consequence of Theorem 5.8.2 in [3]. 
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