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1. I N T R O D U C T I O N 

Throughout this paper we consider binary words. All results can easily be stated for 
words over other two-letter alphabets. For any word w, let \w\ denote the length of w and let 
\w\i, called the height of w, denote the number of occurrences of the letter 1 in w. For n > 1 " 
and ci? c 2 ? . . . , cn E {0,1}, define operators T and ~ by 

T(c i c 2 . - . c n ) = c 2 . . . c n c i ? 

(c iC 2 . . .Cn)~ = Cn . . .C 2 Ci . 

For each integer j , let TJ have the obvious meaning. The operator T is called the cyclic shift 
(or rotation) operator. A word u is called a conjugate of a word w if u — T^(w) for some integer 
j . The set of all distinct conjugates of w is called the conjugate class of w and is denoted by 
[w]. The word w is called the reversal of the word w. 

A word w is said to be a palindrome if either w is the empty word or w = w. w is said to 
be primitive if it is not a power of another word, w is said to be a Lyndon (resp. anti-Lyndon 
word if it is the smallest (resp., largest) in the lexicographic order in the conjugate class of ' 
w. w is said to be bordered if there are words x and y with x nonempty such that w = xyx; 
otherwise, w is said to be unhordered. 

For w — cic2 . . .Cqj where each a is either 0 or 1, define M(w) = ]Ci=i(<Z + l ~i)ci- M{w) 
is called the moment of w. Define 

M([«/]) = {M(«) : u E H } ? 

<$(«;) = max{M(te) — M(t?) : u,v £ [w]}. 

One way to define a™words is to make use of T and the words w ( | J define below. (See 
[13] for the original definition and basic properties of a-words.) 

Let p and q be two relatively prime positive integers with p < q. Let [0, a% + 1 , a 2 , . . . , an] 
be the continued fraction expansion of | . Define a sequence of words w_i, WQ, w i , . . . ,wn re- -
cursively as follows: Let w_i = 1, u0 = 0, and for 1 < & < n, let 

f ti*.-2ti2-i (* i s even) 
l "fc^iWfc-2 (A; is odd). 
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It is know that the word un depends on | , but not the continued fraction expansion [1, 2]. 

Denote un by u (|J. Clearly, its first (resp., last) letter is 0 (resp., 1). 
A word w is said to be an a-word if either w E {0, 1} or there are two relatively prime 

positive integers p and q with p < q such that w is a conjugate of u (Ej. Conjugates of 

u [-JF^-) (resp., u ( - J^ - J ) are known as binary Fibonacci words (see [6]). 

We first report briefly some known results about the word u — u (E) and its reversal. The 
conjugates w, T(u),..., Tq~1(u) of u are exactly the distinct a-words with length q and height 
p. Thus each a-word is primitive. The word u (resp., u) is a Lyndon (resp., anti-Lyndon) 
a-word (see [1,11]). The word u is the only binary word which has two factorizations of the 
form u = xy = Ozl, where x,y, z are palindromes, \z\ = q — 2, \y\ = s and 1 < s < q is such 
that ps = l(mod q) (see [20]). The conjugate class [u] of u is closed under taking reversals. 
Clearly u — T~s{u). Both u and u are unbordered. Furthermore, the set of Lyndon a-words 
and their reversals are the only unbordered finite Sturmian words (a finite Sturmian word 
is any finite factor (or segment) of any characteristic word (see section 5)) [14]. The set of 
Lyndon a-words coincides with the set of Christoffel primitives (see [1,2] for the definition of 
Christoiffel primitive). 

Let [0, a\ + 1, a2,. . . . , an] be the continued fraction expansion of | . In [13], it was shown 
that a word w is a conjugate of u if and only if there are integers n , . . . , rn with 0 < ri < 
a>i, 1 < i < ^? and words w-i,wo,w±,..., wn such that 

tt/-i = 1, Wo = 0, Wn = W, 

Wi = w f i 7 r i W i _ 2 ^ [ i i 3 1 < i < n. 

In fact, each conjugate Tk{u) of u corresponds to those n-tuples ( r i , . . . , r n ) of integers with 
0 < n < a{, 1 < i < n and k = ^ = 1 r < ^ _ i ( m o d g), where c?_i = q0 = 1, qi = a»gi-i + 
gj_2, 1 < i < n. Thus, each a-word can be obtained recursively by concatenation. The words, 
having length q and height p, obtained with n = • • • = rn = 0 or n = • • • = r n - i = 1 — rn = 0 
are called standard Sturmian words (see [1]). It is not hard to see that a word w having length 
q and height p is a standard Sturmian word if and only if w = T(u) or w = T(u). 

Let u (j) = 0 and u(j) = 1. I f | and y are consecutive fractions in the Farey sequence 

of any order with | < |y, then u (fij^r) = u H) u [JT)- -^so ^ n e mapping r h-> w(r) is an 
increasing function from the set of all reduced fractions in [0,1] onto the set of all Lyndon 
a-words. In other words, if r < r! then u(r) < u(rf) in the lexicographic order (see [2]). 
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More results - both old and new - about u 11 j will be presented below. 
In an earlier paper, the present author proved that if w is an a™word having length q, then 

M([w]) is a set of q consecutive positive integers and S(w) = q — 1. Each of these properties 
actually characterizes a-words (Theorem 4.4). The result used to prove this characterization 
is itself a characterization of a-words (Lemma 2.1) with other interesting consequences besides 
Theorem 4.4. In section 3, we obtain characterization of elements of the set PER and standard 
Sturmian words (Corollary 3.2), and we identify those a-words that are palindromes (Corollary 
3.4). In section 5, we compute the determinants of a class of matrices involving a-words 
(Theorem 5.1). As a special case, we obtain a sequence of (0,l)-matrices Ai, A2 . . . such that 
An is an Fn x Fn matrix whose rows are precisely the Fibonacci words having length Fn, height 
F n _ i (resp., F n _ 2 ) , and det(An) = F n _ x (resp., F n _ 2 ) . 

2, A L E M M A 

[11,14,16,18] present some characterizations of a-words. The characterization proved in 
[11] is restated in Lemma 2.1 below. With this result, we know exactly where the ones in 
each a-word are located and so each a-word can be generated directly without using a-words 
of shorter lengths. Corollary 2.2 shows how all a-words having the same length q and height 
p may be ordered in such a way that consecutive pairs differ in exactly two adjacent letters. 
Sections 3-5 present some interesting consequences of Lemma 2.1 and Corollary 2.2. 
L e m m a 2 .1 : Let p and q be relatively prime positive integers with p < q. Define s as the 
unique integer with 

sp = l(mod q) and 1 < s < q. (1) 

Let u = u (A. Then for 0 < j < q - 1, 

thefc** letter of Tjs(u) is 1 

<$=^k = (r — j)s (mod q) for some r with 0 < r < p — 1, 

<=^k = 1 + (r + j)(q — s)(mod q) for some r with 1 < r < p. 

A proof of Lemma 2.1 appears in the Appendix (see also [11]). 
Coro l la ry 2.2: Let p ? g ? s , and u be as in Lemma 2.1. Let 0 < j < q — 1. The words T^s(u) 
and T^+1^s(u) differ by exactly two adjacent letters. If i = (p— 1 —j)s (mod q) and 1 < i < g, 
then the (i - l)th and the ith letters in Tjs(u) and Tij+1)s(u) are 01 and 10 respectively. 

Proof: Let 0 < j < q — 1. The positions of 1 in T^s(u) and T^+1^s(u) are respectively 

-j*> (i ™ i k . - -, (P - 2 - j)a, (p -1 - j > , 
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and 
( - J - 1)*, -js, (1 - j)s,..., (p - 2 - j)s 

(mod g). If (p—j—l)s = i (mod q) where 1 < i < g, then clearly i ^ 1 and (—j — l)s = i — 1 
(mod g). Hence the words T^(w) and T^+1>(u) differ by exactly two letters. The (i - l)th 

and the ith letters in T*8(u) and r^ + 1 ) 5 (w) are 01 and 10 respectively. D 
We remark that when 

g = F n andj> = F n _ i , 5 - i , n > 3 . 
[ Fn™2 (n odd) 

Then Lemma 2.1 and Corollary 2.2 reduce to Theorem 2 (or Corollary 12(i) of [6]) and Theorem 
3 of [10] respectively. 

3. I M M E D I A T E C O N S E Q U E N C E S 

Throughout this section, let p, g3 5, and u be as in Lemma 2.1. We shall show how Lemma 
2.1 yeilds new and old results on factorization, PER, standard Sturmian words, lexicographic 
order, reversals and moments. 
Corol la ry 3.1: 
(a) u = xt/j where x and y are palindromes with \y\ = s and \x\ = q — s. 
(b) u — 0^1, where z is a palindrome. 
Note that, by taking reversals, we immediately derive from (a) and (b) respectively that u — yx 
and u = lz0. 

Proof: The proofs of (a) and (b) are almost identical so we suffice with the proof of (b). 
Let 2 < k<q-l. 

The kth letter of u is 1 
<=$* k = rs (mod q) for some r with 1 < r < p — 1 (by Lemma 2.1 with j = 0) 
<=$» g + 1 — k = (p — r)s (mod q) for some 1 < r < p — 1 (by equation (1)) 
<=> the (q + 1- k)th letter of u is 1. 
Therefore the result follows. D 

Let PER= {0,1} U {z : Ozl is a Lyndon a»word}0 Note that the empty word belongs to 
PER. Let PER01= -f>01 : z e PER}. The set PER10 is defined similarly. The set of standard 
Sturmian words equals {0,1}U PER01UPER10. Elements of PER and standard Sturmian 
words have been recently studied extensively (see [1]). The following corollary provides char-
acterizations of these words. 
Corollary 3.2: 
(a) Let z E PER with \z\ = q - 2 and \z\i = p - 1 > 1. Then 

the kth letter of z is 1 
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k = rs — 1 (mod q) for some r with 1 < r < p — 1 
fe = r(g — 5) (mod q) for some r with 1 < r < p — 1. 

(b) Let w E PER01 and «/ G PER10 with |w| = |w;] = g and H i = \w'\! = p . Then 
the fct/l letter of w is 1 

<=4> fc = rs — 1 (mod g) for some r with 1 < r < p; 
the kth letter of tt/ is 1 

<=^ k = r(q — s) (mod q) for some r with 1 < r < p. 
Proof: Part (a) follows from Lemma 2.1 and the fact that Ozl = u. Part (b) follows from 

the fact that w = T(u) and w' — T(u). D 
When the conjugates of u are listed as in (2) below 3 we observe some interesting phenom-

ena. 
Coro l la ry 3,3 (see [11]): 
(a) The sequence of words 

u, Ts(u), T2s(u),..., Tto-V*(u) = u (2) 

is increasing in lexicographic order. 
(b) Ti*(u) have increasing moments with M(T*8(u)) = fclKi±li + j -f 1 (0 < j < ^ - 1). 

Proof: Part (a) and the recurrence relation M(T^+ 1 ) s (? i)) = M(T^s(w))+l? 0 < j < q-2, 
follow immediately from Corollary 2.2 and the definition of M. Thus M(Tjs(u)) = M(u) + 
J? 0 < j < g — L We have 

-^( w ) ~ ^ l ^ + l ~ " I — + 1) I + 1 (by definition of M and Lemma A3 of Appendix) 

: « ( p - i ) - E 
P " 1 r % 

P J A=I *-
+ 1 (by rearrangement) 

= q(p - 1) - {q 1}!f 1} + 1 (by e.g. [5]) 

( g + l ) ( p - l ) 
2 + 1 ' 

proving (b). D 
The above corollary generlizes Corollaries 2 and 3 of [10]. The following corollary gener-

alizes Lemmas 6 and 7 of [7]. 
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Corol la ry 3.4: 
(a) Tb-i-fi'fa) = (Tis(u)y , 0 < j < q - 1. 
(b) If q is odd, then [u] contains exactly one palindrome, namely TV^~")s(?i); if g is even? [u] 

contains no palindrome. 
Note, letting j = 0 in (a) yields u = T~s(u). 
Proof: 
Let 0 < j < q — 1. By repeated use of Lemma 2.1, for 1 < k < g3 

the ( g + 1 - k)th letter of T ^ " 1 - ^ 5 ^ ) is 1 
<̂ =>- q + 1 — k = 1 + (r + (q — 1 — j))(q — s) (mod g) for some 1 < r < p 
<<=> k = (r ; — j)s (mod g) for some 0 < rf < p — 1 
4=> the kth letter of T^'s(w) is 1. 
This proves (a). Part (b) follows immediately from part (a) and the distinctness of the 

Tj(u). n 

4. M O M E N T S O F a - W O R D S 

For any binary word w, let S(w) = max{M(u) —M(v) : w, v £ [w]}- The following lemma 
summarizing the properties of moments of a-words is an immediate consequence of part (b) 
of Corollary 3.3. 
L e m m a 4 .1 : Let w be an a-word with \w\ = q > 2 and \w\i — p. Let u — u (| J. Then 

(a) M(u) = minM([w)) = (p"1}
2

(g+1) + 1, Af(fi) = maxM([w]) = ( p+1)
2

(g+1) - 1. 
(b) 5(w) = g - 1. 
(c) M ([«/]) is a set of q consecutive positive integers. 

We shall prove in Theorem 4.4 below that each of the conditions (b) and (c) is equivalent 
to saying that w is an a-word. We need the following lemma which is useful when studying 
moments of binary words. 
L e m m a 4.2: Let w be a binary word with \w\ = q and \w\i = p. Let M& = M(Tfc («/)), 0 < 
k < q. Let w = c\C2 . . . cq where each a is either 0 or 1. Define cq+j = Cj for 1 < j < q. Then 
for 0 < r < k < g, we have 

k 
Mk-MT=p(k-r)-q ]P c*. 

t= r+ l 

In particular, Mk - M 0 = pk - q X)t=i Cj if fc > Q» 
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Proof: For each k with 0 < k < q — 1, since Tk(w) = ck+ick+2 • • • c&+g? we have 

q k+q k+q 
Mk = Yl(q +1~ ^Ck+J = ^ ( f c + ^+ 1~ ^Ci =P(k + q + l ) - J2 ici 

j= l i~k+l i=k+l 

If r < kj then 

k+q r+q 

Mk-Mr=p(k-Jrq-\-l)- ] P j C j -p(r + q + l)+ Y*, ici 
j—k+1 «=r+l 

Jb &+g 
= p(fc - r) + J ^ *Cj - ] T jcj-

i=r+l j=r+g+l 

k 

= p(k -r) -q Y2f ci- n 

i=r+l 

L e m m a 4.3: Let w be a binary word with \w\ = q > 2 and \w\i = p. If 8(w) = q — 1 then q 
and p are relatively prime positive integers and w is an a-word conjugate to u (| J. 

Proof: Let w E [w] with M(u) — minM([w]). Let fci,&2,. --,fc9 be a permutation of 
0 3 1 , . . . ,q — 1 such that Jfci = 0 and M ^ < M^2 < • • • < M&g. Let u = c\c2 . . . c g where each a 
is either 0 or 1. Define cq+j = Cj for 1 < j < q. By the assumption and Lemma 4.2? we have 

' - l = Mibfl -Mkl =pkq-q^2ci, 
* = i 

and so g and p are relatively prime positive integers. Again by Lemma 4.2? the moments 
Mkl, Mk2,..., Mfcg are all distinct and therefore M^m+1 — Mkrn = 1, f o r l < m < g — 1. 

Let 1 < m < g — 1. Lemma 4.2 also implies that 

1 - Mkm+1 - Mkrn = { p(km •+1 ~ km) ~~ q l^i=krn + l ci C1* km < fcm+i), 

j=fcm+1+l C^ ~ P\km ~~ km+l) V1* &m+l < &m)-
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Define s by equation (1). Then 

, S - (km< fcm+l) 
km+1 ' ™m [ 8 - < q (km+i < km) 

= 5 (mod g) 

and therefore km = (m — l)s (mod q). 
We claim that ckr = 0 for p + 1 < r < q. To show this, let 1 < m < q — p. Since 

km+p — ^TO = (ra + F ~~ l )s — (ra — l)s = ps = l(mod q) and ~~q + 1 < fcTO+p — fem < q — 1, 
it follows that fcTO+p — <fcTO equals either — q + 1 or 1. If &TO+P — km = — q + 1, then &TO+P = 0 
(and km = q — 1). But then ra + p = 1, a contradiction. Therefore feTO+p = km + 1. According 
to Lemma 4.2, we have 

P = Mkm+p - Mkm = p(km+p ~km)~q ] P a = p - f cfcm+p; 

so c&m+p = 0, proving our claim. 
Since \U\Q = q — p, we see that 

ck = 1 «£=£- k = q OT kr for some r with 2 < r < p 

k = rs (mod q) for some r with 0 < r < p — 1. 

It follows from Lemma 2.1 that w = u (| J. Consequently w is an a-word. D 
Combining Lemma 4.1 and 4.3, we have the following characterization of a-words. 

T h e o r e m 4.4: Let w be a binary word with \w\ = q > 2. Then the following statements are 
equivalent: 

(a) 5(w) = q-l, 
(b) w is an a-word, 
(c) M([w]) is a set of q consecutive positive integers. 

R e m a r k 4.5: For w — ciC2.. .cg where each a is either 0 or 1, define S(w) ~ XX=i*c*° 
The results about moments can easily be reformulated using S(w) instead of M(w). Plainly 
S(w) = M(w), and S(w) + M(w) = (\w\ + l) |w|i- Graphically, a word w is represented by a 
polygonal path from A(0,0) to B(\w\, \w\i) as follows: starting from, the origin A, represent a 
0 (resp., 1) in w by a horizontal unit segment going to the right (resp., a vertical unit segment 
going upward, followed by a horizontal unit segment going to the right). This polygonal path 
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divides the rectangular region having opposite vertexes .A7(—1,0) and B into two subregions. 
The one below (resp., above) the polygonal path has area M(w) (resp., S(w)) (see Figure). 

i-----S|W) 

_ P (^ -Q. 

M(w) ----1 

0 1 1 0 1 0 
5, D E T E R M I N A N T S O F M A T R I C E S I N V O L V I N G a - W O R D S 

Throughout this section, let q and p be relatively prime positive integers with p < q. Let 
u — u I -). Regarding each binary word as a vector, we consider the q x q (0, l)-matrix whose 

j t h row is the a-word T~^"1\u)^ 1 < j < q. It is easy to see that this matrix is a circulant 
matrix, that is, a matrix of the form 

Ci C2 

C2 C 3 

Cq— 1 Cq 

Cq-2 Cq-i 

Cl 

where Ck is the kth digit of «. We denote this matrix by circ(u) (see [19]). 
Among all the matrices obtained from circ(u) by permuting its rows, the matrix circ(u) 

is of particular interest for the following reasons. 
Let a be any irrational number between 0 and 1 such that E is a convergent of the 

continued fraction expansion of a. The characteristic word f(a) is an infinite binary word 
whose kth letter is [(k + l )a] - [fca], k > 1 (see, for example, [3, 13-15, 21, 23]). When 
a = g~1 , / (a) is called the golden sequence (see, for example, [4, 8, 9, 12, 17, 24, 25]). 
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Golden sequence turns out to be the Fibonacci binary word pattern JF(1 , 01) (an infinite word 
W1W2W3 . . . , where w\ = x and w^ = y are binary words, and wn — wn-2wn-iy n > 3, is 
called a Fibonacci binary word pattern and is denoted by F(x,y) (see [17, 25])). 

It is well-known that for each k > 1, there are exactly fe+ 1 distinct factors (or segments) 
of f(a) (see [23]). Let y denote the palindrome that differs from u only by the last (resp., 
first) letter if the qth letter o f / ( a ) is 1 (resp., 0). It was proved in [13] that for 1 < k < q, the 
rows of the upper left (k + 1) x k submatrix of the (q + 1) x q matrix 

circ(u) 
1 y 

(resp., circ(u) 
y 

are precisely the k + 1 distinct factors of / ( a ) of length k. 
Another interesting fact about circ(u) is contained in the following theorem. 

T h e o r e m 5.1: det(circ(u)) — p, if q > 1. Here u ( j ) = 0 and u ( \ ) = 1. 
Since the matrices under consideration are circulant matrices, their eigenvalues and hence 

their determinants can be computed using the qth roots of unity. However the following row 
rule proof based on the combinatoric properties of Corollary 2.2 is more elegant. 

Proof: Let u — c\C2 •. • 7cq where c i , . . .cq E {0,1}. Clearly the result holds for q < 2. 
Now let q > 3. Using (1), for 1 < t < q, define 1 < it < q such that it = l + (t — l)s (mod q). 
Denote circ(u) by A and its (i, fc)-entry by A(i, k). For 2 < t < q, since row it (resp., it-i) of 
A is T"it+1(u) = T^-^iu) (resp., r ^ - t + 1 ^ ( t i ) ) , Corollary 2.2 implies that 

A(it-i,it - 1) = 1, i4(t t-i ,«t) = 0, 

j 4 ( i t , i t - l ) = 0, A(it,it) = 1, 

A(it,k) = A(it~ijk) for k ^ it and k ^ it — 1. 

Let JB be the matrix obtained from A by adding (—1) times row it-\ to row it, for each 
t = g, q — 1 , . . . , 2, in the order given. Then 

B(l,fc) = A(l,fc) = Cib, 

J3(it, k) - ( - l ) ^ ( i t _ i , fc) + Afa, k) 

f - 1 (fc = it - i ) 

= < l(k = it) 
[ 0 (otherwise), 
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where 2 < i < g, and 1 < k < q. Since %2, i s ? . . . , iq is a permutation of 2 , 3 , . . . , g, it follows 
that B is the matrix 

Cl 

- 1 
0 

C2 

1 
- 1 

C3 . . 

0 .. 
1 .. 

• Cg-l 

0 
0 

cq 
0 
0 

0 0 0 -1 1 

Clearly, 

det(circ(u)) — det(B) = Y^ c& = p- D 
k=i 

Here is a special case of Theorem 5.1. Let {vn} and {zn} be sequences of Fibonacci words 
given recursively by 

VQ = l ,v i = 0,v2 = l ,v n = S 
I Vn_2Vn-l 

t;n_i?/n_2 (n is odd) 
(n is even), 

Zi = 1,^2 = 0,£n = < 
^n_2^n-i (n is odd) 

is even), 

Let An = circ(vn) (resp., circ(zn)), n > 1. Since -^r-1 = [0 ,1 ,1 , . . . , ! ] (n 
^ r i - 2 1 ones) (resp., -p [0 ,2 ,1 , . . . , ! ] (n — 3 ones)), n > 3, we see that vn = 

(u (^Y12-)) ( resp., zn — (u f ^ p M J J , n > 1. It follows from Theorem 5.1 that each 
An is an Fn x F n (0,1) - matrix whose rows are precisely the Fibonacci words having length 
Fn and height F n _ i (resp., F n „ 2 ) and det(An) = F n _ i (resp., Fn_2). 

A P P E N D I X . A P R O O F O F L E M M A 2.1 

For each real number 0, the infinite binary word f(0) whose kth letter is [(AH-l)0] — [fc0], k > 
1, is called the characteristic word of 0. 
L e m m a A l (see [21]): Let 0 < 61 < 1. 
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(a) If 0 is irrational and k > 1, then 

the kth letter of f(0) is 1 

<=>k = for some h > 1. 

(b) If 0 = | is rational, where p, g are relatively prime positive integers, and k > 1, fe ̂  0 and 
k ^ —1 (mod g), then 

the fet/l letter of / (0) is 1 

for some h>l, h^Q (mod p). ^=>k = 

Throughout the rest of this section, let p and q be relatively prime positive integers with 
p < q. Let I < s < q,l <t < p, and ps = qt + 1. Let' n = w ( | j . If w is a word and w = xy 
where y is nonempty, we write a? = wy~1. 
L e m m a A2: Let 0 be a real number between 0 and 1 such that ^ is a convergent of the 
continued fraction expansion of 0. Let z be a palindrome such that u = Ozl. 
(a) (see [1,3,21]) z is a prefix of / (0) . 
(b) If | > 0, then w l _ 1 (resp., u) is a prefix of 0/(0) (resp., 1/(0)), but « is not a prefix of 

0/(0). 
(c) If £ < 0, then ?i (resp., «0 _ 1 ) is a prefix of 0/(0) (resp., 1/(0)), but w is not a prefix of 

i/(V 
(d) 0/(§)=«~ 

Proof: Part (b) and (c) follow from (a) and the fact that [(q — 1)0] = p — 1, [(q +1)0] = p, 
and 

P ( * < * ) . 

Part (d) follows from (b). • 
The following lemma follows from Lemmas Al and A2. 
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L e m m a A3 : The first (resp., last) letter of u is 0 (resp., 1). For 1 < k < g, 

the kth letter of u is 1 

< = » * - ! = hq 
P 

for some 1 < h < p — 1. 

L e m m a A4: For each h with 1 < h < p, there is a unique r with 1 < r < p such that 
^ = rs — 1 (mod g). The mapping h \—> r is a bijection from { 1 , 2 , . . . ,p} onto itself. 

Furthermore, 
(a) h = rt and r = h(p — rn) (mod p), where 1 < m < p, and q = m (mod p). 
(b) /i = p <=> r = p. 

Proof: Let 1 < h < p. Since s and q are relatively prime, there is a unique integer r, 
1 < r < <Z such that 

hq 
P 

= rs — I (mod g). 

Clearly (b) holds. Let n be an integer such that ^ = rs — 1 — ng. Then 

p . 
= rps — p — nqp 

= r(qt + 1) — p — nqp 

— q(rt — np) + r — p. 

Since p M < hq < p f ^ l + p, we have 

T p V 
(rt — np) -\ < h <rt — np+ -, 

Q Q Q 

that is, 
r p 

h + np — rt< - < h-hnp — rt-\—. 
q q 

Therefore h + np — rt= H = 0 and r - p < q(h + np - rt) = 0; so h = rt (mod p) and 
1 < T < p. The second part of (a) follows immediately from the first part. 
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It remains to show that if 1 < /n < h2 < p, then f ^ l =£ [ ^ 1 (mod q). Let k = h2-h1, 
where 1 < h± < h2 < p, i.e., 1 < k < p — 1. Then 

hiq 
+ K 

htq + kl < htq kg = fe2g 

^ ftia »— 1 ftia < — + g < — + g - 1 
p p p 

< 
hiq 

+ g; 

so the result follows. • 
Lemma 2.1 now follows immediately from Lemmas A3 and A4. 
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