LINEAR RECURRING SEQUENCE SUBGROUPS
IN THE COMPLEX FIELD

Owen J. Brison
Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa
Bloco C1, Piso 3, Campo Grande, 1749-016 Lisboa, Portugal

J. Eurico Nogueira
Departamento de Matemática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, Quinta da Torre, 2825-114 Monte da Caparica, Portugal
(Submitted May 2001, Final Revision January 2002)

Let \(S = (s_n)_{n \in \mathbb{Z}} \) be a “doubly infinite” recurring sequence in the complex field, \(\mathbb{C} \), satisfying the recurrence
\[
s_{n+2} = \sigma s_{n+1} + \rho s_n
\]
where \(\sigma, \rho \in \mathbb{C} \) and \(\rho \neq 0 \). It can happen that the elements of a minimal periodic segment (see below) of \(S \) form a subgroup of the multiplicative group \(\mathbb{C}^* \) of \(\mathbb{C} \) and our purpose here is to investigate this phenomenon. The analogous situation in the context of finite fields seems to have first been investigated by Somer [2], [3]; see also [1].

Write \(f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t], \rho \neq 0 \). A sequence of complex numbers \(S = (s_n)_{n \in \mathbb{Z}} \) satisfying (1) will be called an \(f \)-sequence in \(\mathbb{C} \); \(f \) is the characteristic polynomial of \(S \). If there exists \(m \in \mathbb{N} \) such that \(s_a = s_{a+m} \) for all \(a \in \mathbb{Z} \) and if also \(m \) is minimal subject to this then \(S \) is periodic with least period \(m \). By a minimal periodic segment we understand the whole sequence if \(S \) is not periodic, and any segment consisting of \(m \) consecutive members of \(S \) if \(S \) is periodic with least period \(m \).

Definition 1: Let \(f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t], \rho \neq 0 \). The subgroup \(M \leq \mathbb{C}^* \) is said to be an \(f \)-sequence subgroup if either
(a) \(M \) is infinite and the underlying set of \(M \) can be written in such an order as to form a doubly infinite \(f \)-sequence \((s_n)_{n \in \mathbb{Z}} \) where \(s_a \neq s_b \) if \(a \neq b \), or
(b) \(M \) is finite, of order \(m \), and the underlying set of \(M \) can be written in such an order as to coincide with a minimal periodic segment of an \(f \)-sequence \((s_n)_{n \in \mathbb{Z}} \), where \(s_a = s_b \) if and only if \(a \equiv b \pmod{m} \).

We will write \(M = (s_n)_{n \in \mathbb{Z}} \) even if \(M \) is finite, and will say that \((s_n)_{n \in \mathbb{Z}} \) is a representation of, or represents, \(M \) as an \(f \)-sequence.

If \(f(t) \in \mathbb{C}[t], f(0) \neq 0 \), and if \(g, h \in \mathbb{C}^* \) are roots of \(f \), then
\[
<g> = (\ldots, g^{-2}, g^{-1}, 1, g, g^2, \ldots) = (g^n)_{n \in \mathbb{Z}}
\]
is an “obvious” representation of \(<g> \leq \mathbb{C}^* \) as an \(f \)-sequence subgroup; it can happen that \(h \neq g \) but \(<h> = <g> \), and then \((h^n)_{n \in \mathbb{Z}} \) is a different representation of the same subgroup. This suggests:

Definition 2: Let \(f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t], \rho \neq 0 \).
(a) The \(f \)-sequence \((s_n)_{n \in \mathbb{Z}} \) in \(\mathbb{C} \) is said to be cyclic if there exists \(g \in \mathbb{C} \) such that \(s_{n+1}/s_n = g \) for all \(n \in \mathbb{Z} \).
(b) The \(f \)-sequence subgroup \(M \) of \(\mathbb{C}^* \) is said to be standard if whenever \(M \) is represented as an \(f \)-sequence \(M = (s_n)_{n \in \mathbb{Z}} \) then \((s_n)_{n \in \mathbb{Z}} \) is necessarily cyclic. Otherwise, \(M \) is said to be nonstandard.

2003] 397
LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD

(c) Suppose that M is a nonstandard f-sequence subgroup. If M admits representation as a cyclic f-sequence then we say that M is nonstandard of the first type; otherwise M is said to be nonstandard of the second type.

Essentially, M is standard if the "obvious" ways are the only ways of realising it as an f-sequence subgroup. If $M = (g^n)_{n \in \mathbb{Z}}$ is a representation of M as a cyclic f-sequence, then it is clear that g must be both a root of $f(t)$ and a generator of M as a group, whence M is a cyclic group. It is possible to find polynomials $f(t)$ which admit non-cyclic f-sequence subgroups: see Proposition 6(d) below.

Our main results are Propositions 4 and 6. Suppose that $f(t) \in \mathbb{C}[t]$ and that f has roots $g, h \in \mathbb{C}^*$. Except in the case

$$|g| = |h| \neq 1 \text{ and } g \neq \pm h,$$

which remains open, we prove that an f-sequence subgroup must be standard unless $g = -h$; when $g = -h$ we classify the nonstandard subgroups.

Observations 3. Suppose $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t], \rho \neq 0$, with roots $g, h \in \mathbb{C}^*$, and let $(s_n)_{n \in \mathbb{Z}}$ be an f-sequence in \mathbb{C}.

(a) Suppose firstly that $g \neq h$. By linear algebra, there exist $\alpha, \beta \in \mathbb{C}$ with $s_0 = \alpha + \beta$ and $s_1 = \alpha g + \beta h$. By induction, $s_n = \alpha g^n + \beta h^n$ for all integers $n \geq 0$, and because $\rho \neq 0$ this may be extended to cover the case of negative n.

(b) Suppose next that $g = h$. There exist $\alpha, \beta \in \mathbb{C}$ such that $s_0 = \alpha$ and $s_1 = g(\alpha + \beta)$. Again, we have $s_n = (\alpha + n\beta)g^n$ for all $n \in \mathbb{Z}$.

(c) The reciprocal polynomial of $f(t)$ is $(-\rho)f^*(t)$ where $f^*(t) = t^2 + (\sigma/\rho)t - (1/\rho)$. The roots of $f^*(t)$ are $g^{-1}, h^{-1} \in \mathbb{C}^*$.

If $(s_n)_{n \in \mathbb{Z}}$ is an f-sequence in \mathbb{C} then $(r_n)_{n \in \mathbb{Z}}$ is an f^*-sequence where $r_n = s_{-n}$. If $M = (s_n)_{n \in \mathbb{Z}}$ is an f-sequence subgroup of \mathbb{C}^* then $M = (r_n)_{n \in \mathbb{Z}}$ is also an f^*-sequence subgroup. Thus M is standard as an f-sequence subgroup if and only if it is standard as an f^*-sequence subgroup. Further, if $s_n = \alpha g^n + \beta h^n$ for all $n \in \mathbb{Z}$ then $r_n = \alpha(g^{-1})^n + \beta(h^{-1})^n$ for all n.

Before continuing, we fix some notation. If $z \in \mathbb{C}$ then $|z|$ will always denote the modulus of z. We will use ordz to denote the multiplicative order of $z \in \mathbb{C}^*$, if z is a root of unity, and ord(M) to denote the order of the group M, if finite.

Proposition 4: Let $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t], \rho \neq 0$. Suppose that f has distinct roots $g, h \in \mathbb{C}^*$. Let $M = (s_n)_{n \in \mathbb{Z}} \leq \mathbb{C}^*$ be an f-sequence subgroup and write $s_n = \alpha g^n + \beta h^n$ for all n, for suitable $\alpha, \beta \in \mathbb{C}$. Suppose that either

1. $|g| \neq |h|$, or
2. $|g| = |h| \neq 1, g/h$ is not a root of unity and $|\alpha| \neq |\beta|$.

Then $\alpha \beta = 0$. Further, M is standard.

Proof: Suppose for a contradiction that $\alpha \beta \neq 0$. We may assume that $s_0 = 1$, while by Observation 3(c) we may also assume that $|g| \geq |h|$ and that $|g| > 1$. Write $\gamma = h/g$, so $0 < |\gamma| \leq 1$ and $s_m = g^m(\alpha + \beta \gamma^m)$. Suppose m is positive. Then $|(\alpha + \beta \gamma^m)|$ is bounded above by $|\alpha| + |\beta|$. If $|\gamma| < 1$ or if $|\gamma| = 1$ and $|\alpha| \neq |\beta|$ then $|(\alpha + \beta \gamma^m)|$ is bounded below (away from 0).
LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD

Now $s_m s_n \in M$ for all $m, n \in \mathbb{Z}$ because M is a group. Thus there exists a function $u : \mathbb{Z}^2 \to \mathbb{Z} : (m, n) \mapsto u(m, n)$ such that $s_m s_n = s_{u(m,n)}$ for all m, n. Thus, for all $m, n \in \mathbb{Z}$,

$$s_m s_n = g^{m+n} (\alpha + \beta \gamma^m) (\alpha + \beta \gamma^n) = g^{u(m,n)} (\alpha + \beta \gamma^{u(m,n)}).$$ \hfill (2)

The boundedness of $|\alpha + \beta \gamma^m|_m > 0$ implies that $|g|^{m+n} - u(m,n)$ is bounded above and below whenever $m, n, u(m, n) \geq 0$. But $|g| > 1$ and so there exists a constant K such that

$$|m + n - u(m, n)| < K$$ \hfill (3)

whenever $m, n, u(m, n) \geq 0$.

Now fix $i \geq 0$ and suppose that $u(n + i, n - i) \geq 0$ for infinitely many n. By (3), there exists a fixed j with $|j| \leq K$ such that $u(n + i, n - i) = 2n + j$ for infinitely many n. Thus

$$s_{n+i}s_{n-i} = g^{2n} (\alpha + \beta \gamma^{n+i}) (\alpha + \beta \gamma^{n-i}) = g^{2n+j} (\alpha + \beta \gamma^{2n+j}),$$
or

$$(\alpha^2 - \alpha g^j) + \alpha \beta (\gamma^i + \gamma^{-i}) \gamma^n + (\beta^2 - \beta g^j) \gamma^{2n} = 0$$

for infinitely many n. Now $\alpha \beta \neq 0$, while $(\gamma^i + \gamma^{-i}) \neq 0$ because γ is not a root of unity. Thus, for infinitely many n, γ^n is a root of a fixed polynomial, independent of n, of degree either 1 or 2. Thus infinitely many of the γ^n must coincide, which is impossible because γ is neither zero nor a root of unity.

Thus for fixed $i \geq 0$, $u(n + i, n - i) < 0$ for all positive n but a finite number. Now (2) gives

$$g^{2n} (\alpha + \beta \gamma^{n+i}) (\alpha + \beta \gamma^{n-i}) = h^{u(n+i,n-i)} (\alpha \gamma^{u(n+i,n-i)} + \beta)$$

and so $|g|^{2n}|h|^{u(n+i,n-i)}$ is bounded, independent of i and of n, provided just that $n > i \geq 0$ and $u(n + i, n - i) < 0$. But given $i \geq 0$, these conditions hold for infinitely many $n > i$, and so $|h| < 1$. It then follows that there exists a positive integer K_1 such that whenever $n > i \geq 0$ and $u(n + i, n - i) < 0$ we have

$$\left| \frac{u(n + i, n - i)}{2n} - \frac{\log |g|}{\log |h|} \right| < \frac{K_1}{2n}. \hfill (4)$$

Let $\mathcal{R} = \{0, 1, \ldots, 4K_1 + 2\}$. For each $i \geq 0$, $u(n + i, n - i) < 0$ for all but finitely many positive n and so there exists N such that if $n > N$ we have $u(n + i, n - i) < 0$ for all $i \in \mathcal{R}$ simultaneously. Thus for distinct $i_1, i_2 \in \mathcal{R}$, (4) gives

$$|u(n + i_1, n - i_1) - u(n + i_2, n - i_2)| < 2K_1$$

whenever $n > N$. So for fixed $n_0 > N$, all integers $u(n_0 + i, n_0 - i)$ for $i \in \mathcal{R}$ belong to an interval of length at most $4K_1$ centered on $u(n_0, n_0)$. By the pigeon hole principle, there exist $i_1 \neq i_2$ such that $u(n_0 + i_1, n_0 - i_1) = u(n_0 + i_2, n_0 - i_2)$. Thus

$$s_{n_0+i_1}s_{n_0-i_1} = s_{n_0+i_2}s_{n_0-i_2}$$

2003]
and so
\[\alpha \beta (\gamma^i + \gamma^{-i})(gh)^{n_0} = \alpha \beta (\gamma^i + \gamma^{-i})(gh)^{n_0}. \]

Since \(\alpha \beta gh \neq 0 \), it follows that
\[\gamma^i - \gamma^{-i} = \frac{\gamma^i - \gamma^{-i}}{\gamma^i - \gamma^{-i}}, \]
so that either \(\gamma^i = \gamma^{-i} \) or \(\gamma^i \gamma^{-i} = 1 \), both of which are impossible because \(\gamma \) is neither zero nor a root of unity. We conclude that \(\alpha \beta = 0 \), it follows that \(M \) is standard. \(\square \)

Lemma 5: Let \(f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t] \), where \(|\rho| = 1 \). Suppose that \(f(t) \) has roots \(g, h \in \mathbb{C}^* \).

Let \(M = (s_n)_{n \in \mathbb{Z}} \subseteq \mathbb{C}^* \) be an \(f \)-sequence subgroup.

(a) If \(g \neq h \), then \(|g| = |h| = 1 \) if and only if \(|s| = 1 \) for all \(s \in M \).

(b) If \(g = h \), then \(|g| = 1 \) and \(|s| = 1 \) for all \(s \in M \).

Proof: (a) Suppose \(g \neq h \). By Observation 3(a), there exist \(\alpha, \beta \in \mathbb{C} \) with \(s_n = \alpha q^n + \beta h^n \) for all \(n \in \mathbb{Z} \). Now \(|gh| = |\rho| = 1 \), so \(|g| = 1 \) if and only if \(|h| = 1 \). Suppose \(|g| = |h| = 1 \) and that there exists \(s \in M \) with \(|s|
eq 1 \). Then the cyclic subgroup \(s < \leq M \) contains elements of arbitrarily large modulus. But \(|s_n| = |\alpha q^n + \beta h^n| \leq |\alpha| + |\beta| \) for all \(n \), a contradiction.

Suppose next that \(|s_n| = 1 \) for all \(n \in \mathbb{Z} \). Assume \(|g| > 1 \), so that \(|h| < 1 \). If \(\alpha = 0 \) then \(\beta \neq 0 \) and \(1 = |s_n| = |\beta h^n| \) for all \(n \), which is absurd because \(\beta \) is fixed and \(|h| < 1 \). Thus \(\alpha \neq 0 \). Now \(|\alpha q^n| - |\beta h^n| \leq |\alpha q^n + \beta h^n| = |s_n| = 1 \). But \(|\beta h^n| \leq |\beta| \), while \(|\alpha q^n| \) is unbounded as \(n \) increases, a contradiction.

(b) Suppose \(g = h \in \mathbb{C}^* \) is a double root of \(f(t) \), so that \(|g| = 1 \). By Observation 3(b), there exist \(\alpha, \beta \in \mathbb{C} \) with \(s_n = (\alpha + n\beta)g^n \) for all \(n \in \mathbb{Z} \). As \(0 \notin M \) then not both \(\alpha, \beta \) can be zero.

Suppose there exists \(s \in M \) with \(|s|
eq 1 \). Then the subgroup \(s < \leq M \) contains elements of arbitrarily small modulus. But \(s_n = (\alpha + n\beta)g^n \), whence \(|s_n| \geq |\alpha| - |n\beta| \). Since \(\alpha, \beta \) are fixed and not both zero then \(|\alpha| - |n\beta| \neq 0 \) whenever \(n \in \mathbb{Z} \) is such that \(n|\beta| \neq |\alpha| \), and then
\[\{||\alpha| - |n\beta|| : n \in \mathbb{Z}, n|\beta| \neq |\alpha| \} \]
is bounded away from 0, a contradiction. \(\square \)

Proposition 6: Let \(f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t] \), where \(\rho \neq 0 \), and suppose that \(f \) has roots \(g, h \in \mathbb{C}^* \). Let \(M \subseteq \mathbb{C}^* \) be an \(f \)-sequence subgroup. Then

(a) If \(|g| = |h| = 1 \) and \(g \neq \pm h \) then \(M \) is standard.

(b) If \(g = h \) then \(M \) is standard.

(c) If \(g = -h \) then \(M \) is finite if and only if \(\rho \) is a root of unity.

(d) If \(g = -h \) and if \(M \) is infinite then \(M \) has one of the forms:

\[
M = (..., \rho^{-1}, \varepsilon \rho^{k-1} \sqrt{\rho}, 1, \varepsilon \rho^k \sqrt{\rho}, \rho, \ldots) \quad \text{or} \quad M = (..., \rho^{-1}, -\rho^{k-1} \sqrt{\rho}, -\rho^k \sqrt{\rho}, \rho, \ldots),
\]

where \(\varepsilon \in \{1, -1\} \) and \(k \in \mathbb{Z} \). In the first case, \(M = \langle \varepsilon \rho \rangle \) is cyclic and nonstandard of the first type. In the second case, \(M = \langle -1 \rangle \times \langle \rho \rangle \) is non-cyclic and nonstandard of the second type.

(e) Suppose \(g = -h \) and \(M \) is finite of order \(m \). Write \(r = \text{ord}(\rho) \), by (c).
LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD

If r is even then $m = 2r$ and M is nonstandard of the first type unless $\rho = -1$ when M is standard.

If r is odd then either $m = r$ and

$$M = (\ldots, 1, \rho^{(r+1)/2}, \rho, \ldots)$$

is standard, or else $m = 2r$ and

$$M = (\ldots, 1, -g^j, g^2, \ldots).$$

where $g = \rho^{(r+1)/2}$ and $1 \leq j \leq r$. Further, M is nonstandard of the first type unless $\rho = 1$, when M is standard.

Proof: Write $M = (s_n)_{n \in \mathbb{Z}}$. Without loss, suppose $s_0 = 1$.

(a) Suppose $|g| = |h| = 1$ and $g \neq \pm h$; then $\sigma \neq 0$ and $|\rho| = 1$. By Lemma 5, M lies on the unit circle.

Write $\tau = \sigma/2 \neq 0$. Then $\{g, h\} = \{\tau \pm \sqrt{\tau^2 + \rho}\}$ and $\tau^2 + \rho \neq 0$. If $u, v \in \mathbb{C}$ are such that $|u + v| = |u - v|$ then the segments $0u$ and $0v$ are perpendicular, whence $|u \pm v| = \sqrt{|u|^2 + |v|^2}$. Here, $|g| = |h| = 1 = \sqrt{\tau^2 + \rho}$, and so $1 = |\tau^2 + \rho|$. Then

$$1 = |\rho| = | - \tau^2 + \tau^2 + \rho| \leq |\tau^2| + |\tau^2 + \rho| = 1,$$

whence $-\tau^2$ and $\tau^2 + \rho$ are parallel; that is, $\rho = k\tau^2$ where $k \in \mathbb{R}$ and $k < -1$. Thus, $|\tau| < 1$, so $0 < |\sigma| < 2$. Now $s_1 = \sigma 1 + \rho s_{-1}$ and because $|s_{-1}| = 1$, then $|s_1 - \sigma| = |\rho s_{-1}| = 1 = |s_1|$. But given a circle of radius 1, a fixed diameter l and $\lambda \in \mathbb{R}$ with $0 < \lambda < 2$, the circle has exactly two chords of length λ parallel to l. Thus, for σ fixed, there are just two $s \in \mathbb{C}$ such that $|s - \sigma| = |s| = 1$. But the roots $g \neq h$ of $f(t)$ satisfy $|g - \sigma| = |g| = |h - \sigma| = |h| = 1$. Thus the only f-sequence subgroups are $(\ldots, 1, g, \ldots)$ and $(\ldots, 1, h, \ldots)$, and M is standard in this case.

(b) Suppose that $g = h$. By Observation 3(b), there exist $\alpha, \beta \in \mathbb{C}$ with $s_n = g^n(\alpha + \beta n)$ for $n \in \mathbb{Z}$, while $\alpha = 1$ because $s_0 = 1$.

Suppose firstly that $|g| = 1$. Now $\sigma = 2g$ and $\rho = -g^2$, so $|\rho| = 1$ and then $|s| = 1$ for all $s \in M$ by Lemma 5(b). But $s_1 = 2g - g^2 s_{-1}$ because $s_0 = 1$. Thus, $|s_1 - 2g| = |g^2 s_{-1}| = 1$, so s_1 and $s_1 - 2g$ lie on the unit circle at distance $|2g| = 2$ from each other. Thus $s_1 = g$ and $M = (\ldots, 1, g, \ldots)$ is standard.

By Observation 3(c) we may now suppose $|g| > 1$. It is easy to check that

$$\lim_{n \to \infty} |s_n| = \infty \quad \text{and} \quad \lim_{n \to \infty} |1 + \beta n|/|1 + \beta(n + 1)| = 1;$$

in the second limit, the denominator is equal to $|s_{n+1}/g^{n+1}|$ and so is non-zero. Therefore there exists $N_1 \in \mathbb{N}$ such that both $|g| > |1 + \beta n|/|1 + \beta(n + 1)|$ and $|s_n| > 1$ whenever $n > N_1$. Thus $|s_{n+1}| > |s_n|$ for $n > N_1$. Similarly, there exists $N_2 \in \mathbb{N}$ such that $|s_{n-1}| < |s_n| < 1$ whenever $n < -N_2$ and so there exists $K \in \mathbb{N}$ with $K > N_1$ such that

$$|s_n| > \max\{|s_j|, 1/|s_j| : -N_2 \leq j \leq N_1\}$$

2003] 401
whenever $n \geq K$, in particular, $|s_K| > |s_j|$ if $j < K$. Thus, $s^{-1}_K = s_L$ for some $L < -N_2$. The monotonicity of $|s_n|$ with respect to n outside the interval $[-N_2, N_1]$ and the fact that M is a group no guarantee that $s^{j-1}_{K+j} = s_{L-j}$ for all $j \in \mathbb{N}_0$. It follows that

$$g^{K+j}(\alpha + \beta(K + j))g^{L-j}(\alpha + \beta(L - j)) = 1, \, j = 0, 1, 2.$$

Simplification gives

$$g^{K+L} \beta^2 KL = g^{K+L} \beta^2(K + 1)(L - 1) = g^{K+L} \beta^2(K + 2)(L - 2).$$

Now $g \neq 0$ because $\rho \neq 0$. If $\beta \neq 0$ then both $L - K - 1 = 0$ and $2(L - K) - 4 = 0$, which is absurd. Thus $\beta = 0$ and M is standard, proving (b).

We now assume for the rest of the proof that $g = -h$, so that $\sigma = 0$, $\alpha = t^2 - \rho$, $g^2 = \rho$ and \{g, h\} = \{\sqrt{\rho}, - \sqrt{\rho}\}. Then $s_{n+2} = \rho s_n$ for all $n \in \mathbb{Z}$, and so $M = (...)$, x, ρ, $x\rho$, ... where $x = s_1$: we will fix this interpretation for x.

(c) If M is infinite then $\rho^j \neq \rho^i$ whenever $i \neq j$ and so ρ is not a root of unity. If M is finite then the powers of ρ cannot be all distinct, whence ρ is a root of unity.

(d) Suppose that M is infinite. Then the elements ρ^j and $x\rho^j$ are all distinct as j runs over \mathbb{Z}. Now $x^2 \in M$ and so either $x^2 = x\rho^j$ or $x^2 = \rho^j$, for suitable j. If $x^2 = x\rho^j$ then $x = \rho^j$, contrary to distinctness; thus $x^2 = \rho^j$. There are two cases:

(1) Suppose $j = 2k + 1$ is odd. Then $x = \varepsilon \rho^k \sqrt{\rho}$, where $\varepsilon \in \{1, -1\}$ and

$$M = (...) \rho^{-1}, \varepsilon \rho^{k-1} \sqrt{\rho}, 1, \varepsilon \rho^k \sqrt{\rho}, \rho,$$

We may shift the subsequence $(s_n)_{n \text{ odd}}$ relative to $(s_n)_{n \text{ even}}$ any number of places to the left or right and obtain different representations of M as an f-sequence: this corresponds to taking different values of k. With $k = 0$ we obtain a cyclic representation of M as an f-sequence, and so M is nonstandard of the first type.

(2) Suppose $j = 2k$ is even. Then $x \in \{\rho^k, -\rho^k\}$, whence $x = -\rho^k$ by distinctness. Then

$$M = (...) \rho^{-1}, -\rho^{k-1}, 1, -\rho^k, \rho, ... ,$$

so that $M = (...) > x > \rho >$ is a non-cyclic group; thus M is nonstandard of the second type.

(e) Suppose M is finite of order m. We have $\rho = g^2$, while $x^2 = \rho^j$ with $1 \leq j \leq r$ by distinctness. Thus $x = \varepsilon g^j$ where $\varepsilon \in \{-1, 1\}$, and so $s_{2k} = g^{2k}$ and $s_{2k+1} = \varepsilon g^{2k+j}$ for all k. Then

$$M = (...) 1, \varepsilon g^j, g^2, \varepsilon g^{j+2}, ..., g^{2k}, \varepsilon g^{2k+j},$$

The distinct elements of M are just the terms from $s_0 = 1$ to s_{m-1}, where s_m is the first occurrence of 1 after s_0.

Suppose firstly that r is even. Then $\varepsilon \in \rho >$, ord(g) = $2r$ and $\rho >$ contains no odd power of g. Thus j is odd as otherwise $s_{2k+1} = \varepsilon g^{2k+j}$ would be an even power of g, against distinctness. But now $s_{2k+1} = \varepsilon g^{2k+j} \neq 1$ for all k, so s_{2r} is the first occurrence of 1 and $m = 2r$; we may shift $(s_n)_{n \text{ odd}}$ to obtain r distinct sequences, with that for $j = 1$ being cyclic. Thus M is nonstandard of the first type unless $r = 2$ when $M = (...) 1, \varepsilon i, -1, -\varepsilon i, 1, ...$ is standard.
Suppose next that \(r \) is odd. Then \(-1 \not\in \rho > 0\) and \(< \rho >\) contains a unique square-root of \(\rho \), namely \(\rho^{(r+1)/2} \). We may suppose that \(g = \rho^{(r+1)/2} \); then \(\text{ord}(g) = \text{ord}(\rho) = r \).

Suppose \(\epsilon = 1 \). Then \(j \) is odd, by distinctness. Write \(d = (r - j)/2 \geq 0 \). Then \(s_{2d+1} = g^{2d+j} = 1 \) and this is evidently the first occurrence of 1 after \(s_0 \), whence \(m = 2d + 1 \). But now \(g^{2d+2} = s_{2d+2} = g^j \) and so \(r - j + 2 = 2d + 2 \equiv j \pmod{r} \). It follows that \(j = 1, m = r \) and

\[
M = (\ldots, 1, g, g^2, \ldots) = (\ldots, 1, \rho^{(r+1)/2}, \rho, \ldots)
\]

is standard.

Suppose \(\epsilon = -1 \). As \(g \in < \rho > \) but \(-1 \not\in \rho >\) then no term \(s_{2k+1} = -g^{2k+j} \) belongs to \(< \rho >\); thus the first occurrence of 1 after \(s_0 \) is \(s_{2r} = g^{2r} = 1 \), and so \(m = 2r \). Again we may shift \((s_n)_n \) odd to obtain \(r \) distinct sequences, with that for \(j = 1 \) being cyclic, so that \(M \) is nonstandard of the first type unless \(r = 1 \) and \(M = (\ldots, 1, -1, 1, \ldots) \), which is standard.

Examples 7: (a) Let \(f(t) = t^2 - 2 \). As in Proposition 6(d), the following are \(f \)-sequence subgroups of \(\mathbb{C}^* \), where \(\epsilon \in \{-1, 1\} \) and \(k \in \mathbb{Z} \):

\[
M_{1,\epsilon} = (\ldots, 2^{-1}, \epsilon 2^{k-1} \sqrt{2}, 1, \epsilon 2^k \sqrt{2}, 2, \ldots) \quad \text{and} \quad M_2 = (\ldots, 2^{-1}, -2^k, 1, -2^k, 2, \ldots).
\]

The groups \(M_{1,\epsilon} = < \epsilon \sqrt{2} > \) are cyclic and nonstandard of the first type, while \(M_2 = < -1 > \times < 2 > \) is non-cyclic and nonstandard of the second type.

(b) Let \(f(t) = t^2 - \omega \) where \(\omega = e^{2\pi i/3} \in \mathbb{C} \). As in Proposition 6(e), the following are \(f \)-sequence subgroups:

\[
M_1 = (\ldots, 1, \omega^2, \omega, 1, \ldots), \quad \text{and} \quad M_{-1} = (\ldots, 1, -\omega^j, \omega, -\omega^{j+1}, \omega^2, -\omega^{j+2}, 1, \ldots), \quad \text{where} \ 1 \leq j \leq 3.
\]

The group \(M_1 \), of order 3, is standard, while \(M_{-1} \), of order 6, is nonstandard of the first type (because the sequence with \(j = 2 \) is cyclic).

(c) Let \(f(t) = t^2 - i \). The following are \(f \)-sequence subgroups of \(\mathbb{C}^* \):

\[
M_\epsilon = (\ldots, 1, \epsilon t^l \sqrt{i}, 1, \epsilon t^{l+1} \sqrt{i}, -1, \epsilon t^{l+2} \sqrt{i}, -i, \epsilon t^{l+3} \sqrt{i}, \ldots),
\]

where \(\epsilon \in \{1, -1\} \) and \(1 \leq l \leq 4 \). The sequences with \(l = 4 \) are cyclic and so each \(M_\epsilon \) is nonstandard of the first type.

Lemma 8: Let \(f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t] \), where \(\rho \neq 0 \), and suppose that \(f \) has roots \(g, h \in \mathbb{C}^* \) with \(|g| = |h| \neq 1, g \neq \pm h \). Suppose that \(M = (s_n)_{n \in \mathbb{Z}} \) is an \(f \)-sequence subgroup of \(\mathbb{C}^* \). Then \(M \) is infinite.

Proof: By Observation 3(c), we may suppose that \(|g| = |h| > 1 \). Write \(\gamma = h/g \); then \(|\gamma| = 1 \) but \(\gamma \neq \pm 1 \). By Observation 3(a), there exist \(\alpha, \beta \in \mathbb{C} \) such that \(s_n = g^n (\alpha + \beta \gamma^n) \) for \(n \in \mathbb{Z} \). If \(M \) were finite then \(1 = |s_n| = |g|^n |\alpha + \beta \gamma^n| \) for all \(n \). But \(|g|^n \) increases with \(n \), and so \(|\alpha + \beta \gamma^n| \) decreases. As \(n \) increases, the points \(\alpha + \beta \gamma^n \) move (as \(\gamma \neq 1 \)) around the circle with centre \(\alpha \) and radius \(|\beta| \). Thus \(|\alpha + \beta \gamma^n| \) cannot decrease and so \(M \) cannot be finite.
LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD

Proposition 9: Let \(f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t] \), where \(\rho \neq 0 \). Suppose \(M \) is a finite \(f \)-sequence subgroup of \(\mathbb{C}^* \). Then \(M \) is standard unless both \(\sigma = 0 \) and \(\text{ord}(M) \) is even and at least 6, in which case it is nonstandard of the first type.

Proof: The result follows from Propositions 4 and 6 together with Lemma 8. \(\square \)

ACKNOWLEDGMENT

We thank the referee for valuable suggestions, including a simpler proof of Proposition 4. The first author wishes to acknowledge the partial support of the “Centro de Estruturas Lineares e Combinatórias” and of the Praxis Program (Praxis/2/2.1/mat/73/94).

REFERENCES

AMS Classification Numbers: 11B37, 11B39

\[\star \star \star \]