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Let S = (sn)nez be a "doubly infinite" recurring sequence in the complex field, C, satis-
fying the recurrence 

Sn+2 = &Sn+l + PSn (1) 

where a, p G C and p ^ 0. It can happen that the elements of a minimal periodic segment 
(see below) of S form a subgroup of the multiplicative group C* of C and our purpose here is 
to investigate this phenomenon. The analogous situation in the context of finite fields seems 
to have first been investigated by Somer [2], [3]; see also [1]. 

Write f(t) = t2 - a t - p G C[t],p + 0. A sequence of complex numbers S — (sn)n£% 
satisfying (1) will be called an f-sequence in C; / is the characteristic polynomial of S. If 
there exists rn G N such that sa = sa+m for all a G Z and if also rn is minimal subject to 
this then S is periodic with least period m. By a minimal periodic segment we understand the 
whole sequence if S is not periodic, and any segment consisting of m consecutive members of 
S if S is periodic with least period m. 
Definit ion 1: Let f(t) = t2 - at - p G C[t], p ^ 0. The subgroup M < C* is said to be an 
f-sequence subgroup if either 
(a) M is infinite and the underlying set of M can be written in such an order as to form a 
doubly infinite /-sequence (s n ) n ez where sa ^ s& if a ^ 6, or 
(b) M is finite, of order m, and the underlying set of M can be written in such an order as to 
coincide with a minimal periodic segment of an /-sequence (5n)n^^, where sa — 55 if and only 
if a = b (mod rn). 

We will write M — (sn)n€% even if M is finite, and will say that (sn)nez is a representation 
of, or represents, M as an /-sequence. 

If f(t) G C[t], / (0) + 0, and if g, he C* are roots of / , then 

< 9 > = ( • - . , 9~2,9~\ hg,g2,.*.) = (gn)nez 

is an "obvious" representation of < g >< V as an /-sequence subgroup; it can happen that 
h 7̂  g but < h >=< g > , and then (hn)n^z is a different representation of the same subgroup. 
This suggests: 
Defini t ion 2: Let f(t) = t2-at-pE C [ t ] , p ^ 0 . 
(a) The /-sequence (sn)n£z in C is said to be cyclic if there exists g EC such that sn+i/sn — g 
for all n G Z. 
(b) The /-sequence subgroup M of C* is said to be standard if whenever M is represented 
as an /-sequence M = (sn)ne% then (sn)ne% is necessarily cyclic. Otherwise, M is said to be 
nonstandard. 
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(c) Suppose that M i s a nonstandard /-sequence subgroup. If M admits representation as a 
cyclic /-sequence then we say that M is nonstandard of the first type] otherwise M is said to 
be nonstandard of the second type. 

Essentially, M is standard if the "obvious" ways are the only ways of realising it as an 
/-sequence subgroup. If M = (gn)nez is a representation of M as a cyclic /-sequence, then 
it is clear that g must be both a root of f(t) and a generator of M as a group, whence M 
is a cyclic group. It is possible to find polynomials f(t) which admit non-cyclic /-sequence 
subgroups: see Proposition 6(d) below. 

Our main results are Propositions 4 and 6. Suppose that f(t) G C[t] and that / has roots 
g, h G C*. Except in the case 

\g\ = \h\?l and g ^ ±ft, 

which remains open, we prove that an /-sequence subgroup must be standard unless g = —ft; 
when g = —h we classify the nonstandard subgroups. 
Observa t ions 3: Suppose f(t) — t2 — at — p G C[t], p =fi 0, with roots #, h G C , and let 
(sn)n€Z be an /-sequence in C 
(a) Suppose firstly that g ^ ft. By linear algebra, there exist a, /3 G C with s0 = <x + P and 
s\ — ag + /3ft. By induction, sn = agn + /3ftn for all integers n > 0, and because p ^ 0 this 
may be extended to cover the case of negative n. 
(b) Suppose next that g — ft. There exist a,/3 G C such that so = a and si = #(o: + /3). Again, 
we have sn = (a + n(i)gn for all n G Z. 
(c) The reciprocal polynomial of /(£) is (-p)f*(t) where /*(*) = t2 + (<r/p)£ - (!//>). The 
roots of /*(£) are c/"1, ft"1 G C*. 

If (sn)nez is an /-sequence in C then (rn)n^z is an /*-sequence where rn = s-n. If 
M ~ (sn)n€z is an /-sequence subgroup of C* then M = ( r n ) n G ^ is also an /*-sequence 
subgroup. Thus M is standard as an /-sequence subgroup if and only if it is standard as an 
/*-sequence subgroup. Further, if sn = agn + /3ftn for all n G Z then r n = a ( g - 1 ) n +/3(ft~i)n 

for all n. 
Before continuing, we fix some notation. If z G C then |z| will always denote the modulus 

of z. We will use ord(z) to denote the multiplicative order of z G C*, if z is a root of unity, 
and ord(M) to denote the order of the group M , if finite. 
P r o p o s i t i o n 4: Let f(t) = t2 — at — p G C[t], p ^ 0. Suppose that f has distinct roots 
g, ft G C*. Let M = (sn)n^z < C* 6e an f-sequence subgroup and write sn — agn + f3hn for 
all n, for suitable a, /3 G C. Suppose that either 
(1) \g\ # 1̂ 1, or 
(2) |^| = |ft| ^ 1, ^/ft is not a root of unity and \a\ / \(3\. 
Then a/3 = 0. Further, M is standard. 
Proof: Suppose for a contradiction that a/3 ^ 0. We may assume that so = 1, while by 
Observation 3(c) we may also assume that \g\ > \h\ and that \g\ > 1. Write 7 = h/g, so 
0 < |T | < 1 and sm = ^ m ( a + ftjm). Suppose m is positive. Then \(a + /37m)| is bounded 
above by \a\ + |/3|. If I7I < 1 or if I7I = 1 and \a\ / \fi\ then |(a + ^ 7 m ) | is bounded below 
(away from 0). 
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Now SmSn G M for all m,n E Z because M is a group. Thus there exists a function 
u : Z2 -> Z : (m, n) i-> w(m, n) such that s m s n = ^ ( m , n ) for all m, n. Thus, for all m, n e Z , 

s m s n = ^™+™(a + /37
m)(a + /37

n) = gu^n\a + / 3 7 ^ m ' n ) ) . (2) 

The boundedness of | a + / 3 7 m | m > 0 implies that |^|"*+«-«(m,n) j g bounded above and below 
whenever m,n^u{rn^n) > 0. But |$| > 1 and so there exists a constant K such that 

\m + n — u(m,n)\ < K (3) 

whenever m, n, «(m, n) > 0. 
Now fix i > 0 and suppose that u{n + i ,n — i) > 0 for infinitely many n. By (3), there 

exists a fixed j with \j\ < K such that w(n + i, n — i) = 2n + j for infinitely many n. Thus 

sn+iSn-i = g2n(a + / J 7
n + i ) ( a + ^7n"*) = <?2"+J'(« + / ?7 2 n + j ) , 

or 
(a2 - ag{) + a/%* + j^hn + (/32 - / 3 T V ) 7

2 n - 0 

for infinitely many n. Now a/3 ^ 0, while (7* + 7 ~ l ) ^ 0 because 7 is not a root of unity. 
Thus, for infinitely many n5 j n is a root of a fixed polynomial, independent of n, of degree 
either 1 or 2. Thus infinitely many of the 7" must coincide., which is impossible because 7 is 
neither zero nor a root of unity* 

Thus for fixed i > 0, u{n + i, n — i) < 0 for all positive n but a finite number. Now (2) 
gives 

^ 2 n ( a + /3 7
n + i ) ( a + 07n-*) = fc«(w+*.»-0(a7-tt(n+i'n-i) + /3) 

and so |^|2n|/i|"w(n+*»n""*) is bounded, independent of i and of n, provided just that n > i > 0 
and ix(n + i, n — i) < 0. But given i > 0, these conditions hold for infinitely many n > i, and 
so I hI < 1. It then follows that there exists a positive integer K\ such that whenever n > i > 0 
and u(n + i, n - i) < 0 we have 

\u(n + i,n-i) __ log|</| 
I 2 n l o g I ft I 

Let 7£ = { 0 , 1 , . . . , 4ifi + 2}„ For each i > 0, w(n + i, n — i) < 0 for all but finitely many 
positive n and so there exists N such that if n > N we have «(n + i, n — i) < 0 for a l i i E 7J 
simultaneously. Thus for distinct $1,^2 G 7^, (4) gives 

|w(n + i i , n — ii) — ii(n + £2?n — ia)| < 2K\ 

whenever n > N« So for fixed n® > Ny all integers U{UQ + i, ng — i) for i E TZ belong to an 
interval of length at most AK\ centered on w(no,no). By the pigeon hole principle, there exist 
h / «2 such that w(no + i i , no — h) = w(no + $2? no — ^2). Thus 
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and so 
a/3(jh +-y~il)(gh)n° = afiW2 + j~i2)(gh)n°. 

Since af3gh ^ 0, it follows that 

y 1 _ /y*2 _ ' ' 
7 ' /y»l/y*2 ' 

so that either 7*1 = j%2 or 7*17*2 — i? both of which are impossible because 7 is neither zero 
nor a root of unity. We conclude that a/3 = 0; it follows that M is standard. • 
L e m m a 5: Let f(t) — t2 — at — p E C[t], where \p\ = 1. Suppose that f(t) has roots g,h E C*. 
Let M = (sn)nez < C* be an f-sequence subgroup. 
(a) If g / h, then \g\ — \h\ = 1 if and only if \s\ = 1 for all s E M. 
(b) If g = h, then \g\ = 1 and \s\ — 1 for all s E M. 
Proof: (a) Suppose g ^ h. By Observation 3(a), there exist a, ft E C with sn — agn + (3hn 

for all n E Z. Now |#/i| = |p| = 1, so |</| = 1 if and only if \h\ — 1. Suppose |g| = \h\ — 1 and 
that there exists s E M with |s | ^ 1. Then the cyclic subgroup < s >< M contains elements 
of arbitrarily large modulus. But | s n | = \agn + /3hn\ < \a\ + |/3| for all n, a contradiction. 

Suppose next that | s n | = 1 for all n E Z. Assume \g\ > 1, so that \h\ < 1. If a = 0 
then /3 ^ 0 and 1 = | s n | = |/3/in| for all n, which is absurd because ft is fixed and \h\ < 1. 
Thus a / 0. Now | | a# n | - |/3/in|| < \agn + f3hn\ = | s n | - 1. But |/3/in| < |/3|, while \agn\ is 
unbounded as n increases, a contradiction. 
(b) Suppose g = h E C* is a double root of f(t), so that \g\ = 1. By Observation 3(b), there 
exist a , / 3 G C with sn — (a + nfi)gn for all n E Z. As 0 ^ M then not both a, /? can be zero. 
Suppose there exists s E M with |s | ^ 1. Then the subgroup < s >< M contains elements 
of arbitrarily small modulus. But sn = (a-\-n/3)gn, whence | s n | > | |a | — \nfi\\. Since a,/? are 
fixed and not both zero then | |a | — |w/J|| ^ 0 whenever n E Z is such that n|/J| i=- |a| , and then 

{|H-|»jS|[:nGZ, n\P\^\a\} 

is bounded away from 0, a contradiction. • 
P r o p o s i t i o n 6: Let f(t) — t2 — at — p E C[t], where p / 0; and suppose that f has roots 
g,h E C* . Let M < C* be an f-sequence subgroup. Then 
(a) If \g\ — \h\ = 1 and p ^ db/i £/ien M is standard. 
(b) If g = h then M is standard. 
(c) If g — —h then M is finite if and only if p is a root of unity. 
(d) If g = —h and if M is infinite then M has one of the forms: 

M = (. . . ,p-1 ,ep&-1
%/p? l,epk^/p,p,...) or 

M=(...,p-1,-ffi-1,l,-f,p,...), 

where e E { 1 , - 1 } and k E Z. In the first case, M —< e^fp > is cyclic and nonstandard of 
the first type. In the second case, M =< — 1 > x < p > is non-cyclic and nonstandard of the 
second type. 
(e) Suppose g — —h and M is finite of order m. Write r =oid(p)jby (c). 

400 [NOV. 



LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD 

If r is even then m = 2r and M is nonstandard of the first type unless p = — 1 when M 
is standard. 

If r is odd then either m = r and 

is standard, or else m = 2r and 

where g = p( r + 1 ) / 2 and 1 < j < r. Further, M is nonstandard of the first type unless p = 1, 
when M is standard. 

Proof: Write M — (sn)n^z- Without loss, suppose so = 1. 
(a) Suppose \g\ = \h\ = 1 and g ^ ±/i; then a 7̂  0 and \p\•= 1. By Lemma 5, M lies on the 
unit circle. 

Write r = a/2^ 0. Then {g, h} = {r ± y/r2 + p} and r 2 + p + 0. If w, v E C* are such 
that \u -f v\ = \u — v\ then the segments Ou and 0?; are perpendicular, whence \u ± v\ — 
V I ^ T F F - Here, \g\ = \h\ = 1 = y V l + | r 2 + p|, and so 1 = | r 2 | + | r 2 + p|. Then 

l = |p| = | - r 2 + r 2 + p | < | r 2 | + | r 2 + p| = l5 

whence —r2 and r 2 + p are parallel; that is, p = fer2 where fc E K. and fc < —1. Thus, \r\ < 1, 
so 0 < |o-| < 2. Now si = al + ps„i and because | s_ i | = 1, then \si — a\ = | p s - i | = 1 = |s i | . 
But given a circle of radius 1, a fixed diameter I and A E K. with 0 < A < 2, the circle has 
exactly two chords of length A parallel to /. Thus, for a fixed, there are just two s E C such 
that |s — a\ = \s\ = 1. But the roots g ^ h of f(t) satisfy \g — a\ — \g\ — \h — a\ = \h\ = 1. 
Thus the only /-sequence subgroups are ( . . . , 1,g, . . .) and ( . . . , 1, / i , . . . ) , and M is standard 
in this case. 
(b) Suppose that g = h. By Observation 3(b), there exist a,/3 E C with sn = gn(a + fin) for 
n E Z, while a = 1 because SQ = 1. 

Suppose firstly that |$| = 1. Now a — 2g and p = — $2, so |p| = 1 and then \s\ = 1 for all 
s E M by Lemma 5(b). But si = 2g — g2s-\ because SQ = 1. Thus, |si — 2g\ = \g2s-i\ = 1, 
so si and si — 2g lie on the unit circle at distance \2g\ = 2 from each other. Thus s± = g and 
M — ( . . . , 1, # , . . . ) is standard. 

By Observation 3(c) we may now suppose \g\ > 1. It is easy to check that 

Mm | s n | = ooand Mm | 1 + / 3 B | / | 1 + /3(n + 1)| = 1; 
n—¥oo n—*-oo 

in the second limit, the denominator is equal to \sn+i/gn+1\ and so is non-zero. Therefore 
there exists Nt E N such that both \g\ > | l + /3n|/ | l + / 3 (n+ l ) | and \sn\ > I whenever n > Nt. 
Thus | s n +i | > \sn\ > 1 for n > N\. Similarly, there exists N2 E N such that | s„_i | < \sn\ < 1 
whenever n < —N2 and so there exists K E N with K > N\ such that 

\sn\ > max{|*i | , 1/\SJ\ : -N2 <j< Nt} 
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whenever n > K, in particular, \SK\ > \sj\ if J < K. Thus, sj.1 = SL for some L < —N2. The 
monotonicity of | s n | with respect to n outside the interval [—iV"2, Ni] and the fact that M is a 
group now guarantee that s^+j = SL-J for all j E N o - It follows that 

gK+j(a+0(K + j))gL-f(a + l3(L-j)) = l, j = 0,1,2. 

Simplification gives 

gK+Lp2RL = gK+Lp2(K + X)(L _ JJ = gK+Lp2^R + 2^L _ 2y 

Now # / 0 because p / 0. If 0 + 0 then both X - if - 1 = 0 and 2(L - JRT) - 4 = 0, which is 
absurd. Thus /J = 0 and M is standard, proving (b). 

We now assume for the rest of the proof that g = —h, so that a = 0, f(t) = t2—p, g2 = p 
and {g, h} = {y/p, —^/p}- Then sn+2 = psn for all n E Z, and so M = ( . . . , 1, x, /?, # p , . . . ) 
where x = s±: we will fix this interpretation for x. 
(c) If M is infinite then p% ^ pP whenever % ^ j and so p is not a root of unity. If M is finite 
then the powers of p cannot be all distinct, whence p is a root of unity. 
(d) Suppose that M is infinite. Then the elements pP and xpP are all distinct as j runs over 
Z. Now x2 E M and so either x2 = xpP or #2 = pp, for suitable j . If x2 — xpP then x — pP, 
contrary to distinctness; thus x2 = pP. There are two cases: 
(1) Suppose j = 2fc 4-1 is odd. Then x = epky/p, where £ E {1, —1} and 

M = ( . . . , / 9 - 1 ,ep f c - 1
> /p , l ,ep f c

> /P ,p , . . . ) -

We may shift the subsequence (sn)n Qdd relative to {sn)n even any number of places to the left 
or right and obtain different representations of M as an /-sequence: this corresponds to taking 
different values of k. With fc = 0we obtain a cyclic representation of M as an /-sequence, and 
so M is nonstandard of the first type. 
(2) Suppose j — 2k is even. Then x E {pk, —pk}, whence x = — pk by distinctness. Then 

M=(...,p-1,-pk-1,l,-pk,p,...), 

so that M = < — 1 > x < p > is a non-cyclic group; thus M is nonstandard of the second type. 
(e) Suppose M is finite of order m. We have p = g2, while x2 = pi with 1 < j < r by 
distinctness. Thus x = egi where e E {—1,1}, and so S2k — g2k and S2k+i = sg2k^ for all k. 
Then 

The distinct elements of M are just the terms from SQ = I to s m _ i , where sm is the first 
occurence of 1 after s$. 

Suppose firstly that r is even. Then e E< p >, ord(g) = 2r and < p > contains no odd 
power of g. Thus j is odd as otherwise S2&+1 = eg2k+i would be an even power of g, against 
distinctness. But now S2M-1 = eg2k+i ^ 1 for all fc, so s^r is the first occurrence of 1 and 
rn = 2r; we may shift (sn)n 0dd to obtain r distinct sequences, with that for j = 1 being cyclic. 
Thus M is nonstandard of the first type unless r = 2 when M = ( . , . , 1, ei, —1, — ei, 1,...) is 
standard. 
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Suppose next that r is odd. Then — l^<p> and < p > contains a unique square-root 
ofp, namely p( r + 1 ) / 2 . We may suppose that g = p^1^2; then oid(g) =ord(p) = r. 

Suppose e = 1. Then j is odd, by distinctness. Write d = (r - j ) / 2 > 0. Then S2d+i = 
g2d+j ___ 2 a n c j {.̂ -g jg evidently the first occurrence of 1 after s0, whence m — 2d + 1. But now 
c?2d+2 = 52d+2 = 5i = gi and so r — j + 2 = 2d + 2 = j(mod r) . It follows that j = 1, m — r 
and 

M = ( . . . , l , ^ 2 , . . . ) = (.. . , l , / r + 1 ^ , p , . . . ) 

is standard. 
Suppose e = —l. As g G< p > but — 1 ^ < p > then no term S2&+1 = —#2&+J belongs to 

< p >; thus the first occurrence of 1 after so is S2r = $ 2 r = 1? and so m = 2r. Again we may 
shift (sn)n odd to obtain r distinct sequences, with that for j = 1 being cyclic, so that M is 
nonstandard of the first type unless r — 1 and M = ( . . . , 1, —1,1, . . . ) , which is standard. • 
Examples 7: (a) Let f{t) = t2 — 2. As in Proposition 6(d), the following are /-sequence 
subgroups of C*, where e G {—1,1} and k G Z: 

M M = ( . . . , 2 ~ \ s2fe~1v/251, e2*V2,2, . . . ) and 

M 2 = ( . . . , 2 - 1 , - 2 * - 1 , l , - 2 * , 2 , . . . ) . 

The groups Mij £ = < ey/2 > are cyclic and nonstandard of the first type, while M2 =< —1 > 
x < 2 > is non-cyclic and nonstandard of the second type. 
(b) Let f(t) = t2—uj where UJ = e2™/3 G C. As in Proposition 6(e), the following are /-sequence 
subgroups: 

Mi = (. . . , l , a ; 2 , a ; , l , . . . ) , and 
M _ ! = ( . . . , 1, -0^ ,0 ; , -UJJ+\UJ2, - V + 2 , 1, . . .) , where 1 < j < 3. 

The group Mi , of order 3, is standard, while M_i , of order 6, is nonstandard of the first type 
(because the sequence with j = 2 is cyclic). 
(c) Let f(t) = t2 —i. The following are- /-sequence subgroups of C*: 

Me = ( . . . , 1, eilVi, i, eil+1Vi, - 1 , eil+2Vi, - i , s i l + 3 V i , . . . ) , 

where e G { 1 , - 1 } and 1 < I < 4. The sequences with 1 = 4 are cyclic and so each Me is 
nonstandard of the first type. 
L e m m a 8: Let f(t) =t2 — at~pE. C\t], where p / 0, and suppose that / has roots g, h G C* 
with \g\ — \h\ ^ l,g ^ ±h. Suppose that M = (sn)nez is an f-sequence subgroup ofC*. Then 
M is infinite. 

Proof: By Observation 3(c), we may suppose that \g\ = \h\ > 1. Write 7 = h/g\ then 
I7I = 1 but 7 ^ ± 1 . By Observation 3(a), there exist a,/9 eC such that sn = gn(a-^-/3jn) for 
n G Z. If M were finite then 1 = \sn\ = \g\n\a-{-/3jn\ for all n. But \g\n increases with n, and 
so \a + /?7n | decreases. As n increases, the points a + @jn move (as 7 / 1) around the circle 
with centre a and radius \/3\. Thus |a + /3jn\ cannot decrease and so M cannot be finite. • 

2003] 403 



LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD 

P r o p o s i t i o n 9: Let f(t) = t2 — at — pE C[t], where p ^ 0. Suppose M is a finite f-sequence 
subgroup of C*. Then M is standard unless both a — 0 and ord(M) is even and at least 6; in 
which case it is nonstandard of the first type. 

Proof: The result follows from Propositions 4 and 6 together with Lemma 8. • 
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