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1. INTRODUCTION 

This paper is concerned with the summation problem of power series of the form 

#(*>/):= E /(*)**, (1-1) 
a<k<b 

where / ( / ) is a differentiate function defined on the real number interval [a, b), and x may be a 
real or complex number with x*0 and x*l. Obviously, the case for x = l of (1.1) could be 
generally treated by means of the well-known Euler-Maclaurin summation formula. The object of 
this paper is to find a general summation formula for (1.1) that could be applied readily to some 
interesting special cases, e.g., those with f{i)-tx (2 ei?), / ( / ) = logf (V>1), and f(t) = qt2 

(0<q<l)9 respectively. Related results will be presented in Sections 3-5. 
Recall that for the particular case f(t) = tp and [a, b) = [0, oo) with/? being a positive integer, 

we have the classical result (cf. [1], [2], [4]) 

w = X ^ = ^ ^ , (i*i < ix o-2) 
where Ap(x) is the Eulerian polynomial of degree/?, and may be written explicitly in the form (cf. 
Comtet [2], §6.5) 

Ap{x) = ftA{p,k)x\ 4£c) = l, 
J f c = l 

with 

AP,k) = t(-^(P*%-J)P QzkZp), 
/=o V J J 

A(p, k) being known as Eulerian numbers. 
As is known, various methods have been proposed for computing the sum of the so-called 

arithmetic-geometric progression (cf. [2], [3], [4]) 

*?(*) = 2>p**. (1.3) 

This is a partial cum of (1.2) with oo being replaced by n. For k = 0,1,2,..., denote 
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and Zhejiaing Provincial Natural Science Foundation of China (Grant No. 100002). 
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**(X) = ( I ^ ' (L4) 

and call ak(x) a Eulerian fraction with x * 1. Then the right-hand side of (1.2) is precisely ap(x), 
and one can also have a closed formula for (1.3) using ak(xys, namely, 

SS(x) = ap(x)-x»+lfd [Pyk(x)(n + \y-k. (1.5) 

This is known as a refinement of DeBruyn's formula for (1.3) (cf. Hsu & Tan [5]). 
Both (1.2) and (1.5) may suggest that Eulerian fractions ak(x) (k - 0,1,2,...) would play an 

important role in solving the summation problem of (1.1). That this prediction is true will be 
justified in Section 3. 

2e AN EXTENSION OF EULERIAN FRACTIONS 

We shall introduce a certain linear combination of Eulerian fractions that will be used for the 
construction of a summation formula for (1.1). As before, we always assume x ^ 0,1. 

First, Eulerian polynomials Ak(x) may be defined via the exponential generating function (cf. 
[2], (6.5.10)) 

Substituting t/(l-x) for t9 we obtain the generating function for Eulerian fractions: 
J2, fk i 

Also, we may write (cf. Hsu & Shiue [4]) 

«k(x) = t/S(kJ)-^-^, (2.3) 

where S(k, j) are Stirling numbers of the second kind. 
Multiplying both sides of (2.2) by (l-xe*), one can verify that (2.2) implies the recurrence 

relations a0(x) = 1 / (1 - x) and 

Now, let us define a polynomial in z of degree k via a certain linear combination of <*j(x)% i.e., 

^ ^ ) : = i ( 5 ) « / W ^ (2-5) 
where a0(z9x) = a0(x) = l/(l-x). Using (2.2), we may easily obtain a generating function for 
ak(z9x): co k zt 

S^irif^ (26) 
Moreover, some simple properties of ak{z, x) may be derived easily from (2.5), (2.4), and 

(2.6), namely, 
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(a) ak(0,x) = ak(x) (k>0). (2.7) 

(b) % ( l ,x ) = | % ( x ) (k>ll (2.8) 

(c) ^ f e ) = % _ i ( z ? x ) (k >!). (2_9) 
dz 

(d) % ^ ^ = ( - l / + 1 a , ( l -^x)x . (2.10) 

Obviously, (a) and (b) imply that ak(z9 x) may be regarded as an extension of ak(x). Also (d) is 
inferred easily from (2.6), and the relation 

& f^v>\0-(l-z)t _e^_ (~x)e 
l-(l/x)et l-xe-t 

(e) For 0 < x < 1, the function ak(z9 x) is positive and monotonically increasing with z > 0. 
For x > 1, so is the function (-l)k+lak(l-z, x) with z > 0. 

In fact, the first statement of (e) follows from (2.3), (2.5), and (2.9). The second statement is 
inferred from (2.10) and the first statement since 

(-l)*+1at(l-z,*) = a , ( z 5 £ ) l > 0 (x>l). 

Finally, to use the latter in the next section, we need to make the function ak(z9 t) (0 < z < 1) 
periodic of period unity for z e R (the set of real numbers). In other words, we have to define 

!

ak (z, x) when 0 < z < 1, 

(2.11) 
al(z-\x) for all ZGR. 

Also, we shall need 
Lemma 2A (cf Wang [8]): For k > 1, d£(z9 x)x~[z] is an absolutely continuous function of z in 
J?, where [z] denotes the integer part of z so that z - 1 < [z] < z. 

Proof: It suffices to verify the continuity property at integer points z- j . Clearly, using 
(2.11) and (2.8), we have 

at (/+, *)*4y+1 = 4 tt %>~m = % (0, *)*"' = % (*)*"', 
< 0 - x)x-«-l = %(1, x)x^+1 = %(x)x"'. 

Since a*{z9 x)x~^ is a piece-wise polynomial in z, it is clear that a\ (z, x)e"[z] is an absolutely 
continuous function of z. 

3« A SUMMATION FORMULA FOIL (LI) 

A basic result is contained in the following theorem. 

Theorem. 3.1: Let f(z) be a real function continuous together with its m* derivative on [a, h] 
(m > 1). Then, for x ^ 0,1 we have 
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a<k<b k=Q Kl Z~Q / 3 | \ 

where the notation [F(z)]z
zZa: = F(J) - F(a) is adopted. 

Proof: We shall prove (3.1) by using integration by parts for a certain Riemann-Stieltjes inte-
gral. The basic idea is very similar to that of proving the general Euler-Maclaurin sum formula 
with an integral remainder (cf. Wang [7]). 

In what follows, all the integrals are taken with respect to the independent variable z. Denote 
the remainder term of (3.1) by 

**=c^h)! ^:-i(~z' *)*~[~zl/ (m)(^2- (3-2> 
By Lemma 2.1 and (2.9), we see that (3.2) may be rewritten as Riemann-Stieltjes integrals in 

the following forms: 

Rm = ^[fw(z)d(a*m(-z,x)x-^) (m>l) ; (3.3) 

/^=^ri)iJ!fl^>(-r'x)x"I"rl^(""I)(z> {m-l)- (34) 

The form of (3.3) suggests that one may even supply the definition of RQ via (3.3) by setting 
m = 0 in the right-hand side of (3.3). Thus, one may find that the case m = 0 of (3.3) just gives 
the power series S£(x, f) as defined by (1.1): 

X " ~ 1 Q X~~la£k<b a£k<b 

Now, starting with (3.4) and using integration by parts, we obtain 

where the last term may be denoted by Rnh,l in accordance with (3.3). Consequently, by recursion 
we find 

This is precisely equivalent to (3.1), and the theorem is proved. D 

Remark 3.2: As regards formula (3.1) and its applications, some earlier and rudimentary results 
containing a different form of it in terms of Stirling numbers instead of Eulerian fractions appeared 
in Wang [8] and in Wang and Shen [9]. Also, it may be worth mentioning that (3.1) can be used 
to treat trigonometric sums with summands like f(k)rk cos k0 and f(k)rk sin kO when taking 
x = rew (f2 = -l,r>090<0<2n). 
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4. FORMULAS WITH ESTIMABLE REMAINDERS 

Throughout this section, we assume x > 0, x * 1, and [a, b] = [M, N]9 where M and iV are 
integers with 0<M<N. Recalling (2.11) and (2.7), we find 

[ai(~z, x)x-^f(%)l:l = ak(x)[xNf(k\N) - xM f«\M)\. 

Consider the remainder given (3.1): 

^ = ( ^ 1 ) ! C<-^-z> x)x-[~z]f{m)(z)dz. (4.1) 

Setting /(m)(z) s i , we can see that the integrand function of the above integral keeps definite 
(either positive or negative) sign, in accordance with (2.11) an4 property (e) of Section 2. In fact, 
for the case/(m)(z) = l, 

\ / • n=M 
N-l 

mK=M 

= i « m « I (*" - *"+1) = ~r(xM- *")• 
Clearly, the integrand a ^ O - z, x)xn+l (0 < z < 1) shown above has a definite sign whenever x > 1 
or 0 < x < 1. 

Therefore, applying the mean value theorem to the integral (4.1), we are led to the following 
theorem.. 
Theorem 4.1: Let f(z) have the in* continuous derivative f^m\z) (m>l) on [M, N}. Then, 
for x > 0 with x * 1, there exists a number £ e (M9 N) such that 

Z/(*)** = S ^ [ x ^ / W ( ^ ) - x ^ W l + ̂ C * " - x ^ ) / W ( ^ ) . (4.2) 

As a simple example, for the case M = 0, JV -> oo, 0 < x < l , and /(f) = fp with/? being a 
positive integer, we may choose m = p + l and find that 

lim xNfw(N) = 0, 0<k<p, 

so that (4.2) yields 

Also, for the case JV<ooswe have 

E ^ x V ( t ) W = * " t f f V " * = x»ap{N, x), 

so that (4.2) implies the result 
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N£xPxk=ap(x)-ap(N,x)xN 

which is precisely the formula (1.5) with n = N-l. 
The next theorem will provide a more available form for the remainder of the summation 

formula. 

Theorem 4.2: Let f{z) have the (#1 + 1)* continuous derivative on [M. N]. Suppose that either 
of the following two conditions is satisfied with respect to the sum S^(x, f): 
(0 For x > 1, f{m\z) and f(m+l)(z) are of the same sign in (M, N). 

(II) For 0 < x < 1, fm\z) and f(m+l\z) keep opposite signs in (M, N). 
Then there is a number 0 E (0,1) such that 

Z/(*)** = Z^Tr^^^^^O ~ *Nf{k\N)} + 0^f-[xMfm\M) - xNfm\N)\ (4.3) 

Proof: Replacing m by m +1 in expression (4.1) and using integration by parts, one may find 
(cf. the proof of Theorem 3.1) 

K = ±am(XiX"fW(M) - xNfW(N)]+iU • 

Using property (e) in Section 2 and formula (4.1) for Rm9 and also recalling the derivation of 
(4.2), one may observe that each of the conditions (I) and (II) implies that Rm and Rm+l have 
opposite signs. Consequently, there is a number 0 (0 < 0 < 1) such that 

i ^ = 0S^[xA//O»)(Arf) _ xNfm\N)}. • 

5, EXAMPLES AND MEMAMKS 

Here we provide three illustrative examples that indicate the application of the results proved 
in Section 4. 

Example 5.1: Let / (f) = tx (X > 0, X eR) and choose m> X. It is clear that f(t) satisfies con-
dition (II) of Theorem 4.2 on the interval (0, oo). Consequently, we can apply the theorem to the 
sum S$(x, / ) with [M, N] c (0, oo) and 0 < x < 1, getting 

Z **** = Z (i)^k(x)(xMMA-k - x»Nx-k) + 0(^\am(x)(xMMx-m - xNNx~m), (5.1) 

where 0 is a certain number with 0 < 0 < 1. 
Let us consider the generalized Riemann ^-function 

€(?>x): = Z k " S % k (0 < x < 1,5 ei?) (5.2) 
it—I 

and choose m>-s, then the function £(s,x) can be approximated by its partial sum with an 
estimable remainder, viz., 
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C& *) = E W +xN{%{ k)*k(d*r** + ̂ )am(x)N'sA (5.3) 
Actually, this follows from (5.1) and the fact that 

l i m J A ^ ^ V - ^ 0 (0<k<m). 

Remark 5.2: For the general case in which x is a complex number (x * 1), the remainder of for-
mula (5.1) has to be replaced by its integral form, viz., 

K = ™{fy\N
M<-i{-z,x)x-[-zV-mdz. (5.4) 

In particular, for the case x = eia (i2 = -1,0 < a < 2K), m = l, and M - 1, we have ajj(-z, x) -
a0(x) = 1 / (1 - x), and the remainder given by (5.4) has a simple estimate 

\Rl\ = 0(Nx~l) (#->oo). 

Remark 53: It is known that, as a nontrivial example treated by Olver [6], the estimation of the 
sum 

where a and fi are fixed real numbers with a > fi, fi * 0, and e^ * 1, has the expression 

$(a,fiN) = -^N" + 0(N<*-l) + 0(l). (5.5) 
eip-l 

Evidently, this is readily implied by (5.1) with x = ef^9 X = a , m = 1, M = 1, and the remainder 
being replaced by (5.4). Also, a more precise estimate may be obtained by taking m = 2. 

Example 5.4: Define the function A(x) by the following: 

A(x):=£(tog*)** (0<x< l ) . (5.6) 
k=2 

Then, for any given m>l, A(x) can be approximated by its partial sum with an estimable remain-
der, viz., 

Aw=Xdoĝ  ~xN{%tl^+0t^1\ <5-7> 
where O<0<1. 

Evidently the remainder term of (5.7) is obtained from an application of Theorem 4.2 to the 
function f(t) = log t with M and N being replaced by iVand oo, respectively. 

Example 5.5: Let us take f(t) = qfl with 0 < q < 1, so that we are now concerned with the com-
putation or estimation of Jacobi-type power series 

J(^q) = J^qk2xk (x>0,x*l) (5.8) 

which occurs as an important part in the well-known Jacobi triple-product formula 
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]J(l + q2k-lx)(l + q2k-lx-l)(l-q2k) = £ ? * V . (5.9) 
k=l -oo 

It is known that the k^ derivative of f(t) = q*2 with respect to t may be expressed in the form 
[k/2] v . 

/<*>(/) = g<2 X ^ ^ ^ a ^ i O o g g ^ a ) ^ (5.10) 

so that / w ( / ) -» 0 as t -» oo. 
Now, applying Theorem 4.1 to S%(x, / ) , we easily obtain 

A*,*)=iW+*w{ifl#/(k)(^)+^/w(4 (5.11) 
where £ e (JV, oo), and f(k)(N) and f(m\%) are given by (5.10) with f = JV and f = £, respec-
tively. Certainly the right-hand side of (5.11) without the last term xNam(x)f^m\^) lm\ may be 
used as an approximation to J(x, q) by taking large N. 

Remark 5.6: As is known, Binet's formulas express both Fibonacci numbers Fk and Lucas num-
bers Lk in powers of the quantities (1± V5)/2 with exponent k+\. Therefore, one may see that, 
under certain conditions for f(t)9 various finite series of the forms E^ f(k)Fk and Z& f(k)Lk can 
also be computed by means of Theorems 4.1 and 4.2. 
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