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1. I N T R O D U C T I O N 

Let P be a quadratic polynomial with integer coefficients. Motivated by a series of results 
on polygonal numbers (which we describe below) we consider the existence of integers a, 6, c, d 
and n such that 

P(n) = P{a) + P(b) = P(c) - P(d), P(a)P(b)P(c)P(d) / 0. (1) 

The simplest example of a polynomial P for which (1) has infinitely many solutions is P(x) — 
x2, for (3m)2 + (4m)2 = (5m)2 — (13m)2 — (12m)2 for every m. Now x2 = P^x) where, 
for each integer N with N > 3, Pnin) is the polygonal number (N — 2)n2/2 — (N — 4)n/2. 
In 1968 Sierpinski [5] showed that there are infinitely many solutions to (1) when P = P3, 
and this was subsequently extended to include the cases P5, P§ and P7 (see [2], [4] and [3], 
respectively). In 1981 S. Ando [1] showed that there are infinitely many solutions to (1) when 
P(x) — Ax2 -j- Bx, where A and B are integers with A — B even, and this implies that, for 
each N, (1) has infinitely many solutions when P = PJV. 

It is easy to find polynomials P for v/hich (1) has no solutions (for example, if P(n) is 
odd for every n), and this leads to the problem of characterizing those P for which (1) has 
infinitely many solutions. This problem has nothing to do with polygonal numbers, and here 
we prove the following result. 
T h e o r e m 1: Suppose that P{x) = Ax2 -j-Bx-}-C? where A^ B and C are integers, and A / 0. 
(i) If SA2 divides P(k) for some integer k, then there are infinitely many n such that (1) 

holds for some integers a, 6, c and d. 
(ii) If gcd(Aj B) does not divide C then there are no integer solutions to (1). 

Theorem l(i) is applicable when P(0) = 0, and this special case implies Ando3s result.. As 
illustrations of Theorem 1 we note that (1) has infinitely many solutions when P(x) = x2-\-2x-j-5 
(because P(l) = 8), but no solutions when P(x) = 6x2+3x+5. Not every quadratic polynomial 
is covered by Theorem 1; for example, x2 + 2x + 4 is not (to check that 8 does not divide 
P(k) for any k it suffices to consider k = 0 , 1 , . . . , 7). In fact, if P(x) — x2 + 2x + 4, then 
P(u + 1) — P(u) — 2u + 3, and it follows from this that for all k, 

P(2k2) + P(2k - 1) = P(2k2 + 1) 
= P(2k4 + 4k2 + 3) - P(2k4 + 4ifc2 + 2). 

The existence of solutions of (1) may have something to do with Diophantine equations; for 
example, if P(x) = x2 - Ax + 3, then P(x + 2) = P(y + 1) + P(y + 3) is equivalent to Pell's 
equation x2 - 2y2 = 1. This link with Diophantine equations suggests perhaps that there may 
be no simple criterion for (1) to have infinitely many solutions. 
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2. T H E P R O O F 

The proof of (i) is based on the following observation. 
L e m m a 2: Let p be any polynomial with integer coefficients. Suppose that there are non-
constant polynomials £, u, v and w with integer coefficients such that u(w(x)) = v(t(x)) + 1 
and P(v(x) + 1) — P{v{x)) = P(u(x)). Then there exist infinitely many n such that (1) holds 
for some integers a, 6, c and d. 

Proof: It is easy to see that if, for any integer x, we put n = u(w(x)), a = v(t(x)), b = 
u(t(x)), c = v(w(x)) + 1 and d — v(w(x)) then (1) holds. 
The Proof of (i): First, we show that the conclusion of (i) holds if 8^42 divides P(0)(= C). 
Let u{x) = 1 + AAx and v(x) = 8A2x2 + (4A + 2B)x + C/2A. Then u and v have integer 
coefficients and as is easily checked, P(v(x) +1 ) — P(v(x)) = P(u(x)). Next define t(x) = 4Ax 
and w(x) = v(4Ax)/4A. The assumption that 8A2 divides C implies that w has integer 
coefficients, and by construction, u(w(x)) = 1 + 4Aw(x) = v(t(x)) + 1. The conclusion of (i) 
now follows from Lemma 2. 

Now suppose that 8^42 divides P(k), and let Q(x) = P(x + k). Then Q has leading 
coefficient A, and 8A2 divides Q(0); thus there are infinitely many n such that (1), with P 
replaced by Q, holds for some a, 6, c and d. The conclusion of (i) follows immediately from 
this. 
The Proof of (ii): If there are integers n, a and b such that P(n) = P(b) — P(a), then there are 
integers u and v such that Au + Bv = C, and this implies that gcd(^4, B) divides C, contrary 
to our assumption. 
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