# LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD 

Owen J. Brison<br>Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa Bloco C1, Piso 3, Campo Grande, 1749-016 Lisboa, Portugal<br>\section*{J. Eurico Nogueira}<br>Departamento de Matemática, Faculdade de Ciências e Tecnologia<br>Universidade Nova de Lisboa, Quinta da Torre, 2825-114 Monte da Caparica, Portugal (Submitted May 2001-Final Revision January 2002)

Let $S=\left(s_{n}\right)_{n \in \mathbb{Z}}$ be a "doubly infinite" recurring sequence in the complex field, $\mathbb{C}$, satisfying the recurrence

$$
\begin{equation*}
s_{n+2}=\sigma s_{n+1}+\rho s_{n} \tag{1}
\end{equation*}
$$

where $\sigma, \rho \in \mathbb{C}$ and $\rho \neq 0$. It can happen that the elements of a minimal periodic segment (see below) of $S$ form a subgroup of the multiplicative group $\mathbb{C}^{*}$ of $\mathbb{C}$ and our purpose here is to investigate this phenomenon. The analogous situation in the context of finite fields seems to have first been investigated by Somer [2], [3]; see also [1].

Write $f(t)=t^{2}-\sigma t-\rho \in \mathbb{C}[t], \rho \neq 0$. A sequence of complex numbers $S=\left(s_{n}\right)_{n \in \mathbb{Z}}$ satisfying (1) will be called an $f$-sequence in $\mathbb{C} ; f$ is the characteristic polynomial of $S$. If there exists $m \in \mathbb{N}$ such that $s_{a}=s_{a+m}$ for all $a \in \mathbb{Z}$ and if also $m$ is minimal subject to this then $S$ is periodic with least period $m$. By a minimal periodic segment we understand the whole sequence if $S$ is not periodic, and any segment consisting of $m$ consecutive members of $S$ if $S$ is periodic with least period $m$.
Definition 1: Let $f(t)=t^{2}-\sigma t-\rho \in \mathbb{C}[t], \rho \neq 0$. The subgroup $M \leq \mathbb{C}^{*}$ is said to be an $f$-sequence subgroup if either
(a) $M$ is infinite and the underlying set of $M$ can be written in such an order as to form a doubly infinite $f$-sequence $\left(s_{n}\right)_{n \in \mathbb{Z}}$ where $s_{a} \neq s_{b}$ if $a \neq b$, or
(b) $M$ is finite, of order $m$, and the underlying set of $M$ can be written in such an order as to coincide with a minimal periodic segment of an $f$-sequence $\left(s_{n}\right)_{n \in \mathbb{Z}}$, where $s_{a}=s_{b}$ if and only if $a \equiv b(\bmod m)$.

We will write $M=\left(s_{n}\right)_{n \in \mathbb{Z}}$ even if $M$ is finite, and will say that $\left(s_{n}\right)_{n \in \mathbb{Z}}$ is a representation of, or represents, $M$ as an $f$-sequence.

If $f(t) \in \mathbb{C}[t], f(0) \neq 0$, and if $g, h \in \mathbb{C}^{*}$ are roots of $f$, then

$$
\langle g\rangle=\left(\ldots, g^{-2}, g^{-1}, 1, g, g^{2}, \ldots\right)=\left(g^{n}\right)_{n \in \mathbb{Z}}
$$

is an "obvious" representation of $\langle g\rangle \leq \mathbb{C}^{*}$ as an $f$-sequence subgroup; it can happen that $h \neq g$ but $\langle h\rangle=\langle g\rangle$, and then $\left(h^{n}\right)_{n \in \mathbb{Z}}$ is a different representation of the same subgroup. This suggests:
Definition 2: Let $f(t)=t^{2}-\sigma t-\rho \in \mathbb{C}[t], \rho \neq 0$.
(a) The $f$-sequence $\left(s_{n}\right)_{n \in \mathbb{Z}}$ in $\mathbb{C}$ is said to be cyclic if there exists $g \in \mathbb{C}$ such that $s_{n+1} / s_{n}=g$ for all $n \in \mathbb{Z}$.
(b) The $f$-sequence subgroup $M$ of $\mathbb{C}^{*}$ is said to be standard if whenever $M$ is represented as an $f$-sequence $M=\left(s_{n}\right)_{n \in \mathbb{Z}}$ then $\left(s_{n}\right)_{n \in \mathbb{Z}}$ is necessarily cyclic. Otherwise, $M$ is said to be nonstandard.
(c) Suppose that $M$ is a nonstandard $f$-sequence subgroup. If $M$ admits representation as a cyclic $f$-sequence then we say that $M$ is nonstandard of the first type; otherwise $M$ is said to be nonstandard of the second type.

Essentially, $M$ is standard if the "obvious" ways are the only ways of realising it as an $f$-sequence subgroup. If $M=\left(g^{n}\right)_{n \in \mathbb{Z}}$ is a representation of $M$ as a cyclic $f$-sequence, then it is clear that $g$ must be both a root of $f(t)$ and a generator of $M$ as a group, whence $M$ is a cyclic group. It is possible to find polynomials $f(t)$ which admit non-cyclic $f$-sequence subgroups: , see Proposition 6(d) below.

Our main results are Propositions 4 and 6 . Suppose that $f(t) \in \mathbb{C}[t]$ and that $f$ has roots $g, h \in \mathbb{C}^{*}$. Except in the case

$$
|g|=|h| \neq 1 \text { and } g \neq \pm h,
$$

which remains open, we prove that an $f$-sequence subgroup must be standard unless $g=-h$; when $g=-h$ we classify the nonstandard subgroups.
Observations 3: Suppose $f(t)=t^{2}-\sigma t-\rho \in \mathbb{C}[t], \rho \neq 0$, with roots $g, h \in \mathbb{C}^{*}$, and let $\left(s_{n}\right)_{n \in \mathbb{Z}}$ be an $f$-sequence in $\mathbb{C}$.
(a) Suppose firstly that $g \neq h$. By linear algebra, there exist $\alpha, \beta \in \mathbb{C}$ with $s_{0}=\alpha+\beta$ and $s_{1}=\alpha g+\beta h$. By induction, $s_{n}=\alpha g^{n}+\beta h^{n}$ for all integers $n \geq 0$, and because $\rho \neq 0$ this may be extended to cover the case of negative $n$.
(b) Suppose next that $g=h$. There exist $\alpha, \beta \in \mathbb{C}$ such that $s_{0}=\alpha$ and $s_{1}=g(\alpha+\beta)$. Again, we have $s_{n}=(\alpha+n \beta) g^{n}$ for all $n \in \mathbb{Z}$.
(c) The reciprocal polynomial of $f(t)$ is $(-\rho) f^{*}(t)$ where $f^{*}(t)=t^{2}+(\sigma / \rho) t-(1 / \rho)$. The roots of $f^{*}(t)$ are $g^{-1}, h^{-1} \in \mathbb{C}^{*}$.

If $\left(s_{n}\right)_{n \in \mathbb{Z}}$ is an $f$-sequence in $\mathbb{C}$ then $\left(r_{n}\right)_{n \in \mathbb{Z}}$ is an $f^{*}$-sequence where $r_{n}=s_{-n}$. If $M=\left(s_{n}\right)_{n \in \mathbb{Z}}$ is an $f$-sequence subgroup of $\mathbb{C}^{*}$ then $M=\left(r_{n}\right)_{n \in \mathbb{Z}}$ is also an $f^{*}$-sequence subgroup. Thus $M$ is standard as an $f$-sequence subgroup if and only if it is standard as an $f^{*}$-sequence subgroup. Further, if $s_{n}=\alpha g^{n}+\beta h^{n}$ for all $n \in \mathbb{Z}$ then $r_{n}=\alpha\left(g^{-1}\right)^{n}+\beta\left(h^{-1}\right)^{n}$ for all $n$.

Before continuing, we fix some notation. If $z \in \mathbb{C}$ then $|z|$ will always denote the modulus of $z$. We will use ord $(z)$ to denote the multiplicative order of $z \in \mathbb{C}^{*}$, if $z$ is a root of unity, and $\operatorname{ord}(M)$ to denote the order of the group $M$, if finite.
Proposition 4: Let $f(t)=t^{2}-\sigma t-\rho \in \mathbb{C}[t], \rho \neq 0$. Suppose that $f$ has distinct roots $g$, $h \in \mathbb{C}^{*}$. Let $M=\left(s_{n}\right)_{n \in \mathbb{Z}} \leq \mathbb{C}^{*}$ be an $f$-sequence subgroup and write $s_{n}=\alpha g^{n}+\beta h^{n}$ for all $n$, for suitable $\alpha, \beta \in \mathbb{C}$. Suppose that either
(1) $|g| \neq|h|$, or
(2) $|g|=|h| \neq 1, g / h$ is not a root of unity and $|\alpha| \neq|\beta|$.

Then $\alpha \beta=0$. Further, $M$ is standard.
Proof: Suppose for a contradiction that $\alpha \beta \neq 0$. We may assume that $s_{0}=1$, while by Observation 3(c) we may also assume that $|g| \geq|h|$ and that $|g|>1$. Write $\gamma=h / g$, so $0<|\gamma| \leq 1$ and $s_{m}=g^{m}\left(\alpha+\beta \gamma^{m}\right)$. Suppose $m$ is positive. Then $\left|\left(\alpha+\beta \gamma^{m}\right)\right|$ is bounded above by $|\alpha|+|\beta|$. If $|\gamma|<1$ or if $|\gamma|=1$ and $|\alpha| \neq|\beta|$ then $\left|\left(\alpha+\beta \gamma^{m}\right)\right|$ is bounded below (away from 0 ).

Now $s_{m} s_{n} \in M$ for all $m, n \in \mathbb{Z}$ because $M$ is a group. Thus there exists a function $u: \mathbb{Z}^{2} \rightarrow \mathbb{Z}:(m, n) \mapsto u(m, n)$ such that $s_{m} s_{n}=s_{u(m, n)}$ for all $m, n$. Thus, for all $m, n \in \mathbb{Z}$,

$$
\begin{equation*}
s_{m} s_{n}=g^{m+n}\left(\alpha+\beta \gamma^{m}\right)\left(\alpha+\beta \gamma^{n}\right)=g^{u(m, n)}\left(\alpha+\beta \gamma^{u(m, n)}\right) \tag{2}
\end{equation*}
$$

The boundedness of $\left|\alpha+\beta \gamma^{m}\right|_{m>0}$ implies that $|g|^{m+n-u(m, n)}$ is bounded above and below whenever $m, n, u(m, n) \geq 0$. But $|g|>1$ and so there exists a constant $K$ such that

$$
\begin{equation*}
|m+n-u(m, n)|<K \tag{3}
\end{equation*}
$$

whenever $m, n, u(m, n) \geq 0$.
Now fix $i \geq 0$ and suppose that $u(n+i, n-i) \geq 0$ for infinitely many $n$. By (3), there exists a fixed $j$ with $|j| \leq K$ such that $u(n+i, n-i)=2 n+j$ for infinitely many $n$. Thus

$$
s_{n+i} s_{n-i}=g^{2 n}\left(\alpha+\beta \gamma^{n+i}\right)\left(\alpha+\beta \gamma^{n-i}\right)=g^{2 n+j}\left(\alpha+\beta \gamma^{2 n+j}\right)
$$

or

$$
\left(\alpha^{2}-\alpha g^{i}\right)+\alpha \beta\left(\gamma^{i}+\gamma^{-i}\right) \gamma^{n}+\left(\beta^{2}-\beta \gamma^{j} g^{j}\right) \gamma^{2 n}=0
$$

for infinitely many $n$. Now $\alpha \beta \neq 0$, while $\left(\gamma^{i}+\gamma^{-i}\right) \neq 0$ because $\gamma$ is not a root of unity. Thus, for infinitely many $n, \gamma^{n}$ is a root of a fixed polynomial, independent of $n$, of degree either 1 or 2 . Thus infinitely many of the $\gamma^{n}$ must coincide, which is impossible because $\gamma$ is neither zero nor a root of unity.

Thus for fixed $i \geq 0, u(n+i, n-i)<0$ for all positive $n$ but a finite number. Now (2) gives

$$
g^{2 n}\left(\alpha+\beta \gamma^{n+i}\right)\left(\alpha+\beta \gamma^{n-i}\right)=h^{u(n+i, n-i)}\left(\alpha \gamma^{-u(n+i, n-i)}+\beta\right)
$$

and so $|g|^{2 n}|h|^{-u(n+i, n-i)}$ is bounded, independent of $i$ and of $n$, provided just that $n>i \geq 0$ and $u(n+i, n-i)<0$. But given $i \geq 0$, these conditions hold for infinitely many $n>i$, and so $|h|<1$. It then follows that there exists a positive integer $K_{1}$ such that whenever $n>i \geq 0$ and $u(n+i, n-i)<0$ we have

$$
\begin{equation*}
\left|\frac{u(n+i, n-i)}{2 n}-\frac{\log |g|}{\log |h|}\right|<\frac{K_{1}}{2 n} \tag{4}
\end{equation*}
$$

Let $\mathcal{R}=\left\{0,1, \ldots, 4 K_{1}+2\right\}$. For each $i \geq 0, u(n+i, n-i)<0$ for all but finitely many positive $n$ and so there exists $N$ such that if $n>N$ we have $u(n+i, n-i)<0$ for all $i \in \mathcal{R}$ simultaneously. Thus for distinct $i_{1}, i_{2} \in \mathcal{R}$, (4) gives

$$
\left|u\left(n+i_{1}, n-i_{1}\right)-u\left(n+i_{2}, n-i_{2}\right)\right|<2 K_{1}
$$

whenever $n>N$. So for fixed $n_{0}>N$, all integers $u\left(n_{0}+i, n_{0}-i\right)$ for $i \in \mathcal{R}$ belong to an interval of length at most $4 K_{1}$ centered on $u\left(n_{0}, n_{0}\right)$. By the pigeon hole principle, there exist $i_{1} \neq i_{2}$ such that $u\left(n_{0}+i_{1}, n_{0}-i_{1}\right)=u\left(n_{0}+i_{2}, n_{0}-i_{2}\right)$. Thus

$$
s_{n_{0}+i_{1}} s_{n_{0}-i_{1}}=s_{n_{0}+i_{2}} s_{n_{0}-i_{2}}
$$

and so

$$
\alpha \beta\left(\gamma^{i_{1}}+\gamma^{-i_{1}}\right)(g h)^{n_{0}}=\alpha \beta\left(\gamma^{i_{2}}+\gamma^{-i_{2}}\right)(g h)^{n_{0}}
$$

Since $\alpha \beta g h \neq 0$, it follows that

$$
\gamma^{i_{1}}-\gamma^{i_{2}}=\frac{\gamma^{i_{1}}-\gamma^{i_{2}}}{\gamma^{i_{1}} \gamma^{i_{2}}}
$$

so that either $\gamma^{i_{1}}=\gamma^{i_{2}}$ or $\gamma^{i_{1}} \gamma^{i_{2}}=1$, both of which are impossible because $\gamma$ is neither zero nor a root of unity. We conclude that $\alpha \beta=0$; it follows that $M$ is standard.
Lemma 5: Let $f(t)=t^{2}-\sigma t-\rho \in \mathbb{C}[t]$, where $|\rho|=1$. Suppose that $f(t)$ has roots $g, h \in \mathbb{C}^{*}$. Let $M=\left(s_{n}\right)_{n \in \mathbb{Z}} \leq \mathbb{C}^{*}$ be an $f$-sequence subgroup.
(a) If $g \neq h$, then $|g|=|h|=1$ if and only if $|s|=1$ for all $s \in M$.
(b) If $g=h$, then $|g|=1$ and $|s|=1$ for all $s \in M$.

Proof: (a) Suppose $g \neq h$. By Observation 3(a), there exist $\alpha, \beta \in \mathbb{C}$ with $s_{n}=\alpha g^{n}+\beta h^{n}$ for all $n \in \mathbb{Z}$. Now $|g h|=|\rho|=1$, so $|g|=1$ if and only if $|h|=1$. Suppose $|g|=|h|=1$ and that there exists $s \in M$ with $|s| \neq 1$. Then the cyclic subgroup $<s>\leq M$ contains elements of arbitrarily large modulus. But $\left|s_{n}\right|=\left|\alpha g^{n}+\beta h^{n}\right| \leq|\alpha|+|\beta|$ for all $n$, a contradiction.

Suppose next that $\left|s_{n}\right|=1$ for all $n \in \mathbb{Z}$. Assume $|g|>1$, so that $|h|<1$. If $\alpha=0$ then $\beta \neq 0$ and $1=\left|s_{n}\right|=\left|\beta h^{n}\right|$ for all $n$, which is absurd because $\beta$ is fixed and $|h|<1$. Thus $\alpha \neq 0$. Now $\left|\left|\alpha g^{n}\right|-\left|\beta h^{n}\right|\right| \leq\left|\alpha g^{n}+\beta h^{n}\right|=\left|s_{n}\right|=1$. But $\left|\beta h^{n}\right| \leq|\beta|$, while $\left|\alpha g^{n}\right|$ is unbounded as $n$ increases, a contradiction.
(b) Suppose $g=h \in \mathbb{C}^{*}$ is a double root of $f(t)$, so that $|g|=1$. By Observation 3(b), there exist $\alpha, \beta \in \mathbb{C}$ with $s_{n}=(\alpha+n \beta) g^{n}$ for all $n \in \mathbb{Z}$. As $0 \notin M$ then not both $\alpha, \beta$ can be zero. Suppose there exists $s \in M$ with $|s| \neq 1$. Then the subgroup $<s>\leq M$ contains elements of arbitrarily small modulus. But $s_{n}=(\alpha+n \beta) g^{n}$, whence $\left|s_{n}\right| \geq||\alpha|-|n \beta||$. Since $\alpha, \beta$ are fixed and not both zero then $||\alpha|-| n \beta \| \neq 0$ whenever $n \in \mathbb{Z}$ is such that $n|\beta| \neq|\alpha|$, and then

$$
\{\| \alpha|-|n \beta||: n \in \mathbb{Z}, n|\beta| \neq|\alpha|\}
$$

is bounded away from 0 , a contradiction.
Proposition 6: Let $f(t)=t^{2}-\sigma t-\rho \in \mathbb{C}[t]$, where $\rho \neq 0$, and suppose that $f$ has roots $g, h \in \mathbb{C}^{*}$. Let $M \leq \mathbb{C}^{*}$ be an $f$-sequence subgroup. Then
(a) If $|g|=|h|=1$ and $g \neq \pm h$ then $M$ is standard.
(b) If $g=h$ then $M$ is standard.
(c) If $g=-h$ then $M$ is finite if and only if $\rho$ is a root of unity.
(d) If $g=-h$ and if $M$ is infinite then $M$ has one of the forms:

$$
\begin{aligned}
& M=\left(\ldots, \rho^{-1}, \varepsilon \rho^{k-1} \sqrt{\rho}, 1, \varepsilon \rho^{k} \sqrt{\rho}, \rho, \ldots\right) \quad \text { or } \\
& M=\left(\ldots, \rho^{-1},-\rho^{k-1}, 1,-\rho^{k}, \rho, \ldots\right)
\end{aligned}
$$

where $\varepsilon \in\{1,-1\}$ and $k \in \mathbb{Z}$. In the first case, $M=<\varepsilon \sqrt{\rho}>$ is cyclic and nonstandard of the first type. In the second case, $M=<-1>\times<\rho>$ is non-cyclic and nonstandard of the second type.
(e) Suppose $g=-h$ and $M$ is finite of order $m$. Write $r=\operatorname{ord}(\rho)$,by (c).

If $r$ is even then $m=2 r$ and $M$ is nonstandard of the first type unless $\rho=-1$ when $M$ is standard.

If $r$ is odd then either $m=r$ and

$$
M=\left(\ldots, 1, \rho^{(r+1) / 2}, \rho, \ldots\right)
$$

is standard, or else $m=2 r$ and

$$
M=\left(\ldots, 1,-g^{j}, g^{2}, \ldots\right)
$$

where $g=\rho^{(r+1) / 2}$ and $1 \leq j \leq r$. Further, $M$ is nonstandard of the first type unless $\rho=1$, when $M$ is standard.

Proof: Write $M=\left(s_{n}\right)_{n \in \mathbb{Z}}$. Without loss, suppose $s_{0}=1$.
(a) Suppose $|g|=|h|=1$ and $g \neq \pm h$; then $\sigma \neq 0$ and $|\rho|=1$. By Lemma 5, $M$ lies on the unit circle.

Write $\tau=\sigma / 2 \neq 0$. Then $\{g, h\}=\left\{\tau \pm \sqrt{\tau^{2}+\rho}\right\}$ and $\tau^{2}+\rho \neq 0$. If $u, v \in \mathbb{C}^{*}$ are such that $|u+v|=|u-v|$ then the segments $0 u$ and $0 v$ are perpendicular, whence $|u \pm v|=$ $\sqrt{|u|^{2}+|v|^{2}}$. Here, $|g|=|h|=1=\sqrt{\left|\tau^{2}\right|+\left|\tau^{2}+\rho\right|}$, and so $1=\left|\tau^{2}\right|+\left|\tau^{2}+\rho\right|$. Then

$$
1=|\rho|=\left|-\tau^{2}+\tau^{2}+\rho\right| \leq\left|\tau^{2}\right|+\left|\tau^{2}+\rho\right|=1,
$$

whence $-\tau^{2}$ and $\tau^{2}+\rho$ are parallel; that is, $\rho=k \tau^{2}$ where $k \in \mathbb{R}$ and $k<-1$. Thus, $|\tau|<1$, so $0<|\sigma|<2$. Now $s_{1}=\sigma 1+\rho s_{-1}$ and because $\left|s_{-1}\right|=1$, then $\left|s_{1}-\sigma\right|=\left|\rho s_{-1}\right|=1=\left|s_{1}\right|$. But given a circle of radius 1 , a fixed diameter $l$ and $\lambda \in \mathbb{R}$ with $0<\lambda<2$, the circle has exactly two chords of length $\lambda$ parallel to $l$. Thus, for $\sigma$ fixed, there are just two $s \in \mathbb{C}$ such that $|s-\sigma|=|s|=1$. But the roots $g \neq h$ of $f(t)$ satisfy $|g-\sigma|=|g|=|h-\sigma|=|h|=1$. Thus the only $f$-sequence subgroups are ( $\ldots, 1, g, \ldots$ ) and ( $\ldots, 1, h, \ldots$ ), and $M$ is standard in this case.
(b) Suppose that $g=h$. By Observation 3(b), there exist $\alpha, \beta \in \mathbb{C}$ with $s_{n}=g^{n}(\alpha+\beta n)$ for $n \in \mathbb{Z}$, while $\alpha=1$ because $s_{0}=1$.

Suppose firstly that $|g|=1$. Now $\sigma=2 g$ and $\rho=-g^{2}$, so $|\rho|=1$ and then $|s|=1$ for all $s \in M$ by Lemma 5(b). But $s_{1}=2 g-g^{2} s_{-1}$ because $s_{0}=1$. Thus, $\left|s_{1}-2 g\right|=\left|g^{2} s_{-1}\right|=1$, so $s_{1}$ and $s_{1}-2 g$ lie on the unit circle at distance $|2 g|=2$ from each other. Thus $s_{1}=g$ and $M=(\ldots, 1, g, \ldots)$ is standard.

By Observation 3(c) we may now suppose $|g|>1$. It is easy to check that

$$
\lim _{n \rightarrow \infty}\left|s_{n}\right|=\infty \text { and } \lim _{n \rightarrow \infty}|1+\beta n| /|1+\beta(n+1)|=1
$$

in the second limit, the denominator is equal to $\left|s_{n+1} / g^{n+1}\right|$ and so is non-zero. Therefore there exists $N_{1} \in \mathbb{N}$ such that both $|g|>|1+\beta n| /|1+\beta(n+1)|$ and $\left|s_{n}\right|>1$ whenever $n>N_{1}$. Thus $\left|s_{n+1}\right|>\left|s_{n}\right|>1$ for $n>N_{1}$. Similarly, there exists $N_{2} \in \mathbb{N}$ such that $\left|s_{n-1}\right|<\left|s_{n}\right|<1$ whenever $n<-N_{2}$ and so there exists $K \in \mathbb{N}$ with $K>N_{1}$ such that

$$
\left|s_{n}\right|>\max \left\{\left|s_{j}\right|, 1 /\left|s_{j}\right|:-N_{2} \leq j \leq N_{1}\right\}
$$

whenever $n \geq K$, in particular, $\left|s_{K}\right|>\left|s_{j}\right|$ if $j<K$. Thus, $s_{K}^{-1}=s_{L}$ for some $L<-N_{2}$. The monotonicity of $\left|s_{n}\right|$ with respect to $n$ outside the interval $\left[-N_{2}, N_{1}\right]$ and the fact that $M$ is a group now guarantee that $s_{K+j}^{-1}=s_{L-j}$ for all $j \in \mathbb{N}_{0}$. It follows that

$$
g^{K+j}(\alpha+\beta(K+j)) g^{L-j}(\alpha+\beta(L-j))=1, j=0,1,2
$$

Simplification gives

$$
g^{K+L} \beta^{2} K L=g^{K+L} \beta^{2}(K+1)(L-1)=g^{K+L} \beta^{2}(K+2)(L-2)
$$

Now $g \neq 0$ because $\rho \neq 0$. If $\beta \neq 0$ then both $L-K-1=0$ and $2(L-K)-4=0$, which is absurd. Thus $\beta=0$ and $M$ is standard, proving (b).

We now assume for the rest of the proof that $g=-h$, so that $\sigma=0, f(t)=t^{2}-\rho, g^{2}=\rho$ and $\{g, h\}=\{\sqrt{\rho},-\sqrt{\rho}\}$. Then $s_{n+2}=\rho s_{n}$ for all $n \in \mathbb{Z}$, and so $M=(\ldots, 1, x, \rho, x \rho, \ldots)$ where $x=s_{1}$ : we will fix this interpretation for $x$.
(c) If $M$ is infinite then $\rho^{i} \neq \rho^{j}$ whenever $i \neq j$ and so $\rho$ is not a root of unity. If $M$ is finite then the powers of $\rho$ cannot be all distinct, whence $\rho$ is a root of unity.
(d) Suppose that $M$ is infinite. Then the elements $\rho^{j}$ and $x \rho^{j}$ are all distinct as $j$ runs over $\mathbb{Z}$. Now $x^{2} \in M$ and so either $x^{2}=x \rho^{j}$ or $x^{2}=\rho^{j}$, for suitable $j$. If $x^{2}=x \rho^{j}$ then $x=\rho^{j}$, contrary to distinctness; thus $x^{2}=\rho^{j}$. There are two cases:
(1) Suppose $j=2 k+1$ is odd. Then $x=\varepsilon \rho^{k} \sqrt{\rho}$, where $\varepsilon \in\{1,-1\}$ and

$$
M=\left(\ldots, \rho^{-1}, \varepsilon \rho^{k-1} \sqrt{\rho}, 1, \varepsilon \rho^{k} \sqrt{\rho}, \rho, \ldots\right)
$$

We may shift the subsequence $\left(s_{n}\right)_{n \text { odd }}$ relative to $\left(s_{n}\right)_{n}$ even any number of places to the left or right and obtain different representations of $M$ as an $f$-sequence: this corresponds to taking different values of $k$. With $k=0$ we obtain a cyclic representation of $M$ as an $f$-sequence, and so $M$ is nonstandard of the first type.
(2) Suppose $j=2 k$ is even. Then $x \in\left\{\rho^{k},-\rho^{k}\right\}$, whence $x=-\rho^{k}$ by distinctness. Then

$$
M=\left(\ldots, \rho^{-1},-\rho^{k-1}, 1,-\rho^{k}, \rho, \ldots\right)
$$

so that $M=<-1>\times<\rho>$ is a non-cyclic group; thus $M$ is nonstandard of the second type. (e) Suppose $M$ is finite of order $m$. We have $\rho=g^{2}$, while $x^{2}=\rho^{j}$ with $1 \leq j \leq r$ by distinctness. Thus $x=\varepsilon g^{j}$ where $\varepsilon \in\{-1,1\}$, and so $s_{2 k}=g^{2 k}$ and $s_{2 k+1}=\varepsilon g^{2 k+j}$ for all $k$. Then

$$
M=\left(\ldots, 1, \varepsilon g^{j}, g^{2}, \varepsilon g^{j+2}, \ldots, g^{2 k}, \varepsilon g^{2 k+j}, \ldots\right)
$$

The distinct elements of $M$ are just the terms from $s_{0}=1$ to $s_{m-1}$, where $s_{m}$ is the first occurence of 1 after $s_{0}$.

Suppose firstly that $r$ is even. Then $\varepsilon \in<\rho>, \operatorname{ord}(g)=2 r$ and $<\rho>$ contains no odd power of $g$. Thus $j$ is odd as otherwise $s_{2 k+1}=\varepsilon g^{2 k+j}$ would be an even power of $g$, against distinctness. But now $s_{2 k+1}=\varepsilon g^{2 k+j} \neq 1$ for all $k$, so $s_{2 r}$ is the first occurrence of 1 and $m=2 r$; we may shift $\left(s_{n}\right)_{n}$ odd to obtain $r$ distinct sequences, with that for $j=1$ being cyclic. Thus $M$ is nonstandard of the first type unless $r=2$ when $M=(\ldots, 1, \varepsilon i,-1,-\varepsilon i, 1, \ldots)$ is standard.

## LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD

Suppose next that $r$ is odd. Then $-1 \notin<\rho\rangle$ and $\langle\rho\rangle$ contains a unique square-root of $\rho$, namely $\rho^{(r+1) / 2}$. We may suppose that $g=\rho^{(r+1) / 2}$; then $\operatorname{ord}(g)=\operatorname{ord}(\rho)=r$.

Suppose $\varepsilon=1$. Then $j$ is odd, by distinctness. Write $d=(r-j) / 2 \geq 0$. Then $s_{2 d+1}=$ $g^{2 d+j}=1$ and this is evidently the first occurrence of 1 after $s_{0}$, whence $m=2 d+1$. But now $g^{2 d+2}=s_{2 d+2}=s_{1}=g^{j}$ and so $r-j+2=2 d+2 \equiv j(\bmod r)$. It follows that $j=1, m=r$ and

$$
M=\left(\ldots, 1, g, g^{2}, \ldots\right)=\left(\ldots, 1, \rho^{(r+1) / 2}, \rho, \ldots\right)
$$

is standard.
Suppose $\varepsilon=-1$. As $g \in<\rho>$ but $-1 \notin<\rho>$ then no term $s_{2 k+1}=-g^{2 k+j}$ belongs to $<\rho>$; thus the first occurrence of 1 after $s_{0}$ is $s_{2 r}=g^{2 r}=1$, and so $m=2 r$. Again we may shift $\left(s_{n}\right)_{n}$ odd to obtain $r$ distinct sequences, with that for $j=1$ being cyclic, so that $M$ is nonstandard of the first type unless $r=1$ and $M=(\ldots, 1,-1,1, \ldots)$, which is standard.
Examples 7: (a) Let $f(t)=t^{2}-2$. As in Proposition 6(d), the following are $f$-sequence subgroups of $\mathbb{C}^{*}$, where $\varepsilon \in\{-1,1\}$ and $k \in \mathbb{Z}$ :

$$
\begin{aligned}
M_{1, \varepsilon} & =\left(\ldots, 2^{-1}, \varepsilon 2^{k-1} \sqrt{2}, 1, \varepsilon 2^{k} \sqrt{2}, 2, \ldots\right) \text { and } \\
M_{2} & =\left(\ldots, 2^{-1},-2^{k-1}, 1,-2^{k}, 2, \ldots\right)
\end{aligned}
$$

The groups $M_{1, \varepsilon}=<\varepsilon \sqrt{2}>$ are cyclic and nonstandard of the first type, while $M_{2}=<-1>$ $\times<2>$ is non-cyclic and nonstandard of the second type.
(b) Let $f(t)=t^{2}-\omega$ where $\omega=e^{2 \pi i / 3} \in \mathbb{C}$. As in Proposition 6(e), the following are $f$-sequence subgroups:

$$
\begin{aligned}
M_{1} & =\left(\ldots, 1, \omega^{2}, \omega, 1, \ldots\right), \text { and } \\
M_{-1} & =\left(\ldots, 1,-\omega^{j}, \omega,-\omega^{j+1}, \omega^{2},-\omega^{j+2}, 1, \ldots\right), \text { where } 1 \leq j \leq 3
\end{aligned}
$$

The group $M_{1}$, of order 3 , is standard, while $M_{-1}$, of order 6 , is nonstandard of the first type (because the sequence with $j=2$ is cyclic).
(c) Let $f(t)=t^{2}-i$. The following are $f$-sequence subgroups of $\mathbb{C}^{*}$ :

$$
M_{\varepsilon}=\left(\ldots, 1, \varepsilon i^{l} \sqrt{i}, i, \varepsilon i^{i+1} \sqrt{i},-1, \varepsilon i^{l+2} \sqrt{i},-i, \varepsilon i^{i+3} \sqrt{i}, \ldots\right)
$$

where $\varepsilon \in\{1,-1\}$ and $1 \leq l \leq 4$. The sequences with $l=4$ are cyclic and so each $M_{\varepsilon}$ is nonstandard of the first type.
Lemma 8: Let $f(t)=t^{2}-\sigma t-\rho \in \mathbb{C}[t]$, where $\rho \neq 0$, and suppose that $f$ has roots $g, h \in \mathbb{C}^{*}$ with $|g|=|h| \neq 1, g \neq \pm h$. Suppose that $M=\left(s_{n}\right)_{n \in \mathbb{Z}}$ is an $f$-sequence subgroup of $\mathbb{C}^{*}$. Then $M$ is infinite.

Proof: By Observation 3(c), we may suppose that $|g|=|h|>1$. Write $\gamma=h / g$; then $|\gamma|=1$ but $\gamma \neq \pm 1$. By Observation $3($ a $)$, there exist $\alpha, \beta \in \mathbb{C}$ such that $s_{n}=g^{n}\left(\alpha+\beta \gamma^{n}\right)$ for $n \in \mathbb{Z}$. If $M$ were finite then $1=\left|s_{n}\right|=|g|^{n}\left|\alpha+\beta \gamma^{n}\right|$ for all $n$. But $|g|^{n}$ increases with $n$, and so $\left|\alpha+\beta \gamma^{n}\right|$ decreases. As $n$ increases, the points $\alpha+\beta \gamma^{n}$ move (as $\gamma \neq 1$ ) around the circle with centre $\alpha$ and radius $|\beta|$. Thus $\left|\alpha+\beta \gamma^{n}\right|$ cannot decrease and so $M$ cannot be finite.

Proposition 9: Let $f(t)=t^{2}-\sigma t-\rho \in \mathbb{C}[t]$, where $\rho \neq 0$. Suppose $M$ is a finite $f$-sequence subgroup of $\mathbb{C}^{*}$. Then $M$ is standard unless both $\sigma=0$ and $\operatorname{ord}(M)$ is even and at least 6 , in which case it is nonstandard of the first type.

Proof: The result follows from Propositions 4 and 6 together with Lemma 8.

## ACKNOWLEDGMENT

We thank the referee for valuable suggestions, including a simpler proof of Proposition 4. The first author wishes to acknowledge the partial support of the "Centro de Estruturas Lineares e Combinatórias" and of the Praxis Program (Praxis/2/2.1/mat/73/94).

## REFERENCES

[1] Owen J. Brison. "Complete Fibonacci Sequences in Finite Fields." The Fibonacci Quarterly 30 (1992): 295-304.
[2] Lawrence E. Somer. "The Fibonacci Group and a New Proof that $F_{p-(s / p)} \equiv 0(\bmod p)$. The Fibonacci Quarterly 10 (1972): 345-348 and 354.
[3] Lawrence E. Somer. "Fibonacci-Like Groups and Periods of Fibonacci-Like Sequences." The Fibonacci Quarterly 15 (1977): 35-41.

AMS Classification Numbers: 11B37, 11B39

## 国

