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Let S = (sn)nez be a “doubly infinite” recurring sequence in the complex field, C, satis-
fying the recurrence

Sn+2 = 0Sn41 + PSn (1)

where o, p € C and p # 0. It can happen that the elements of a minimal periodic segment
(see below) of S form a subgroup of the multiplicative group C* of C and our purpose here is
to investigate this phenomenon. The analogous situation in the context of finite fields seems
to have first been investigated by Somer [2], [3]; see also [1].

Write f(t) = t2 — ot — p € Clt],p # 0. A sequence of complex numbers S = (8, )nez
satisfying (1) will be called an f-sequence in C; f is the characteristic polynomial of S. If
there exists m € N such that s, = s444, for all a € Z and if also m is minimal subject to
this then S is periodic with least period m. By a minimal periodic segment we understand the
whole sequence if S is not periodic, and any segment consisting of m consecutive members of
S if S is periodic with least period m.

Definition 1: Let f(t) = t> — ot — p € C[t], p # 0. The subgroup M < C* is said to be an
f-sequence subgroup if either
(a) M is infinite and the underlying set of M can be written in such an order as to form a
doubly infinite f-sequence (sp)nez Where s, # sp if @ # b, or
(b) M is finite, of order m, and the underlying set of M can be written in such an order as to
coincide with a minimal periodic segment of an f-sequence (sp)nez, Where s, = sp if and only
if a =b (mod m).

We will write M = (8,)nez even if M is finite, and will say that (s,)rez is a representation
of, or represents, M as an f-sequence.

If f(t) € C[t], f(0)#0, and if g, h € C* are roots of f, then

<g>= ( . '39_2).9_17 1:97927 .. ) = (gn)nEZ

is an “obvious” representation of < g >< C* as an f-sequence subgroup; it can happen that
h # g but < h >=< g >, and then (h"),¢z is a different representation of the same subgroup.
This suggests:

Definition 2: Let f(t) =t — ot — p € C[t],p # 0.

(a) The f-sequence (85 )nez in C is said to be cyclic if there exists g € C such that sp41/5, = g
for alln € Z.

(b) The f-sequence subgroup M of C* is said to be standard if whenever M is represented

as an f-sequence M = ($p)nez then (sp)nez is necessarily cyclic. Otherwise, M is said to be
nonstandard.
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(c) Suppose that M is a nonstandard f-sequence subgroup. If M admits representation as a
cyclic f-sequence then we say that M is nonstandard of the first type; otherwise M is said to
be nonstandard of the second type.

Essentially, M is standard if the “obvious” ways are the only ways of realising it as an
f-sequence subgroup. If M = (¢")nez is a representation of M as a cyclic f-sequence, then
it is clear that g must be both a root of f(¢) and a generator of M as a group, whence M
is a cyclic group. It is possible to find polynomials f(t) which admit non-cyclic f-sequence
subgroups: see Proposition 6(d) below.

Our main results are Propositions 4 and 6. Suppose that f(t) € C[t] and that f has roots
g, h € C*. Except in the case

lgl = || # 1 and g # +h,

which remains open, we prove that an f-sequence subgroup must be standard unless g = —h;
when g = —h we classify the nonstandard subgroups.

Observations 3: Suppose f(t) = t2 — ot — p € Clt], p # 0, with roots g, h € C*, and let
(8n)nez be an f-sequence in C.
(a) Suppose firstly that g # h. By linear algebra, there exist a, 8 € C with s = a + 8 and
s1 = ag + Bh. By induction, s, = ag™ + Bh™ for all integers n > 0, and because p # 0 this
may be extended to cover the case of negative n.
(b) Suppose next that g = h. There exist a, 8 € C such that sy = @ and s; = g(a+f3). Again,
we have s, = (a + nf)g™ for all n € Z.
(c) The reciprocal polynomial of f(t) is (—p)f*(t) where f*(t) = t2 + (0/p)t — (1/p). The
roots of f*(t) are g~1,h~! € C*.

If (sp)nez is an f-sequence in C then (ry)nez is an f*-sequence where rp, = s_,. If
M = (sn)nez is an f-sequence subgroup of C* then M = (r,)nez is also an f*-sequence
subgroup. Thus M is standard as an f-sequence subgroup if and only if it is standard as an
f*-sequence subgroup. Further, if s, = ag™ + BA™ for all n € Z then r, = a(g™!)" + B(A~1)"
for all n.

Before continuing, we fix some notation. If z € C then |z| will always denote the modulus
of z. We will use ord(z) to denote the multiplicative order of z € C*, if z is a root of unity,
and ord(M) to denote the order of the group M, if finite.

Proposition 4: Let f(t) = t2 —ot —p € C[t], p # 0. Suppose that f has distinct roots
g, h € C*. Let M = (8p)nez < C* be an f-sequence subgroup and write s, = ag™ + Bh™ for
all n, for suitable a, B € C. Suppose that either

(1) lgl # |Al, or

(2) |g]l = |h| # 1, g/h is not a root of unity and |a| # |B].

Then af = 0. Further, M is standard.

Proof: Suppose for a contradiction that a8 # 0. We may assume that so = 1, while by
Observation 3(c) we may also assume that |g| > |h| and that |g| > 1. Write v = h/g, so
0< |yl £1 and s, = g™(a + BY™). Suppose m is positive. Then |(a + By™)| is bounded
above by |a| + |B]. If |y| < 1 or if |y] = 1 and |a| # |B| then |(a + By™)| is bounded below
(away from 0).
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Now $msn € M for all m,n € Z because M is a group. Thus there exists a function
u:Z? =7 (m,n) — u(m,n) such that $,,8n = Sy(m n) for all m, n. Thus, for all m, n € Z,

Smsn = g™ (@ + By™) (e + By") = g“™™) (o + By (™), @)

The boundedness of |+ 87™|m>0 implies that [g|™+?~%4(™:") is bounded above and below
whenever m,n,u(m,n) > 0. But |g| > 1 and so there exists a constant K such that

lm+n —u(m,n)| < K (3)

whenever m, n, u(m,n) > 0.
Now fix ¢ > 0 and suppose that u(n + i,» — %) > 0 for infinitely many n. By (3), there
exists a fixed j with |j| < K such that u(n +4,n — ) = 2n + j for infinitely many n. Thus

$ntisn—i = g (@ + By ) (@ + By T7) = g"H (a + By ),

or
(@ —ag') +af(v' +77 " + (87 - Br' g’ )y*" =0

for infinitely many n. Now af # 0, while (y* +v7%) # 0 because v is not a root of unity.
Thus, for infinitely many n, y™ is a root of a fixed polynomial, independent of n, of degree
either 1 or 2. Thus infinitely many of the 4™ must coincide, which is impossible because 7y is
neither zero nor a root of unity.

Thus for fixed 7 > 0, u(n + i,n —¢) < 0 for all positive n but a finite number. Now (2)
gives . . o o

g2n(a +ﬂ,yn+1)(a +,B’}ln_1') — hu('n+1.,n—-1,) (a,y—u(n+z,n-—z) +,8)

and so |g|??|h|~#(»*+im=1) is bounded, independent of i and of n, provided just that n > i > 0
and u(n +i,n — 1) < 0. But given ¢ > 0, these conditions hold for infinitely many n > ¢, and
so |h| < 1. It then follows that there exists a positive integer K such that whenever n >4 > 0
and u(n +4,n — 1) < 0 we have

u(n+i4,n—1) loglgl| Ki @)
2n log|h|| = 2n°

Let R = {0,1,...,4K; + 2}. For each ¢ > 0, u(n +4,n — i) < 0 for all but finitely many
positive n and so there exists N such that if n > N we have u(n+i,n—i) <Oforalli e R
simultaneously. Thus for distinct 41,42 € R, (4) gives

lu(n+41,n — 1) —u(n + iz, n — i2)| < 2K,

whenever n > N. So for fixed ng > N, all integers u(ng + %,n9 — 4) for ¢ € R belong to an
interval of length at most 4K centered on u(ng,no). By the pigeon hole principle, there exist
i1 # 12 such that u(no + 21, m0 — ’6'1) = u(no + 49, M0 — 7:2). Thus

Sno4iySno—i1 = Sno+izSno—iy
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and so . . . )
af(y + 7N gh)™ = aB(y? +772)(gh)™.
Since afigh # 0, it follows that

PR ke b
’Y ’Y - 7i17i2 ’

so that either 4" = 7% or y*14%2 = 1, both of which are impossible because v is neither zero
nor a root of unity. We conclude that a8 = 0; it follows that M is standard. O

Lemma 5: Let f(t) = t?> — ot — p € C[t], where |p| = 1. Suppose that f(t) has roots g,h € C*.

Let M = (sp)nez < C* be an f-sequence subgroup.

(a) If g # h, then |g| = |h| =1 if and only if |s| =1 for all s € M.

(b) Ifg=h, then |g| =1 and |s| =1 for all s € M.

Proof: (a) Suppose g # h. By Observation 3(a), there exist a,8 € C with s, = ag™ + Bh"™

for all n € Z. Now |gh| = |p| = 1, so |g| = 1 if and only if |h| = 1. Suppose |g| = |h| = 1 and

that there exists s € M with |s| # 1. Then the cyclic subgroup < s >< M contains elements

of arbitrarily large modulus. But |s,| = |ag™ + Bh"| < |a| + |B| for all n, a contradiction.
Suppose next that |s,| = 1 for all n € Z. Assume |g| > 1, so that |h| < 1. f a =0

then 8 # 0 and 1 = |s,,| = |Bh™| for all n, which is absurd because f is fixed and |h| < 1.

Thus a # 0. Now ||ag™| — |Bh"|| < |ag™ + BA™| = |sn| = 1. But |8h™| < ||, while |ag™| is

unbounded as n increases, a contradiction.

(b) Suppose g = h € C* is a double root of f(t), so that |g| = 1. By Observation 3(b), there

exist a, 8 € C with s, = (a+ nfB)g" for all n € Z. As 0 ¢ M then not both a, 8 can be zero.

Suppose there exists s € M with |s| # 1. Then the subgroup < s >< M contains elements

of arbitrarily small modulus. But s, = (a + nf8)g", whence |s,| > ||a| — |nB]|. Since a, B are

fixed and not both zero then ||a| — |nB|| # 0 whenever n € Z is such that n|8| # |a|, and then

{llal = nBl| : n € Z, n|B| # |al}

is bounded away from 0, a contradiction. O

Proposition 6: Let f(t) = t2 — ot — p € C[t], where p # 0, and suppose that f has roots
g,h € C*. Let M < C* be an f-sequence subgroup. Then

(a) If |g| = |h| =1 and g # +h then M is standard.

(b) If g = h then M is standard.

(c) If g = —h then M is finite if and only if p is a root of unity.

(d) If g = —h and if M is infinite then M has one of the forms:

(o N ep® o, Lep /oy py...) or
= ( . ,P_l, —pk_la L, _pkvpv . ')7
where € € {1,—1} and k € Z. In the first case, M =< e,/p > is cyclic and nonstandard of
the first type. In the second case, M =< —1 > x < p > is non-cyclic and nonstandard of the

second type.
(e) Suppose g = —h and M is finite of order m. Write r =ord(p),by (c).
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If v is even then m = 2r and M is nonstandard of the first type unless p = —1 when M
18 standard.
Ifr is odd then either m =r and

M = (---al,P(r+1)/2;P,---)
s standard, or else m = 2r and
M=(..,1,-¢",4¢%...).

where g = p"t1/2 and 1 < j < r. Further, M is nonstandard of the first type unless p = 1,
when M is standard.

Proof: Write M = (s5,)nez. Without loss, suppose so = 1.
(a) Suppose |g| = |h| = 1 and g # +h; then o # 0 and |p| = 1. By Lemma 5, M lies on the

unit circle.
Write 7 = 0/2 # 0. Then {g,h} = {Tr+ /72 + p} and 72+ p # 0. If u,v € C* are such

that |u + v| = |u — v| then the segments Ou and Ov are perpendicular, whence |u + v| =
Vu|2 + [v]2. Here, |g| = |h| =1 = +/|72| +|m2 + p|, and so 1 = |7%| + |72 + p|. Then
L=lpl=| =T +7"+p| <|7°[+ 7"+ p| = 1,

whence —72 and 72 + p are parallel; that is, p = k72 where k € R and k < —1. Thus, |7]| < 1,
s0 0 < |o| < 2. Now s1 = 01 + ps—1 and because |s_1| = 1, then |s; — o| = |[ps—1| = 1 = |s1].
But given a circle of radius 1, a fixed diameter ! and A € R with 0 < A < 2, the circle has
exactly two chords of length A parallel to I. Thus, for o fixed, there are just two s € C such
that |s — 0| = |s| = 1. But the roots g # h of f(t) satisfy |g —o| = |g| = |h — 0| = |h| = 1.
Thus the only f-sequence subgroups are (...,1,g,...) and (...,1,h,...), and M is standard
in this case.
(b) Suppose that g = h. By Observation 3(b), there exist a, 8 € C with s, = ¢g"(a + fn) for
n € Z, while a = 1 because sg = 1.

Suppose firstly that |g| = 1. Now o = 2g and p = —g2, so |p| = 1 and then |s| =1 for all
s € M by Lemma 5(b). But s; = 2g — g?s_; because so = 1. Thus, |s; — 2g] = |¢%s_1| = 1,
so s1 and s; — 2g lie on the unit circle at distance |2g| = 2 from each other. Thus s; = g and
M=(..,1,g,...) is standard.

By Observation 3(c) we may now suppose |g| > 1. It is easy to check that

lim |s,| =00 and lim |1+ An|/[1+8(n+1)|=1;
n—00

n—00

in the second limit, the denominator is equal to |8,+1/9""!| and so is non-zero. Therefore
there exists N1 € N such that both |g| > |1+ 8n|/|1+B(n+1)| and |s,| > 1 whenever n > Nj.
Thus |sp41| > |sn| > 1 for n > N;. Similarly, there exists Ny € N such that |s,—1] < |s,| < 1
whenever n < —N, and so there exists K € N with K > N;j such that

|sn| > max{]s;|,1/|s;j| : =Nz < j < N1}

2003 401



LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD

whenever n > K, in particular, |sx| > |s;| if < K. Thus, s' = sz, for some L < —N,. The
monotonicity of |s,| with respect to n outside the interval [—Na, N;| and the fact that M is a
group now guarantee that sg’,; = sz_; for all j € Ny. It follows that

g5 (a+B(K +5)g" (a+BL-34)=1, j=0,1,2
Simplification gives
¥ TLBEKL = " LB (K + 1)(L — 1) = g¥ B2 (K + 2)(L — 2).

Now g # 0 because p # 0. If 8 # 0 then both L — K —1 =0 and 2(L — K) —4 = 0, which is
absurd. Thus 8 = 0 and M is standard, proving (b).

We now assume for the rest of the proof that g = —h, sothat 0 =0, f(t) =t>—p, g> =p
and {g,h} = {\/p,—+/P}. Then s,5 = ps, foralln € Z, and so M = (...,1,z,p,zp,...)
where £ = s;: we will fix this interpretation for z.

(c) If M is infinite then p* # p’ whenever i # j and so p is not a root of unity. If M is finite
then the powers of g cannot be all distinct, whence p is a root of unity.

(d) Suppose that M is infinite. Then the elements p’ and zp’ are all distinct as j runs over
Z. Now z2 € M and so either 22 = zp’ or 2 = p7, for suitable j. If 22 = zp’ then z = p/,
contrary to distinctness; thus 22 = p/. There are two cases:

(1) Suppose j = 2k + 1 is odd. Then = = ep*,/p, where € € {1, -1} and

M = ( . .,p_l,Epk_l\/ﬁ, 11 apk\/ﬁﬁ P )

We may shift the subsequence (s5,)rn oda relative t0 (85)n even any number of places to the left
or right and obtain different representations of M as an f-sequence: this corresponds to taking
different values of k. With £ = 0 we obtain a cyclic representation of M as an f-sequence, and
so M is nonstandard of the first type.

(2) Suppose j = 2k is even. Then z € {p*, —p*}, whence z = —p* by distinctness. Then

M= ( v 7p—17 _pk—l,lf “‘PkaP7 o ')7

so that M =< —1 > X < p > is a non-cyclic group; thus M is nonstandard of the second type.
(e) Suppose M is finite of order m. We have p = g2, while 22 = p/ with 1 < j < 7 by
distinctness. Thus z = eg’ where € € {—1,1}, and so sa;, = ¢?* and sax41 = €927 for all .
Then

M= ( ) l,Egj,g2,Egj+2, L. ,g2k’sg2k+j, s )

The distinct elements of M are just the terms from sqg = 1 to s,,—1, where s,, is the first
occurence of 1 after sq.

Suppose firstly that r is even. Then € €< p >, ord(g) = 2r and < p > contains no odd
power of g. Thus j is odd as otherwise sg;+1 = £9%*77 would be an even power of g, against
distinctness. But now sogi; = €g?**7 #£ 1 for all k, so s, is the first occurrence of 1 and
m = 2r; we may shift ($p)n oqa to obtain r distinct sequences, with that for j = 1 being cyclic.
Thus M is nonstandard of the first type unless r = 2 when M = (...,1,ei,—1,—¢€i,1,...) is
standard.
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Suppose next that r is odd. Then —1 ¢< p > and < p > contains a unique square-root

of p, namely p("+9/2. We may suppose that g = p("t1)/2; then ord(g) =ord(p) = r.
Suppose € = 1. Then j is odd, by distinctness. Write d = (r — 5)/2 > 0. Then s5441 =
2d+j =1 and this is evidently the first occurrence of 1 after so, whence m = 2d+ 1. But now
242 — g 4o =s1=¢g andsor—j+2=2d+2= j(mod 7). It follows that j =1, m=r

g

9
and

M=(.,1,9,6%...)= (..., 1,12 5 )

is standard.

Suppose € = —1. As g €< p > but —1 ¢< p > then no term sa;41 = —g2**7 belongs to
< p >; thus the first occurrence of 1 after sq is sor = g?" = 1, and so m = 2r. Again we may
shift (sn)n oda to obtain r distinct sequences, with that for j = 1 being cyclic, so that M is
nonstandard of the first type unless r =1 and M = (...,1,-1,1,...), which is standard. [
Examples 7: (a) Let f(t) = ¢ — 2. As in Proposition 6(d), the following are f-sequence
subgroups of C*, where ¢ € {—1,1} and k € Z:

Mie=(...,27e2871/2,1,62¥v/2,2,...) and
My=(...,271, —2F=1 1 9k 2 ).

The groups M; =< ev/2 > are cyclic and nonstandard of the first type, while My =< —1 >
X < 2 > is non-cyclic and nonstandard of the second type.

(b) Let f(t) = t? —w where w = ¢?™¥/3 € C. As in Proposition 6(e), the following are f-sequence
subgroups:

M;=(..,1,0*w1,...), and
M_i=(.,1,—w w -t w? w2 1..)), where 1< j<3.

The group M1, of order 3, is standard, while M_, of order 6, is nonstandard of the first type
(because the sequence with j = 2 is cyclic).
(c) Let f(t) =t —1. The following are f-sequence subgroups of C*:

M, =(...,1,e5, 4,6 V0, —1,ei T 2ViE, —i, ed T3V, L),

where € € {1,—1} and 1 <[ < 4. The sequences with ! = 4 are cyclic and so each M, is
nonstandard of the first type.

Lemma 8: Let f(t) = t? — ot — p € C[t], where p # 0, and suppose that f has roots g, h € C*
with |g| = |h| # 1,9 # Lh. Suppose that M = (sp)nez is an f-sequence subgroup of C*. Then
M is infinite. »

Proof: By Observation 3(c), we may suppose that |g| = |h| > 1. Write v = h/g; then
|v| = 1 but v # £1. By Observation 3(a), there exist a, 3 € C such that s, = g"(a+ Sy") for
n € Z. If M were finite then 1 = |s,| = |g|™|a + f7"| for all n. But |g|™ increases with n, and
80 |a + By™| decreases. As n increases, the points a + S4™ move (as v # 1) around the circle
with centre a and radius |3|. Thus |a + S9™| cannot decrease and so M cannot be finite. [0
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Proposition 9: Let f(t) = t2 — ot — p € C[t], where p # 0. Suppose M is a finite f-sequence
subgroup of C*. Then M is standard unless both 0 = 0 and ord(M) is even and at least 6, in
which case it is nonstandard of the first type.

Proof: The result follows from Propositions 4 and 6 together with Lemma 8. O
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