# ON THE $k^{t h}$-ORDER F-L IDENTITY 

Chizhong Zhou
Department of Computer and Information Engineering, Yueyang Normal University
Yueyang, Hunan 414000, PR China
email: chizhongz@yeah.net

## Fredric T. Howard

Department of Mathematics,
Wake Forest University, Box 7388 Reynolda Station, Winston-Salem, NC 27109
(Submitted April 2001)

## 1. INTRODUCTION

For convenience, in this paper we adopt the notations and symbols in [3] or [4]:
Let the sequence $\left\{w_{n}\right\}$ be defined by the recurrence relation

$$
\begin{equation*}
w_{n+k}=a_{1} w_{n+k-1}+\cdots+a_{k-1} w_{n+1}+a_{k} w_{n} \tag{1.1}
\end{equation*}
$$

and the initial conditions

$$
\begin{equation*}
w_{0}=c_{0}, w_{1}=c_{1}, \ldots, w_{k-1}=c_{k-1} \tag{1.2}
\end{equation*}
$$

where $a_{1}, \ldots, a_{k}$, and $c_{0}, \ldots, c_{k-1}$ are complex constants. Then we call $\left\{w_{n}\right\}$ a $k^{t h}$ - order Fibonacci-Lucas sequence or simply an $\mathbb{F}-\mathbb{L}$ sequence, call every $w_{n}$ an $\mathbb{F}-\mathbb{L}$ number, and call

$$
\begin{equation*}
f(x)=x^{k}-a_{1} x^{k-1}-\cdots-a_{k-1} x-a_{k} \tag{1.3}
\end{equation*}
$$

the characteristic polynomial of $\left\{w_{n}\right\}$. A number $\alpha$ satisfying $f(\alpha)=0$ is called a characteristic root of $\left\{w_{n}\right\}$. In this paper we always assume that $a_{k} \neq 0$, hence we may consider $\left\{w_{n}\right\}$ as $\left\{w_{n}\right\}_{-\infty}^{+\infty}$. The set of F-L sequences satisfying (1.1) is denoted by $\Omega\left(a_{1}, \ldots, a_{k}\right)$ and also by $\Omega(f(x))$. Let $x_{1}, \ldots, x_{k}$ be the roots of $f(x)$ defined by (1.3), and let

$$
\begin{equation*}
v_{n}=x_{1}^{n}+x_{2}^{n}+\cdots+x_{k}^{n}(n \in \mathbb{Z}) \tag{1.4}
\end{equation*}
$$

Then, obviously, $\left\{v_{n}\right\} \in \Omega\left(a_{1}, \ldots, a_{k}\right)$. Since for $k=2$ and $a_{1}=a_{2}=1,\left\{v_{n}\right\}$ is just the classical Lucas sequence $\left\{L_{n}\right\}$, we call $\left\{v_{n}\right\}$ for any $k$ the $k^{t h}$-order Lucas sequence in $\Omega\left(a_{1}, \ldots, a_{k}\right)$. In [1] and [2] Howard proved the following theorem:
Theorem 1.1: Let $\left\{w_{n}\right\} \in \Omega\left(a_{1}, \ldots, a_{k}\right)$. Then for $m \geq 1$ and all integers $n$,

$$
w_{(k-1) m+n}=\sum_{j=1}^{k}(-1)^{j-1} c_{m, j m} w_{(k-j-1) m+n}
$$

The numbers $c_{m, j m}$ are defined by

$$
\prod_{i=0}^{m-1}\left[1-a_{1}\left(\theta^{i} x\right)-a_{2}\left(\theta^{i} x\right)^{2}-\cdots-a_{k}\left(\theta^{i} x\right)^{k}\right]=1+\sum_{j=1}^{k}(-1)^{j} c_{m, j m} x^{j m}
$$

where $\theta$ is a primitive $m^{\text {th }}$ root of unity.
Yet in [2] he proved the following result:
Theorem 1.2: Let $\left\{w_{n}\right\} \in \Omega(r, s, t)$. Then for $m, n \in \mathbb{Z}$,

$$
\begin{equation*}
w_{n+2 m}=J_{m} w_{n+m}-t^{m} J_{-m} w_{n}+t^{m} w_{n-m} \tag{1.5}
\end{equation*}
$$

Here $\left\{J_{n}\right\} \in \Omega(r, s, t)$ satisfies $J_{0}=3, J_{1}=r, J_{2}=r^{2}+2 s$.
It is easy to see that $\left\{J_{n}\right\}$ is just the third-order Lucas sequence in $\Omega(r, s, t)$. Thus we observe that the identity (1.5) involves only the numbers from an arbitrary third-order F-L sequence and from the third-order Lucas sequence in $\Omega(r, s, t)$. This suggests the main purpose of the present paper: we shall prove a general $k^{t h}$-order F-L identity which involves only the numbers from an arbitrary $k^{t h}$-order F-L sequence and from the $k^{t h}$-order Lucas sequence in $\Omega\left(a_{1}, \ldots, a_{k}\right)$. As an application of the identity we represent $c_{m, j m}$ in Theorem 1.1 by the $k^{t h}$ order Lucas numbers. Then to make the identity simpler we give the identity an alternative form in which the negative subscripts for the $k^{t h}$-order Lucas sequence are introduced. As a corollary of the identity we generalize the result of Theorem 1.2 from the case $k=3$ to the case of any $k$. In our proofs we do not need to consider whether the characteristic roots of the F-L sequence are distinct. Also, we can use our results to construct identities for given $k$, and the computations are relatively simple. We first give some preliminaries in Section 2, and then in Section 3 we give the main results and their proofs. Some examples are also given in Section 3.

## 2. PRELIMINARIES

Lemma 2.1: Let $\left\{v_{n}\right\}$ be the $k^{\text {th }}$-order Lucas sequence in $\Omega\left(a_{1}, \ldots, a_{k}\right)$. Denote the generating function of $\left\{v_{n}\right\}$ by

$$
\begin{equation*}
V(x)=\sum_{n=0}^{\infty} v_{n} x^{n} \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
V(x)=\frac{k-(k-1) a_{1} x-(k-2) a_{2} x^{2}-\cdots-2 a_{k-2} x^{k-2}-a_{k-1} x^{k-1}}{1-a_{1} x-a_{2} x^{2}-\cdots-a_{k} x^{k}} \tag{2.2}
\end{equation*}
$$

Proof: Let $x_{1}, \ldots, x_{k}$ be the roots of the characteristic polynomial $f(x)$, denoted by (1.3), of sequence $\left\{v_{n}\right\}$. Denote

$$
f^{*}(x)=1-a_{1} x-a_{2} x^{2}-\cdots-a_{k} x^{k}
$$

Clearly,

$$
f^{*}(x)=x^{k} f\left(x^{-1}\right)=\left(1-x_{1} x\right) \ldots\left(1-x_{k} x\right)
$$

Whence

$$
\ln f^{*}(x)=\ln \left(1-x_{1} x\right)+\cdots+\ln \left(1-x_{k} x\right)
$$

## ON THE $k^{t h}$-ORDER F-L IDENTITY

Differentiating the both sides of the last expression we obtain

$$
\begin{aligned}
\frac{f^{*^{\prime}}(x)}{f^{*}(x)} & =\frac{-x_{1}}{1-x_{1} x}+\cdots+\frac{-x_{k}}{1-x_{k} x} \\
& =-\sum_{n=0}^{\infty}\left(x_{1}^{n+1}+\cdots+x_{k}^{n+1}\right) x^{n}=-\sum_{n=0}^{\infty} v_{n+1} x^{n}
\end{aligned}
$$

From (2.1) it follows that

$$
V(x)=v_{0}-x \cdot \frac{f^{*^{\prime}}(x)}{f^{*}(x)}=k+\frac{x\left(a_{1}+2 a_{2} x+\cdots+k a_{k} x^{k-1}\right)}{1-a_{1} x-a_{2} x^{2}-\cdots-a_{k} x^{k}}
$$

Thus the proof is finished.
From (2.1) and (2.2) it follows that

$$
\begin{aligned}
& \left(1-a_{1} x-a_{2} x^{2}-\cdots-a_{k} x^{k}\right) \sum_{n=0}^{\infty} v_{n} x^{n} \\
& \quad=k-(k-1) a_{1} x-(k-2) a_{2} x^{2}-\cdots-2 a_{k-2} x^{k-2}-a_{k-1} x^{k-1}
\end{aligned}
$$

Comparing the coefficients of $x^{i}$ in the both sides of the last expression for $i=1, \ldots, k$ we get the well-known Newton's formula:
Corollary 2.2: (Newton's formula) Let $\left\{v_{n}\right\}$ be the $k^{\text {th }}$-order Lucas sequence in $\Omega\left(a_{1}, \ldots, a_{k}\right)$. Then

$$
a_{1} v_{i-1}+a_{2} v_{i-2}+\cdots+a_{i-1} v_{1}+i a_{i}=v_{i} \quad(i=1, \ldots, k)
$$

Lemmar 2.3: [4] Let $\left\{w_{n}\right\} \in \Omega\left(a_{1}, \ldots, a_{k}\right)=\Omega(f(x))$, and $x_{1}, \ldots, x_{k}$ be the roots of $f(x)$. For $m \in \mathbb{Z}^{+}$, let

$$
\begin{equation*}
f_{m}(x)=\left(x-x_{1}^{m}\right) \ldots\left(x-x_{k}^{m}\right)=x^{k}-b_{1} x^{k-1}-\cdots-b_{k-1} x-b_{k} \tag{2.3}
\end{equation*}
$$

Then $\left\{w_{m n+r}\right\}_{n} \in \Omega\left(f_{m}(x)\right)$. That is,

$$
w_{m(n+k)+r}=b_{1} w_{m(n+k-1)+r}+\cdots+b_{k-1} w_{m(n+1)+r}+b_{k} w_{m n+r}
$$

## 3. THE MAIN RESULTS AND PROOFS

Theorem 3.1: Let $\left\{w_{n}\right\}$ be any sequence in $\Omega\left(a_{1}, \ldots, a_{k}\right)=\Omega(f(x))$, and let $\left\{v_{n}\right\}$ be the $k^{\text {th }}$-order Lucas sequence in $\Omega(f(x))$. Let $x_{1}, \ldots, x_{k}$ be the roots of $f(x)$ and $f_{m}(x)$ be defined by (2.3) for $m \in \mathbb{Z}^{+}$. Then for $n \in \mathbb{Z}$,

$$
\begin{equation*}
w_{m(n+k)+r}=b_{1} w_{m(n+k-1)+r}+\cdots+b_{k-1} w_{m(n+1)+r}+b_{k} w_{m n+r} \tag{3.1}
\end{equation*}
$$

and $b_{1}, \ldots, b_{k}$ can be obtained by solving the trianglular system of linear equations

$$
\begin{equation*}
b_{1} v_{m(i-1)}+b_{2} v_{m(i-2)}+\cdots+b_{i-1} v_{m}+i b_{i}=v_{m i} \quad(i=1, \ldots, k) \tag{3.2}
\end{equation*}
$$

In other words, for $i=1, \ldots, k$,

$$
b_{i}=b_{i}(m)=\frac{1}{i!} \left\lvert\, \begin{array}{cccccc}
1 & & & & v_{m}  \tag{3.3}\\
v_{m} & 2 & & & & v_{2 m} \\
v_{2 m} & v_{m} & 3 & & & v_{3 m} \\
v_{3 m} & v_{2 m} & v_{m} & \ddots & & v_{4 m} \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
v_{(i-2) m} & v_{(i-3) m} & v_{(i-4) m} & \cdots & v_{m} & i-1 \\
v_{(i-1) m} & v_{(i-2) m} & v_{(i-3) m} & \cdots & v_{2 m} & v_{m}
\end{array}\right.
$$

Proof: In $\Omega\left(f_{m}(x)\right)$ the $k^{t h}$-order Lucas sequence is

$$
V_{n}=\left(x_{1}^{m}\right)^{n}+\cdots+\left(x_{k}^{m}\right)^{n}=v_{m n}(n \in \mathbb{Z})
$$

Thus (3.1) and (3.2) follow from Lemma 2.3 and Corollary 2.2. We use Cramer's Rule on (3.2) to obtain (3.3)
Remark: In (3.1) taking $n=-1$ and then taking $r=n$ we get $c_{m, j m}=b_{j}(m)$. Then $c_{m, j m}$ can be represented by the $k^{t h}$-order Lucas numbers and it is more easy to caluclate $c_{m, j m}$ 's. For example, by using (3.2) or (3.3) we can obtain:
For $k=3$,

$$
w_{n+2 m}=v_{m} w_{n+m}+\left(v_{2 m}-v_{m}^{2}\right) / 2 \cdot w_{n}+\left(2 v_{3 m}-3 v_{m} v_{2 m}+v_{m}^{3}\right) / 6 \cdot w_{n-m}
$$

For $k=4$,

$$
\begin{aligned}
w_{n+3 m}= & v_{m} w_{n+2 m}+\left(v_{2 m}-v_{m}^{2}\right) / 2 \cdot w_{n+m}+\left(2 v_{3 m}-3 v_{m} v_{2 m}+v_{m}^{3}\right) / 6 \cdot w_{n}+ \\
& \left(6 v_{4 m}-8 v_{m} v_{3 m}-3 v_{2 m}^{2}+6 v_{m}^{2} v_{2 m}-v_{m}^{4}\right) / 24 \cdot w_{n-m}
\end{aligned}
$$

For $k=5$,

$$
\begin{aligned}
w_{n+4 m}= & v_{m} w_{n+3 m}+\left(v_{2 m}-v_{m}^{2}\right) / 2 \cdot w_{n+2 m}+\left(2 v_{3 m}-3 v_{m} v_{2 m}+v_{m}^{3}\right) / 6 \cdot w_{n+m}+ \\
& \left(6 v_{4 m}-8 v_{m} v_{3 m}-3 v_{2 m}^{2}+6 v_{m}^{2} v_{2 m}-v_{m}^{4}\right) / 24 \cdot w_{n}+ \\
& \left(24 v_{5 m}-30 v_{m} v_{4 m}-20 v_{2 m} v_{3 m}+20 v_{m}^{2} v_{3 m}+15 v_{m} v_{2 m}^{2}-\right. \\
& \left.10 v_{m}^{3} v_{2 m}+v_{m}^{5}\right) / 120 \cdot w_{n-m}
\end{aligned}
$$

## ON THE $k^{t h}$-ORDER F-L IDENTITY

Theorem 3.2: Under the conditions of Theorem 3.1 we have

$$
\begin{equation*}
b_{k-i}(m)=(-1)^{(k+1)(m+1)+1} a_{k}^{m} b_{i}(-m) \quad(i=1, \ldots, k-1) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{k}(m)=(-1)^{(k+1)(m+1)} a_{k}^{m} \tag{3.5}
\end{equation*}
$$

Therefore for odd $k$ we have

$$
\begin{align*}
w_{m(n+k)+r}= & b_{1}(m) w_{m(n+k-1)+r}+b_{2}(m) w_{m(n+k-2)+r}+\cdots+ \\
& b_{(k-1) / 2}(m) w_{m(n+(k+1) / 2)+r}-a_{k}^{m}\left(b_{(k-1) / 2}(-m) w_{m(n+(k-1) / 2)+r}+\right.  \tag{3.6}\\
& \left.\cdots+b_{2}(-m) w_{m(n+2)+r}+b_{1}(-m) w_{m(n+1)+r}-w_{m n+r}\right)
\end{align*}
$$

and for even $k$ we have

$$
\begin{align*}
w_{m(n+k)+r}= & b_{1}(m) w_{m(n+k-1)+r}+b_{2}(m) w_{m(n+k-2)+r}+\cdots+ \\
& b_{k / 2-1}(m) w_{m(n+k / 2+1)+r}+b_{k / 2}(m) w_{m(n+k / 2)+r}+  \tag{3.7}\\
& \left(-a_{k}\right)^{m}\left(b_{k / 2-1}(-m) w_{m(n+k / 2-1)+r}+\right. \\
& \left.\cdots+b_{2}(-m) w_{m(n+2)+r}+b_{1}(-m) w_{m(n+1)+r}-w_{m n+r}\right)
\end{align*}
$$

Proof: Clearly,

$$
b_{k}=b_{k}(m)=-(-1)^{k} x_{1}^{m} \ldots x_{k}^{m}=(-1)^{k+1}\left(-(-1)^{k} a_{k}\right)^{m}
$$

Whence (3.5) holds. Let

$$
\begin{aligned}
f_{m}^{*}(x) & =x^{k} f_{m}\left(x^{-1}\right)=\left(1-x_{1}^{m} x\right) \ldots\left(1-x_{k}^{m} x\right) \\
& =1-b_{1} x-b_{2} x^{2}-\cdots-b_{k-1} x^{k-1}-b_{k} x^{k}
\end{aligned}
$$

Then the $k^{t h}$-order Lucas sequence in $\Omega\left(f_{m}^{*}(x)\right)$ is

$$
V_{n}^{*}=\left(x_{1}^{-m}\right)^{n}+\cdots+\left(x_{k}^{-m}\right)^{n}=v_{-m n}(n \in \mathbb{Z})
$$

By Newton's formula we have, for $i=1, \ldots, k-1$,

$$
b_{k-1} v_{-m(i-1)}+b_{k-2} v_{-m(i-2)}+\cdots+b_{k-(i-1)} v_{-m}+i b_{k-i}=-b_{k} v_{-m i}
$$

where $b_{i}=b_{i}(m)$. It follows from Cramer's Rule that

$$
b_{k-i}=b_{k-i}(m)=\frac{-b_{k}(m)}{i!}\left|\begin{array}{cccccc}
1 & & & & & v_{-m}  \tag{3.8}\\
v_{-m} & 2 & & & & v_{-2 m} \\
v_{-2 m} & v_{-m} & 3 & & & v_{-3 m} \\
v_{-3 m} & v_{-2 m} & v_{-m} & \ddots & & v_{-4 m} \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
v_{-(i-2) m} & v_{-(i-3) m} & v_{-(i-4) m} & \cdots & v_{-m} & i-1 \\
v_{-(i-1) m} & v_{-(i-2) m} & v_{-(i-3) m} & \cdots & v_{-2 m} & v_{-m}
\end{array}\right|
$$

Noticing (3.5) and comparing (3.8) with (3.3) we see that (3.4) holds. This completes the proof.
Corollary 3.3: Let $\left\{w_{n}\right\}$ be any sequence in $\Omega\left(a_{1}, \ldots, a_{k}\right\}=\Omega(f(x))$, and let $\left\{v_{n}\right\}$ be the $k^{\text {th }}$-order Lucas sequence in $\Omega(f(x))$. Assume that $n, m \in Z$ and $m \neq 0$. Then, for odd $k$ we have

$$
\begin{align*}
w_{n+m(k-1)}= & b_{1}(m) w_{n+m(k-2)}+b_{2}(m) w_{n+m(k-3)}+\cdots+ \\
& b_{(k-1) / 2}(m) w_{n+m(k-1) / 2}-a_{k}^{m}\left(b_{(k-1) / 2}(-m) w_{n+m(k-3) / 2}+\right.  \tag{3.9}\\
& \left.\cdots+b_{2}(-m) w_{n+m}+b_{1}(-m) w_{n}-w_{n-m}\right),
\end{align*}
$$

and for even $k$ we have

$$
\begin{align*}
w_{n+m(k-1)}= & b_{1}(m) w_{n+m(k-2)}+b_{2}(m) w_{n+m(k-3)}+\cdots+ \\
& b_{k / 2-1}(m) w_{n+m k / 2}+b_{k / 2}(m) w_{n+m(k / 2-1)}+ \\
& \left(-a_{k}\right)^{m}\left(b_{k / 2-1}(-m) w_{n+m(k / 2-2)}+\right.  \tag{3.10}\\
& \left.\cdots+b_{2}(-m) w_{n+m}+b_{1}(-m) w_{n}-w_{n-m}\right) .
\end{align*}
$$

Proof: For $m>0$ the conclusion is shown by taking $n=-1$ and then taking $r=n$ in Theorem 3.2. Now, assume that $m<0$. Then, $-m>0$, and, by the proved result, for odd $k$ we have

$$
\begin{align*}
w_{n-m(k-1)}= & b_{1}(-m) w_{n-m(k-2)}+b_{2}(-m) w_{n-m(k-3)}+\cdots+ \\
& b_{(k-1) / 2}(-m) w_{n-m(k-1) / 2}-a_{k}^{-m}\left(b_{(k-1) / 2}(m) w_{n-m(k-3) / 2}+\right.  \tag{3.11}\\
& \left.\cdots+b_{2}(m) w_{n-m}+b_{1}(m) w_{n}-w_{n+m}\right)
\end{align*}
$$

and for even $k$ we have

$$
\begin{align*}
w_{n-m(k-1)}= & b_{1}(-m) w_{n-m(k-2)}+b_{2}(-m) w_{n-m(k-3)}+\cdots+ \\
& b_{k / 2-1}(-m) w_{n-m k / 2}+b_{k / 2}(-m) w_{n-m(k / 2-1)}+  \tag{3.12}\\
& \left(-a_{k}\right)^{-m}\left(b_{k / 2-1}(m) w_{n-m(k / 2-2)}+\right. \\
& \left.\cdots+b_{2}(m) w_{n-m}+b_{1}(m) w_{n}-w_{n+m}\right) .
\end{align*}
$$

Multiplying both sides of (3.11) by $a_{k}^{m}$ and replacing $n$ by $n+m(k-2)$ we can get (3.9). Multiplying both sides of (3.12) by $\left(-a_{k}\right)^{m}$ and replacing $n$ by $n+m(k-2)$ we can get (3.10). Thus the proof is finished.
Remark: Corollary 3.3 is a generalization of Theorem 1.2 (for $k=3$ ). By using the corollary we can easily give the following examples:
[AUG.

```
ON THE }\mp@subsup{k}{}{th}\mathrm{ -ORDER F-L IDENTITY
```

For $k=4$,

$$
w_{n+3 m}=v_{m} w_{n+2 m}+\left(v_{2 m}-v_{m}^{2}\right) / 2 \cdot w_{n+m}+\left(-a_{4}\right)^{m}\left(v_{-m} w_{n}-w_{n-m}\right)
$$

For $k=5$,

$$
\begin{aligned}
w_{n+4 m}= & v_{m} w_{n+3 m}+\left(v_{2 m}-v_{m}^{2}\right) / 2 \cdot w_{n+2 m}- \\
& a_{5}^{m}\left(\left(v_{-2 m}-v_{-m}^{2}\right) / 2 \cdot w_{n+m}+v_{-m} w_{n}-w_{n-m}\right)
\end{aligned}
$$

For $k=6$,

$$
\begin{aligned}
w_{n+5 m}= & v_{m} w_{n+4 m}+\left(v_{2 m}-v_{m}^{2}\right) / 2 \cdot w_{n+3 m}+\left(2 v_{3 m}-3 v_{m} v_{2 m}+v_{m}^{3}\right) / 6 \cdot w_{n+2 m}+ \\
& \left(-a_{6}\right)^{m}\left(\left(v_{-2 m}-v_{-m}^{2}\right) / 2 \cdot w_{n+m}+v_{-m} w_{n}-w_{n-m}\right)
\end{aligned}
$$

## REFERENCES

[1] F. T. Howard. "Generalizations of a Fibonacci Identity." Applications of Fibonacci Numbers, Vol. 8. Edited by Fredric T. Howard. Kluwer Academic Publishers. Dordrecht, The Netherlands, 1999: pp. 201-211.
[2] F. T. Howard. "A Tribonacci Identity." The Fibonacci Quarterly 39.4 (2001): 352-357.
[3] C. Z. Zhou. "A Generalization of the 'All or None' Divisibility Property." The Fibonacci Quarterly 35.2 (1997): 129-134.
[4] C. Z. Zhou. "Constructing Identities Involving $k$ th-order $F$ - $L$ Numbers by Using the Characteristic Polynomial." Applications of Fibonacci Numbers, Vol. 8. Edited by Fredric T. Howard. Kluwer Academic Publishers. Dordrecht, The Netherlands, 1999: pp. 369379.

AMS Classification Numbers: 11B39, 11B37
*

