ON MODULAR FIBONACCI SETS

Mihai Caragiu

Ohio Northern University and Institute of Mathematics Bucharest
E-mail: m-caragiu1@onu.edu

William Webb

Department of Pure and Applied Mathematics, Washington State University, Pullman, WA 99164-3113
E-mail: webb@math.wsu.edu
(Submitted February 2001-Final Revision June 2001)

1. INTRODUCTION

For any prime p let us define the modular Fibonacci set $\operatorname{Fib}[p]$ to be the subset of $\mathbf{F}_{p}=$ $\{0,1, \ldots, p-1\}$ (the finite field with p elements) consisting of all the terms appearing in the Fibonacci sequence modulo p. For example, when $p=41$ we have the Fibonacci sequence modulo 41

$$
\begin{gathered}
1,1,2,3,5,8,13,21,34,14,7,21,28,8,36,3,39,1,40,0,40,40,39, \\
38,36,33,28,20,7,27,34,20,13,33,5,38,2,40,1,0, \ldots
\end{gathered}
$$

so that the corresponding modular Fibonacci set will be

$$
\operatorname{Fib}[41]=\{0,1,2,3,5,7,8,13,14,20,21,27,28,33,34,36,38,39,40\} \subset \mathbf{F}_{41} .
$$

Of course there are plenty of ways of picking up a special subset of \mathbf{F}_{p} for any prime p. One possible choice would be to select within any finite prime field \mathbb{F}_{p} the set of all perfect squares modulo p, say $\mathrm{Sq}[p]$ so that, for example,

$$
\mathrm{Sq}[11]=\{0,1,3,4,5,9\} .
$$

An interesting thing about the sets $\mathrm{Sq}[p]$ is that they admit a uniform description by a firstorder logical formula, namely

$$
\Phi(X) \equiv(\exists Y)\left(X=Y^{2}\right)
$$

The above $\Phi(X)$ is a first-order formula written in the language of rings such that for any prime p the subset $\mathrm{Sq}[p]$ of \mathbf{F}_{p} coincides with the set of all elements $x \in \mathbf{F}_{p}$ satisfying Φ :

$$
\mathrm{Sq}[p]=\left\{x \in \mathbb{F}_{p}: \Phi(x) \text { true }\right\} .
$$

In a more technical language, we can say that the perfect squares are first-order definable.
At this moment the following natural question can be asked: is there a formula $\theta(X)$ that defines in each field \mathbf{F}_{p} the set Fib $[p]$? By providing a negative answer to the above question, the present note establishes a worth noting, albeit negative, property of the family of modular Fibonacci sets. Our main result is the following:
Theorem 1: There is no formula $\theta(x)$ written in the first-order language of rings that defines in each field \mathbf{F}_{p} the set $\operatorname{Fib}[p]$.

For basic concepts of logic and model theory, including that of elementary formula one may consult [1]. An essential role in the proof of Theorem 1 will be played by the following result [2] estimating the number of points of definable subsets of finite fields:

Theorem 2: If $\theta(X)$ is a formula in one free variable X written in the first-order language of rings, then there are positive constants A, B, and positive rational numbers $0<\mu_{1}<\cdots<$ $\mu_{k} \leq 1$ such that for any finite field \mathbf{F}_{q}, if $N_{q}(\theta)$ represents the number of elements $a \in \mathbf{F}_{q}$ such that $\theta(a)$ is true, either

$$
N_{q}(\theta) \leq A
$$

or

$$
\left|N_{q}(\theta)-\mu_{i} q\right| \leq B \sqrt{q}
$$

for some $i \in\{1, \ldots, k\}$.
Example. Consider

$$
\theta(x) \equiv\left(\exists Y_{1}\right) \ldots\left(\exists Y_{n}\right)\left[\left(X+1=Y_{1}^{2}\right) \wedge \cdots \wedge\left(X+n=Y_{n}^{2}\right)\right]
$$

so that $\theta(X)$ asserts that $X+1, X+2, \ldots, X+n$ are perfect squares within the field. In this case one can take $k=2$ with $\mu_{1}=1 / 2^{n}$ and $\mu_{2}=1$. The first value, μ_{1}, stands for the fields of odd characteristic. Indeed, according to a classical result of Davenport, the number $N=N\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$ of elements $x \in G F(q)$ for which the Legendre character takes n preassigned values $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ on $x+d_{1}, x+d_{2}, \ldots, x+d_{n}$, can be estimated ([4], p. 263) as $N=q / 2^{n}+O(n \sqrt{q})$ with an absolute implied constant. The second value μ_{2} stands for the finite fields of characteristic two, in which every element is a square.

2. PROOF OF THE MAIN RESULT

In order to apply Theorem 2 to the proof of our main result, we will need a result on the cardinalities of the modular Fibonacci sets Fib $[p]$.
Proposition 3: For any $\varepsilon>0$ there exists a prime p such that

$$
|\operatorname{Fib}[p]|<p \varepsilon
$$

Proof: From [3] and [5] it follows that if $k(p)$ is the period of the Fibonacci sequence modulo p, then $p / k(p)$ is an unbounded function of the prime p. Proposition 3 is a straight-forward consequence of this fact.

We now proceed to the proof of Theorem 1. Let us suppose, by contradiction, that there exists some formula $\theta(X)$ in the first-order language of rings, with the property that for any prime p and any $x \in \mathrm{~F}_{p}$

$$
x \in \operatorname{Fib}[p] \Leftrightarrow \theta(x) \text { true in } \mathbf{F}_{p}
$$

Let A, B and $0<\mu_{1}<\cdots<\mu_{k} \leq 1$ be the constants associated to the formula θ by Theorem 2. It follows then for any prime p, either

$$
\begin{equation*}
|\operatorname{Fib}[p]| \leq A \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\| \operatorname{Fib}[p]\left|-\mu_{i} p\right| \leq B \sqrt{p} \tag{2}
\end{equation*}
$$

for some $i \in\{1, \ldots, k\}$. Note that (1) fails for all sufficiently large p, since the sequence of Fibonacci numbers is strictly increasing after the second term. Thus, for p big enough it is
(2) which must be true. However, by proposition 3, there are arbitrarily large p for which (2) fails for $i=1, \ldots, k$. Thus a formula $\theta(X)$ as above cannot exist.
Remark: In the same way one can prove that there is no finite set $\left\{\theta_{1}(X), \ldots, \theta_{n}(X)\right\}$ of first-order formulas written in the language of rings such that for each prime p some formula $\theta_{i}(X)$ defines $\mathrm{Fib}[p]$ in the field \mathbf{F}_{p}.

REFERENCES

[1] C.C. Chang and H.J. Keisler. Model Theory. Second Edition, North-Holland, Amsterdam, 1977.
[2] Z. Chatzidakis, L.v.d. Dries and A. Macintyre. "Definable Sets Over Finite Fields." Crelle Journal 427 (1992): 107-135.
[3] D. Jarden. "Unboundedness of the function $[\mathrm{p}-(5 / \mathrm{p})] / \mathrm{a}(\mathrm{p})$ in Fibonacci's sequence." A.M. Monthly 53 (1946): 426-427.
[4] R. Lidl and H. Niederreiter. Finite Fields. Second Edition, Cambridge University Press, 1997.
[5] J. Vinson. "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence." The Fibonacci Quarterly 1 (1963): 37-45.

AMS Classification Numbers: 11TXX, 11B50
四

