LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD

Owen J. Brison

Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa Bloco C1, Piso 3, Campo Grande, 1749-016 Lisboa, Portugal

J. Eurico Nogueira

Departamento de Matemática, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa, Quinta da Torre, 2825-114 Monte da Caparica, Portugal (Submitted May 2001-Final Revision January 2002)

Let $S = (s_n)_{n \in \mathbb{Z}}$ be a "doubly infinite" recurring sequence in the complex field, \mathbb{C} , satisfying the recurrence

$$s_{n+2} = \sigma s_{n+1} + \rho s_n \tag{1}$$

where σ , $\rho \in \mathbb{C}$ and $\rho \neq 0$. It can happen that the elements of a minimal periodic segment (see below) of S form a subgroup of the multiplicative group \mathbb{C}^* of \mathbb{C} and our purpose here is to investigate this phenomenon. The analogous situation in the context of finite fields seems to have first been investigated by Somer [2], [3]; see also [1].

Write $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t]$, $\rho \neq 0$. A sequence of complex numbers $S = (s_n)_{n \in \mathbb{Z}}$ satisfying (1) will be called an f-sequence in \mathbb{C} ; f is the characteristic polynomial of S. If there exists $m \in \mathbb{N}$ such that $s_a = s_{a+m}$ for all $a \in \mathbb{Z}$ and if also m is minimal subject to this then S is periodic with least period m. By a minimal periodic segment we understand the whole sequence if S is not periodic, and any segment consisting of m consecutive members of S if S is periodic with least period m.

Definition 1: Let $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t]$, $\rho \neq 0$. The subgroup $M \leq \mathbb{C}^*$ is said to be an f-sequence subgroup if either

- (a) M is infinite and the underlying set of M can be written in such an order as to form a doubly infinite f-sequence $(s_n)_{n\in\mathbb{Z}}$ where $s_a\neq s_b$ if $a\neq b$, or
- (b) M is finite, of order m, and the underlying set of M can be written in such an order as to coincide with a minimal periodic segment of an f-sequence $(s_n)_{n\in\mathbb{Z}}$, where $s_a=s_b$ if and only if $a\equiv b\pmod{m}$.

We will write $M = (s_n)_{n \in \mathbb{Z}}$ even if M is finite, and will say that $(s_n)_{n \in \mathbb{Z}}$ is a representation of, or represents, M as an f-sequence.

If $f(t) \in \mathbb{C}[t]$, $f(0) \neq 0$, and if $g, h \in \mathbb{C}^*$ are roots of f, then

$$\langle g \rangle = (\dots, g^{-2}, g^{-1}, 1, g, g^2, \dots) = (g^n)_{n \in \mathbb{Z}}$$

is an "obvious" representation of $\langle g \rangle \leq \mathbb{C}^*$ as an f-sequence subgroup; it can happen that $h \neq g$ but $\langle h \rangle = \langle g \rangle$, and then $(h^n)_{n \in \mathbb{Z}}$ is a different representation of the same subgroup. This suggests:

Definition 2: Let $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t], \rho \neq 0$.

- (a) The f-sequence $(s_n)_{n\in\mathbb{Z}}$ in \mathbb{C} is said to be cyclic if there exists $g\in\mathbb{C}$ such that $s_{n+1}/s_n=g$ for all $n\in\mathbb{Z}$.
- (b) The f-sequence subgroup M of \mathbb{C}^* is said to be standard if whenever M is represented as an f-sequence $M = (s_n)_{n \in \mathbb{Z}}$ then $(s_n)_{n \in \mathbb{Z}}$ is necessarily cyclic. Otherwise, M is said to be nonstandard.

(c) Suppose that M is a nonstandard f-sequence subgroup. If M admits representation as a cyclic f-sequence then we say that M is nonstandard of the first type; otherwise M is said to be nonstandard of the second type.

Essentially, M is standard if the "obvious" ways are the only ways of realising it as an f-sequence subgroup. If $M = (g^n)_{n \in \mathbb{Z}}$ is a representation of M as a cyclic f-sequence, then it is clear that g must be both a root of f(t) and a generator of M as a group, whence M is a cyclic group. It is possible to find polynomials f(t) which admit non-cyclic f-sequence subgroups: see Proposition f(t) below.

Our main results are Propositions 4 and 6. Suppose that $f(t) \in \mathbb{C}[t]$ and that f has roots $g, h \in \mathbb{C}^*$. Except in the case

$$|g| = |h| \neq 1$$
 and $g \neq \pm h$,

which remains open, we prove that an f-sequence subgroup must be standard unless g = -h; when g = -h we classify the nonstandard subgroups.

Observations 3: Suppose $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t]$, $\rho \neq 0$, with roots $g, h \in \mathbb{C}^*$, and let $(s_n)_{n \in \mathbb{Z}}$ be an f-sequence in \mathbb{C} .

- (a) Suppose firstly that $g \neq h$. By linear algebra, there exist $\alpha, \beta \in \mathbb{C}$ with $s_0 = \alpha + \beta$ and $s_1 = \alpha g + \beta h$. By induction, $s_n = \alpha g^n + \beta h^n$ for all integers $n \geq 0$, and because $\rho \neq 0$ this may be extended to cover the case of negative n.
- (b) Suppose next that g = h. There exist $\alpha, \beta \in \mathbb{C}$ such that $s_0 = \alpha$ and $s_1 = g(\alpha + \beta)$. Again, we have $s_n = (\alpha + n\beta)g^n$ for all $n \in \mathbb{Z}$.
- (c) The reciprocal polynomial of f(t) is $(-\rho)f^*(t)$ where $f^*(t) = t^2 + (\sigma/\rho)t (1/\rho)$. The roots of $f^*(t)$ are $g^{-1}, h^{-1} \in \mathbb{C}^*$.

If $(s_n)_{n\in\mathbb{Z}}$ is an f-sequence in \mathbb{C} then $(r_n)_{n\in\mathbb{Z}}$ is an f^* -sequence where $r_n=s_{-n}$. If $M=(s_n)_{n\in\mathbb{Z}}$ is an f-sequence subgroup of \mathbb{C}^* then $M=(r_n)_{n\in\mathbb{Z}}$ is also an f^* -sequence subgroup. Thus M is standard as an f-sequence subgroup if and only if it is standard as an f^* -sequence subgroup. Further, if $s_n=\alpha g^n+\beta h^n$ for all $n\in\mathbb{Z}$ then $r_n=\alpha(g^{-1})^n+\beta(h^{-1})^n$ for all $n\in\mathbb{Z}$

Before continuing, we fix some notation. If $z \in \mathbb{C}$ then |z| will always denote the modulus of z. We will use $\operatorname{ord}(z)$ to denote the multiplicative order of $z \in \mathbb{C}^*$, if z is a root of unity, and $\operatorname{ord}(M)$ to denote the order of the group M, if finite.

Proposition 4: Let $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t]$, $\rho \neq 0$. Suppose that f has distinct roots $g, h \in \mathbb{C}^*$. Let $M = (s_n)_{n \in \mathbb{Z}} \leq \mathbb{C}^*$ be an f-sequence subgroup and write $s_n = \alpha g^n + \beta h^n$ for all n, for suitable $\alpha, \beta \in \mathbb{C}$. Suppose that either

- (1) $|g| \neq |h|$, or
- (2) $|g| = |h| \neq 1$, g/h is not a root of unity and $|\alpha| \neq |\beta|$.

Then $\alpha\beta = 0$. Further, M is standard.

Proof: Suppose for a contradiction that $\alpha\beta \neq 0$. We may assume that $s_0 = 1$, while by Observation 3(c) we may also assume that $|g| \geq |h|$ and that |g| > 1. Write $\gamma = h/g$, so $0 < |\gamma| \leq 1$ and $s_m = g^m(\alpha + \beta\gamma^m)$. Suppose m is positive. Then $|(\alpha + \beta\gamma^m)|$ is bounded above by $|\alpha| + |\beta|$. If $|\gamma| < 1$ or if $|\gamma| = 1$ and $|\alpha| \neq |\beta|$ then $|(\alpha + \beta\gamma^m)|$ is bounded below (away from 0).

Now $s_m s_n \in M$ for all $m, n \in \mathbb{Z}$ because M is a group. Thus there exists a function $u: \mathbb{Z}^2 \to \mathbb{Z}: (m, n) \mapsto u(m, n)$ such that $s_m s_n = s_{u(m,n)}$ for all m, n. Thus, for all $m, n \in \mathbb{Z}$,

$$s_m s_n = g^{m+n} (\alpha + \beta \gamma^m) (\alpha + \beta \gamma^n) = g^{u(m,n)} (\alpha + \beta \gamma^{u(m,n)}). \tag{2}$$

The boundedness of $|\alpha + \beta \gamma^m|_{m>0}$ implies that $|g|^{m+n-u(m,n)}$ is bounded above and below whenever $m, n, u(m,n) \geq 0$. But |g| > 1 and so there exists a constant K such that

$$|m+n-u(m,n)| < K \tag{3}$$

whenever $m, n, u(m, n) \geq 0$.

Now fix $i \ge 0$ and suppose that $u(n+i, n-i) \ge 0$ for infinitely many n. By (3), there exists a fixed j with $|j| \le K$ such that u(n+i, n-i) = 2n+j for infinitely many n. Thus

$$s_{n+i}s_{n-i} = g^{2n}(\alpha + \beta \gamma^{n+i})(\alpha + \beta \gamma^{n-i}) = g^{2n+j}(\alpha + \beta \gamma^{2n+j}),$$

or

$$(\alpha^2 - \alpha g^i) + \alpha \beta (\gamma^i + \gamma^{-i}) \gamma^n + (\beta^2 - \beta \gamma^j g^j) \gamma^{2n} = 0$$

for infinitely many n. Now $\alpha\beta \neq 0$, while $(\gamma^i + \gamma^{-i}) \neq 0$ because γ is not a root of unity. Thus, for infinitely many n, γ^n is a root of a fixed polynomial, independent of n, of degree either 1 or 2. Thus infinitely many of the γ^n must coincide, which is impossible because γ is neither zero nor a root of unity.

Thus for fixed $i \geq 0$, u(n+i, n-i) < 0 for all positive n but a finite number. Now (2) gives

$$q^{2n}(\alpha + \beta \gamma^{n+i})(\alpha + \beta \gamma^{n-i}) = h^{u(n+i,n-i)}(\alpha \gamma^{-u(n+i,n-i)} + \beta)$$

and so $|g|^{2n}|h|^{-u(n+i,n-i)}$ is bounded, independent of i and of n, provided just that $n > i \ge 0$ and u(n+i,n-i) < 0. But given $i \ge 0$, these conditions hold for infinitely many n > i, and so |h| < 1. It then follows that there exists a positive integer K_1 such that whenever $n > i \ge 0$ and u(n+i,n-i) < 0 we have

$$\left| \frac{u(n+i, n-i)}{2n} - \frac{\log|g|}{\log|h|} \right| < \frac{K_1}{2n}. \tag{4}$$

Let $\mathcal{R} = \{0, 1, \dots, 4K_1 + 2\}$. For each $i \geq 0$, u(n+i, n-i) < 0 for all but finitely many positive n and so there exists N such that if n > N we have u(n+i, n-i) < 0 for all $i \in \mathcal{R}$ simultaneously. Thus for distinct $i_1, i_2 \in \mathcal{R}$, (4) gives

$$|u(n+i_1, n-i_1) - u(n+i_2, n-i_2)| < 2K_1$$

whenever n > N. So for fixed $n_0 > N$, all integers $u(n_0 + i, n_0 - i)$ for $i \in \mathcal{R}$ belong to an interval of length at most $4K_1$ centered on $u(n_0, n_0)$. By the pigeon hole principle, there exist $i_1 \neq i_2$ such that $u(n_0 + i_1, n_0 - i_1) = u(n_0 + i_2, n_0 - i_2)$. Thus

$$s_{n_0+i_1}s_{n_0-i_1}=s_{n_0+i_2}s_{n_0-i_2}$$

2003]

and so

$$\alpha\beta(\gamma^{i_1} + \gamma^{-i_1})(gh)^{n_0} = \alpha\beta(\gamma^{i_2} + \gamma^{-i_2})(gh)^{n_0}.$$

Since $\alpha\beta gh\neq 0$, it follows that

$$\gamma^{i_1} - \gamma^{i_2} = rac{\gamma^{i_1} - \gamma^{i_2}}{\gamma^{i_1} \gamma^{i_2}},$$

so that either $\gamma^{i_1} = \gamma^{i_2}$ or $\gamma^{i_1}\gamma^{i_2} = 1$, both of which are impossible because γ is neither zero nor a root of unity. We conclude that $\alpha\beta = 0$; it follows that M is standard. \square

Lemma 5: Let $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t]$, where $|\rho| = 1$. Suppose that f(t) has roots $g, h \in \mathbb{C}^*$. Let $M = (s_n)_{n \in \mathbb{Z}} \leq \mathbb{C}^*$ be an f-sequence subgroup.

- (a) If $g \neq h$, then |g| = |h| = 1 if and only if |s| = 1 for all $s \in M$.
- (b) If g = h, then |g| = 1 and |s| = 1 for all $s \in M$.

Proof: (a) Suppose $g \neq h$. By Observation 3(a), there exist $\alpha, \beta \in \mathbb{C}$ with $s_n = \alpha g^n + \beta h^n$ for all $n \in \mathbb{Z}$. Now $|gh| = |\rho| = 1$, so |g| = 1 if and only if |h| = 1. Suppose |g| = |h| = 1 and that there exists $s \in M$ with $|s| \neq 1$. Then the cyclic subgroup $\langle s \rangle \leq M$ contains elements of arbitrarily large modulus. But $|s_n| = |\alpha g^n + \beta h^n| \leq |\alpha| + |\beta|$ for all n, a contradiction.

Suppose next that $|s_n| = 1$ for all $n \in \mathbb{Z}$. Assume |g| > 1, so that |h| < 1. If $\alpha = 0$ then $\beta \neq 0$ and $1 = |s_n| = |\beta h^n|$ for all n, which is absurd because β is fixed and |h| < 1. Thus $\alpha \neq 0$. Now $||\alpha g^n| - |\beta h^n|| \leq |\alpha g^n + \beta h^n| = |s_n| = 1$. But $|\beta h^n| \leq |\beta|$, while $|\alpha g^n|$ is unbounded as n increases, a contradiction.

(b) Suppose $g = h \in \mathbb{C}^*$ is a double root of f(t), so that |g| = 1. By Observation 3(b), there exist $\alpha, \beta \in \mathbb{C}$ with $s_n = (\alpha + n\beta)g^n$ for all $n \in \mathbb{Z}$. As $0 \notin M$ then not both α, β can be zero. Suppose there exists $s \in M$ with $|s| \neq 1$. Then the subgroup $\langle s \rangle \leq M$ contains elements of arbitrarily small modulus. But $s_n = (\alpha + n\beta)g^n$, whence $|s_n| \geq ||\alpha| - |n\beta||$. Since α, β are fixed and not both zero then $||\alpha| - |n\beta|| \neq 0$ whenever $n \in \mathbb{Z}$ is such that $n|\beta| \neq |\alpha|$, and then

$$\{||\alpha| - |n\beta|| : n \in \mathbb{Z}, \ n|\beta| \neq |\alpha|\}$$

is bounded away from 0, a contradiction.

Proposition 6: Let $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t]$, where $\rho \neq 0$, and suppose that f has roots $g, h \in \mathbb{C}^*$. Let $M \leq \mathbb{C}^*$ be an f-sequence subgroup. Then

- (a) If |g| = |h| = 1 and $g \neq \pm h$ then M is standard.
- (b) If g = h then M is standard.
- (c) If g = -h then M is finite if and only if ρ is a root of unity.
- (d) If g = -h and if M is infinite then M has one of the forms:

$$M = (\dots, \rho^{-1}, \varepsilon \rho^{k-1} \sqrt{\rho}, 1, \varepsilon \rho^k \sqrt{\rho}, \rho, \dots) \quad or$$

$$M = (\dots, \rho^{-1}, -\rho^{k-1}, 1, -\rho^k, \rho, \dots),$$

where $\varepsilon \in \{1, -1\}$ and $k \in \mathbb{Z}$. In the first case, $M = < \varepsilon \sqrt{\rho} >$ is cyclic and nonstandard of the first type. In the second case, $M = < -1 > \times < \rho >$ is non-cyclic and nonstandard of the second type.

(e) Suppose g = -h and M is finite of order m. Write $r = \operatorname{ord}(\rho)$, by (c).

[NOV.

If r is even then m=2r and M is nonstandard of the first type unless $\rho=-1$ when M is standard.

If r is odd then either m = r and

$$M = (\dots, 1, \rho^{(r+1)/2}, \rho, \dots)$$

is standard, or else m = 2r and

$$M = (\dots, 1, -g^j, g^2, \dots).$$

where $g = \rho^{(r+1)/2}$ and $1 \le j \le r$. Further, M is nonstandard of the first type unless $\rho = 1$, when M is standard.

Proof: Write $M = (s_n)_{n \in \mathbb{Z}}$. Without loss, suppose $s_0 = 1$.

(a) Suppose |g|=|h|=1 and $g\neq \pm h$; then $\sigma\neq 0$ and $|\rho|=1$. By Lemma 5, M lies on the unit circle.

Write $\tau = \sigma/2 \neq 0$. Then $\{g, h\} = \{\tau \pm \sqrt{\tau^2 + \rho}\}$ and $\tau^2 + \rho \neq 0$. If $u, v \in \mathbb{C}^*$ are such that |u + v| = |u - v| then the segments 0u and 0v are perpendicular, whence $|u \pm v| = \sqrt{|u|^2 + |v|^2}$. Here, $|g| = |h| = 1 = \sqrt{|\tau^2| + |\tau^2 + \rho|}$, and so $1 = |\tau^2| + |\tau^2 + \rho|$. Then

$$1 = |\rho| = |-\tau^2 + \tau^2 + \rho| \le |\tau^2| + |\tau^2 + \rho| = 1,$$

whence $-\tau^2$ and $\tau^2 + \rho$ are parallel; that is, $\rho = k\tau^2$ where $k \in \mathbb{R}$ and k < -1. Thus, $|\tau| < 1$, so $0 < |\sigma| < 2$. Now $s_1 = \sigma 1 + \rho s_{-1}$ and because $|s_{-1}| = 1$, then $|s_1 - \sigma| = |\rho s_{-1}| = 1 = |s_1|$. But given a circle of radius 1, a fixed diameter l and $\lambda \in \mathbb{R}$ with $0 < \lambda < 2$, the circle has exactly two chords of length λ parallel to l. Thus, for σ fixed, there are just two $s \in \mathbb{C}$ such that $|s - \sigma| = |s| = 1$. But the roots $g \neq h$ of f(t) satisfy $|g - \sigma| = |g| = |h - \sigma| = |h| = 1$. Thus the only f-sequence subgroups are $(\ldots, 1, g, \ldots)$ and $(\ldots, 1, h, \ldots)$, and M is standard in this case.

(b) Suppose that g = h. By Observation 3(b), there exist $\alpha, \beta \in \mathbb{C}$ with $s_n = g^n(\alpha + \beta n)$ for $n \in \mathbb{Z}$, while $\alpha = 1$ because $s_0 = 1$.

Suppose firstly that |g| = 1. Now $\sigma = 2g$ and $\rho = -g^2$, so $|\rho| = 1$ and then |s| = 1 for all $s \in M$ by Lemma 5(b). But $s_1 = 2g - g^2s_{-1}$ because $s_0 = 1$. Thus, $|s_1 - 2g| = |g^2s_{-1}| = 1$, so s_1 and $s_1 - 2g$ lie on the unit circle at distance |2g| = 2 from each other. Thus $s_1 = g$ and $M = (\ldots, 1, g, \ldots)$ is standard.

By Observation 3(c) we may now suppose |g| > 1. It is easy to check that

$$\lim_{n\to\infty} |s_n| = \infty$$
 and $\lim_{n\to\infty} |1+\beta n|/|1+\beta(n+1)| = 1$;

in the second limit, the denominator is equal to $|s_{n+1}/g^{n+1}|$ and so is non-zero. Therefore there exists $N_1 \in \mathbb{N}$ such that both $|g| > |1 + \beta n|/|1 + \beta (n+1)|$ and $|s_n| > 1$ whenever $n > N_1$. Thus $|s_{n+1}| > |s_n| > 1$ for $n > N_1$. Similarly, there exists $N_2 \in \mathbb{N}$ such that $|s_{n-1}| < |s_n| < 1$ whenever $n < -N_2$ and so there exists $K \in \mathbb{N}$ with $K > N_1$ such that

$$|s_n| > \max\{|s_j|, 1/|s_j| : -N_2 \le j \le N_1\}$$

2003]

whenever $n \geq K$, in particular, $|s_K| > |s_j|$ if j < K. Thus, $s_K^{-1} = s_L$ for some $L < -N_2$. The monotonicity of $|s_n|$ with respect to n outside the interval $[-N_2, N_1]$ and the fact that M is a group now guarantee that $s_{K+j}^{-1} = s_{L-j}$ for all $j \in \mathbb{N}_0$. It follows that

$$q^{K+j}(\alpha + \beta(K+j))q^{L-j}(\alpha + \beta(L-j)) = 1, \ j = 0, 1, 2.$$

Simplification gives

$$g^{K+L}\beta^2KL = g^{K+L}\beta^2(K+1)(L-1) = g^{K+L}\beta^2(K+2)(L-2).$$

Now $g \neq 0$ because $\rho \neq 0$. If $\beta \neq 0$ then both L - K - 1 = 0 and 2(L - K) - 4 = 0, which is absurd. Thus $\beta = 0$ and M is standard, proving (b).

We now assume for the rest of the proof that g = -h, so that $\sigma = 0$, $f(t) = t^2 - \rho$, $g^2 = \rho$ and $\{g, h\} = \{\sqrt{\rho}, -\sqrt{\rho}\}$. Then $s_{n+2} = \rho s_n$ for all $n \in \mathbb{Z}$, and so $M = (\ldots, 1, x, \rho, x\rho, \ldots)$ where $x = s_1$: we will fix this interpretation for x.

- (c) If M is infinite then $\rho^i \neq \rho^j$ whenever $i \neq j$ and so ρ is not a root of unity. If M is finite then the powers of ρ cannot be all distinct, whence ρ is a root of unity.
- (d) Suppose that M is infinite. Then the elements ρ^j and $x\rho^j$ are all distinct as j runs over \mathbb{Z} . Now $x^2 \in M$ and so either $x^2 = x\rho^j$ or $x^2 = \rho^j$, for suitable j. If $x^2 = x\rho^j$ then $x = \rho^j$, contrary to distinctness; thus $x^2 = \rho^j$. There are two cases:
- (1) Suppose j=2k+1 is odd. Then $x=\varepsilon \rho^k \sqrt{\rho}$, where $\varepsilon \in \{1,-1\}$ and

$$M = (\ldots, \rho^{-1}, \varepsilon \rho^{k-1} \sqrt{\rho}, 1, \varepsilon \rho^k \sqrt{\rho}, \rho, \ldots).$$

We may shift the subsequence $(s_n)_n$ odd relative to $(s_n)_n$ even any number of places to the left or right and obtain different representations of M as an f-sequence: this corresponds to taking different values of k. With k=0 we obtain a cyclic representation of M as an f-sequence, and so M is nonstandard of the first type.

(2) Suppose j=2k is even. Then $x\in\{\rho^k,-\rho^k\}$, whence $x=-\rho^k$ by distinctness. Then

$$M = (\dots, \rho^{-1}, -\rho^{k-1}, 1, -\rho^k, \rho, \dots),$$

so that $M=<-1>\times<\rho>$ is a non-cyclic group; thus M is nonstandard of the second type. (e) Suppose M is finite of order m. We have $\rho=g^2$, while $x^2=\rho^j$ with $1\leq j\leq r$ by distinctness. Thus $x=\varepsilon g^j$ where $\varepsilon\in\{-1,1\}$, and so $s_{2k}=g^{2k}$ and $s_{2k+1}=\varepsilon g^{2k+j}$ for all k. Then

$$M=(\ldots,1,\varepsilon g^j,g^2,\varepsilon g^{j+2},\ldots,g^{2k},\varepsilon g^{2k+j},\ldots).$$

The distinct elements of M are just the terms from $s_0 = 1$ to s_{m-1} , where s_m is the first occurrence of 1 after s_0 .

Suppose firstly that r is even. Then $\varepsilon \in \langle \rho \rangle$, $\operatorname{ord}(g) = 2r$ and $\langle \rho \rangle$ contains no odd power of g. Thus j is odd as otherwise $s_{2k+1} = \varepsilon g^{2k+j}$ would be an even power of g, against distinctness. But now $s_{2k+1} = \varepsilon g^{2k+j} \neq 1$ for all k, so s_{2r} is the first occurrence of 1 and m = 2r; we may shift $(s_n)_{n \text{ odd}}$ to obtain r distinct sequences, with that for j = 1 being cyclic. Thus M is nonstandard of the first type unless r = 2 when $M = (\ldots, 1, \varepsilon i, -1, -\varepsilon i, 1, \ldots)$ is standard.

NOV.

Suppose next that r is odd. Then $-1 \notin <\rho>$ and $<\rho>$ contains a unique square-root of ρ , namely $\rho^{(r+1)/2}$. We may suppose that $g=\rho^{(r+1)/2}$; then $\operatorname{ord}(g)=\operatorname{ord}(\rho)=r$.

Suppose $\varepsilon = 1$. Then j is odd, by distinctness. Write $d = (r - j)/2 \ge 0$. Then $s_{2d+1} = g^{2d+j} = 1$ and this is evidently the first occurrence of 1 after s_0 , whence m = 2d + 1. But now $g^{2d+2} = s_{2d+2} = s_1 = g^j$ and so $r - j + 2 = 2d + 2 \equiv j \pmod{r}$. It follows that j = 1, m = r and

$$M = (\ldots, 1, g, g^2, \ldots) = (\ldots, 1, \rho^{(r+1)/2}, \rho, \ldots)$$

is standard.

Suppose $\varepsilon = -1$. As $g \in \langle \rho \rangle$ but $-1 \notin \langle \rho \rangle$ then no term $s_{2k+1} = -g^{2k+j}$ belongs to $\langle \rho \rangle$; thus the first occurrence of 1 after s_0 is $s_{2r} = g^{2r} = 1$, and so m = 2r. Again we may shift $(s_n)_{n \text{ odd}}$ to obtain r distinct sequences, with that for j = 1 being cyclic, so that M is nonstandard of the first type unless r = 1 and $M = (\ldots, 1, -1, 1, \ldots)$, which is standard. \square **Examples 7**: (a) Let $f(t) = t^2 - 2$. As in Proposition 6(d), the following are f-sequence subgroups of \mathbb{C}^* , where $\varepsilon \in \{-1, 1\}$ and $k \in \mathbb{Z}$:

$$M_{1,\varepsilon} = (\dots, 2^{-1}, \varepsilon 2^{k-1}\sqrt{2}, 1, \varepsilon 2^k\sqrt{2}, 2, \dots)$$
 and $M_2 = (\dots, 2^{-1}, -2^{k-1}, 1, -2^k, 2, \dots).$

The groups $M_{1,\varepsilon} = \langle \varepsilon \sqrt{2} \rangle$ are cyclic and nonstandard of the first type, while $M_2 = \langle -1 \rangle$ $\times \langle 2 \rangle$ is non-cyclic and nonstandard of the second type.

(b) Let $f(t) = t^2 - \omega$ where $\omega = e^{2\pi i/3} \in \mathbb{C}$. As in Proposition 6(e), the following are f-sequence subgroups:

$$M_1 = (\dots, 1, \omega^2, \omega, 1, \dots), \text{ and }$$

 $M_{-1} = (\dots, 1, -\omega^j, \omega, -\omega^{j+1}, \omega^2, -\omega^{j+2}, 1, \dots), \text{ where } 1 \leq j \leq 3.$

The group M_1 , of order 3, is standard, while M_{-1} , of order 6, is nonstandard of the first type (because the sequence with j=2 is cyclic).

(c) Let $f(t) = t^2 - i$. The following are f-sequence subgroups of \mathbb{C}^* :

$$M_{\varepsilon} = (\dots, 1, \varepsilon i^{l} \sqrt{i}, i, \varepsilon i^{l+1} \sqrt{i}, -1, \varepsilon i^{l+2} \sqrt{i}, -i, \varepsilon i^{l+3} \sqrt{i}, \dots),$$

where $\varepsilon \in \{1, -1\}$ and $1 \le l \le 4$. The sequences with l = 4 are cyclic and so each M_{ε} is nonstandard of the first type.

Lemma 8: Let $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t]$, where $\rho \neq 0$, and suppose that f has roots $g, h \in \mathbb{C}^*$ with $|g| = |h| \neq 1, g \neq \pm h$. Suppose that $M = (s_n)_{n \in \mathbb{Z}}$ is an f-sequence subgroup of \mathbb{C}^* . Then M is infinite.

Proof: By Observation 3(c), we may suppose that |g| = |h| > 1. Write $\gamma = h/g$; then $|\gamma| = 1$ but $\gamma \neq \pm 1$. By Observation 3(a), there exist $\alpha, \beta \in \mathbb{C}$ such that $s_n = g^n(\alpha + \beta \gamma^n)$ for $n \in \mathbb{Z}$. If M were finite then $1 = |s_n| = |g|^n |\alpha + \beta \gamma^n|$ for all n. But $|g|^n$ increases with n, and so $|\alpha + \beta \gamma^n|$ decreases. As n increases, the points $\alpha + \beta \gamma^n$ move (as $\gamma \neq 1$) around the circle with centre α and radius $|\beta|$. Thus $|\alpha + \beta \gamma^n|$ cannot decrease and so M cannot be finite. \square

2003

LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD

Proposition 9: Let $f(t) = t^2 - \sigma t - \rho \in \mathbb{C}[t]$, where $\rho \neq 0$. Suppose M is a finite f-sequence subgroup of \mathbb{C}^* . Then M is standard unless both $\sigma = 0$ and $\operatorname{ord}(M)$ is even and at least 6, in which case it is nonstandard of the first type.

Proof: The result follows from Propositions 4 and 6 together with Lemma 8.

ACKNOWLEDGMENT

We thank the referee for valuable suggestions, including a simpler proof of Proposition 4. The first author wishes to acknowledge the partial support of the "Centro de Estruturas Lineares e Combinatórias" and of the Praxis Program (Praxis/2/2.1/mat/73/94).

REFERENCES

- [1] Owen J. Brison. "Complete Fibonacci Sequences in Finite Fields." The Fibonacci Quarterly 30 (1992): 295-304.
- [2] Lawrence E. Somer. "The Fibonacci Group and a New Proof that $F_{p-(s/p)} \equiv 0 \pmod{p}$. The Fibonacci Quarterly 10 (1972): 345-348 and 354.
- [3] Lawrence E. Somer. "Fibonacci-Like Groups and Periods of Fibonacci-Like Sequences." The Fibonacci Quarterly 15 (1977): 35-41.

AMS Classification Numbers: 11B37, 11B39

平平平