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1. I N T R O D U C T I O N 

Of the many ways of representing numbers, as described by Fraenkel [3] for example, the 
most usual and most important represent an integer N as the scalar product 

N = D.W 

where D is the digit vector (the visible digits of the representation) and W is a weight vector. 
To conform with normal conventions for displaying number representations these vectors are 
written in the order 

. . .Wi,Wi-.i, . . . ,W2,Wi,W0. 

The weight vector is in turn derived from the base vector B by 

fc-i 

In the conventional uniform base number systems such as binary or decimal, 6* = 6 V i and 
Wk = bk, where the constant b is the base of the number system. So a number such as 
40 = 1 x 25 + 1 x 23 has the binary (base 2) representation 101000. For measurements in a 
mixed base system, the base vector has an appropriate mixture of values. As an example for 
{miles, yards, feet, inches}, the base vector is B = {1760,3,12,1} and the weight vector is 
W = {63360,36,12,1} to give lengths in inches. 

But Zeckendorf has shown [8] that the Fibonacci numbers 

Fn = . . . , 34,21,13,8,5,3,2,1,1 (least-significant weight on right) 

can be used as the weight vector, in conjunction with a digit vector D in which d» E {0,1}, 
for a representation which resembles a binary number. This gives what is now called the 
Zeckendorf representation on the integers; we will denote the Zeckendorf representation of N 
as Z(N). The Zeckendorf representation usually omits the redundant bit corresponding to 
Fi — 1, so that the least-significant bit corresponds to F2 (which is also equal to 1). For 
example as 30 = 21 + 8 + 1, Z(30) = 1010001. It has the important property that the 
Zeckendorf representation of a positive integer will never have two or more adjacent Is; by 
the definition of its Fibonacci weights, any bit string such as . . . 00110. . . is equivalent to 
. . . 0 1 0 0 0 . . . . 

The Zeckendorf representations are of more than just intellectual interest. For example, 
Apostolico and Fraenkel [1] and Fraenkel and Klein [4] show that the Zeckendorf represen-
tations (although they do not call them by that name) are the basis of a "variable length" 
representation of the integers. These representations are important in coding theory, where 
a sequence of integers must be represented as a stream of bits, such that the average length 
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of each integer in the bit stream is minimised, and the representations are self-delimiting. 
By transmitting the Zeckendorf representation least-significant bit first and following its most 
significant 1 by another 1, we get the illegal sequence .. .011 which can act as a terminating 
"comma". 

Here though, we are more interested in showing that it is possible to perform arithmetic 
on integers in the Zeckendorf representation. 

2. A R I T H M E T I C W I T H Z E C K E N D O R F I N T E G E R S 

There is a little prior work in this connection. Graham, Knuth and Patashnik [7] discuss 
the addition of 1 in the Zeckendorf representation, but do not proceed to actual arithmetic. 
Freitag and Phillips [6] discuss addition and multiplication, and refer to Filiponi [2] and their 
own earlier paper [5] for subtraction. Thus no previous work discusses arithmetic as a coherent 
whole, covering all of the major operations, including multiplication and division. 

The emphasis of this paper is frankly pragmatic, developing practical algorithms to per-
form the arithmetic operations. All have been implemented and tested on a computer. Most of 
the algorithms are developed by analogy with conventional arithmetic methods, supplemented 
as necessary by the requirements and constraints of the Zeckendorf representation. For exam-
ple, multiplication will be performed by the addition of suitable multiples of the multiplicand, 
selected according to the bit pattern of the multiplier. Division will use a sequence of trial 
subtractions, as in normal long division. 

2.1 A D D I T I O N 

We start addition by adding each pair of bits as separate numbers, giving an initial sum 
whose digits are di E {0,1,2}, where each di corresponds to its Fibonacci number i^. We then 
sweep over the whole representation until there is no further change, applying the following 
rules to eliminate the 2s (which are illegal digits) and consecutive Is. The representation must 
be extended by one place to include as a trailing digit the d\ term which is usually omitted. 
Remova l of c 2 ' digi ts : From the fundamental relation that Fn — F n _ 2 + F n _ i , it is readily 
shown that 2Fn = F n + i + F n _ 2 . In digit patterns, we replace . . . 00200.. . by . . . 01001 . . . , 
subtracting the 2 and adding the two Ts to the nearby positions. Equivalently, a digit pattern 
x2yz transforms to (l-\-x)Qy(l + z). A least-significant digit pattern of . . . 20 clearly overflows 
beyond the least significant bit. We handle this by temporarily extending the representation 
by one place to include the d\ digit so that the original . . . 020 converts to . . . 1001. (This rule 
does not apply to the d2 and d\ terms with weights of 1; this is covered by the special case 
below.) 
Remova l of adjacent I s : Again using the fundamental relation Fn — jFn_2 + i^n-i? we can 
replace two adjacent non-zero digits by a more-significant 1. This step should be performed by 
the left-to-right scan through the representation to avoid a "piling up" of the left-propagating 
carry with long runs of Is. 
Least-significant I s : The first rule fails if we have 2 in the least-significant (F2) digit, because 
there is nowhere to receive the rightward carry propagation. In this case we restore the Fi 
term and replace the least-significant . . . 20 by . . . 11, which has the same numeric value. If 
the extended bit pattern is now . . . I l l , the first two Is may be eliminated by the "adjacent 
Is" rule. If the F 3 bit is a 0, bit pattern . . .011, we can immediately transform to . . . 100 
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(still extended), and then eliminate the extension bit. It may in turn be replaced by . . . 100, 
by the rule for consecutive Is. (This rule could be eliminated entirely by an extension of the 
representation to include do with a non-standard weight w$ = 1.) 
Remove t h e t e m p o r a r y di t e r m : If at any stage, cfe = 0 and d\ — 1 we can set d2 — 1 and 
set d\ = 0 (the two bits have the same weight), which is equivalent to discarding the d\ term 
which was introduced. Setting efe = 1 may force a removal of adjacent Is. 

A d d i t i o n 
Consecutive Is 

Eliminate a 2 

Add 9 r ight b i t s 
d2>2 

di > 2 (alternate) 

di = 1 

S u b t r a c t i o n 
eliminate —1 

Fibonacci weights 

becomes 

here x > 2 
becomes 

here x > 2 
becomes 

becomes 

becomes 
Fibonacci weights 

becomes 
and again 

Fi+2 
1 
0 
0 

Fi+1 
X 

X 

w 
w + 1 

F3 

w 
w+1 

Fi+1 
0 
1 
1 

Fi 
y 

y + i 

X 

x-2 

F2 
X 

x-1 

X 

x-2 

0 
1 
Fi 
0 
1 
0 

Fi-i 
1 
0 

y 
y 
Fi 
0 
l 

0 
0 

I 
0 

Fi-! 
0 
0 
1 

Fi-2\ 
1 
0 

z 
z + 1 

Fi-2\ 
-1 i 
- 1 
0 

Table 1: Adjustments and corrections in addition and subtraction 

Zeckendorf addition has two carries, one going one place left to higher significance and 
one two places right to lower significance. The first is entirely analogous to the carry of 
conventional binary arithmetic, while the second reflects the special nature of the Zeckendorf 
representation. 

These adjustments and corrections are summarised in Table 1, which also includes the 
sign-fill from subtraction (Section 2.2). Note that in all cases which show a 1 being inserted, 
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augend 
addend 
initial sum 
consecutive Is 
result 
Check - 38+23= 

augend 
addend 
initial sum 
carries 
consecutive Is 
remove Fi bit 
result 
Check - 15+23= 

=61 

=38 

1 
1 

1 

1 
0 
0 

1 
1 
1 

0 
1 
1 
0 
0 

1 
1 
1 
0 
0 
0 

0 
0 
0 
0 
0 

1 
0 
1 
1 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
1 

0 
0 
0 
0 
0 
0 
0 

1 
0 
1 
0 
0 

0 
0 
0 
1 
1 
1 
1 

0 
1 
1 
0 
0 

1 
1 
2 
0 
0 
0 
0 

1 
0 
1 
1 
1 

0 
0 
0 
0 
0 
1 
1 

= 38 
= 23 
= 61! 
= 611 
= 611 

= 15 
= 23 
= 38 

1 = 3 8 
1 = 3 8 

= 38 
= 38 

Figure 1: Two addition examples, (38 + 23) and (15 + 23) 

the real action is to add the 1 to the previous value of that digit; eliminating one 2 may very 
well change another 1 to a 2, which must in turn be corrected. The removal of a 2 is likewise 
performed as a subtraction, rather than a simple deletion. 

The addition may be compared with conventional binary addition. Binary addition (or 
decimal, or in any other polynomial number system) has a single carry which propagates to 
more-significant digits. If we start the add from the least-significant end we need only a single 
pass and the carry management is readily included in the standard simple algorithm. The 
two carries of Zeckendorf addition make the operation much more complicated and seem to 
necessitate multiple passes to absorb carries. 

To illustrate, Figure 1 shows the addition of 38 + 23 = 10000101 + 1000010 and 15 + 23 = 
100010 + 1000010. Both display the decimal value to the right of each line to emphasise 
that the correction and redistribution of bits does not affect the value. One example shows 
the temporary extension of the Zeckendorf representation to include the F± term. Each line 
presents the representation and value after the operation given at the start of the line. The 
various rules of Table 1 may be applied in any order, possibly changing the intermediate values 
but not the final result. 

2.2 S U B T R A C T I O N 

For subtraction say X — Y -> Z, where X is the minuend, Y the subtrahend and Z the 
difference, we start with a digit-wise subtraction X{ — yi —> Zi, giving Z{ & {—1,0,1}. The two 
values 0 and 1 pose no problem, as they are valid digits in Z{Z). 

The case Z{ = — 1 is rather more difficult. From where Z{ = — 1 we scan to its left looking for 
the next most-significant 1 bit. Then rewrite this bit by the Fibonacci rule 100 • • • -» 0 1 1 . . . , 
and then repeat rewriting the rightmost 1-bit of the pair of Is 

1000 • 0110 > 001011 • 00101011... 

until one of the two rightmost 1 bits coincides in position with the —1 of 
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subtrahend 
minuend 
subtract digit-by-digit 
rewrite 1000 
rewrite 0110, cancelling -1 
rewrite adjacent Is 
Result 

1 
1 

0 
0 

1 
0 
1 

0 
0 
0 
1 
1 
1 
1 

0 
0 
0 
1 
0 
0 
0 

0 
1 
-1 
-1 
0 
1 
1 

0 
0 
0 
0 
1 
0 
0 

1 
0 
1 
1 
1 
0 
0 

= 481 
= 371 
= HI 
= 1 1 ! 
= 1 1 
= 1 1 

~~= 1 1 

Figure 2: Example of subtraction —(48 — 37) 

the result and cancels it, leaving a 0 result. (There may of course be no more significant 1. 
This corresponds to a negative result; we introduce a suitable large Fn and proceed from there, 
producing an "Fn complement55 as discussed later.) The scan, for digits zi — — 1 should be 
performed from most-significant to least-significant digits. This action is included in Table 1 
earlier. 

The preceding rule eliminates all of the digits whose value is — 1, but often introduces 
other digits greater than 1, or pairs of adjacent Is. All of these situations must be handled by 
the rules already introduced for addition. Subtraction is therefore an extension of addition. 

Figure 2 shows an example, subtracting 37 from 48. As with addition, the various rewriting 
rules may be applied in any order; changing that order will change the finer details of the 
subtraction. 

Note that we cannot easily propagate a borrow left from the place where Z{ = — 1. The 
rewriting rule steps two positions at each step and without knowing the distance to the next-
significant 1 we know neither the alignment of the 01 bits which are introduced nor which of 
the two final 11 bits will be finally cancelled. (Conventional binary subtraction rewrites, for 
example, 10000 as 01100 + 100 -> OHIO + 10 -» 01111 + 1; the final + 1 is cancelled against 
the 1 of the subtrahend. Each stage proceeds by only one place and there is no ambiguity in 
reversing the process for the conventional right-to-left borrow propagation.) 

2.3 C O M P L E M E N T I N G 

Subtraction quickly leads to negative numbers and their representations. Computer de-
signers now prefer the 2s complement representation in which a number and its complement, 
added as unsigned quantities, total 2n. 

By analogy we can represent a negative value by its Fn complement. Also by analogy 
we say that a value is negative if its representation has its most-significant bit a 1. But this 
immediately introduces a major problem. An Fn complement representation has F n _ 2 values 
with a leading 1 and F n _ i values with a leading 0; there are about 1.6 times as many positive 
values as negative and about 38% of all positive values have no complement! (Complementing 
seemed almost incomprehensible until its asymmetrical range was realised. By analogy with 
binary numbers it was expected that' there would be similar numbers of positive and negative 
values but there was no simple way of differentiating signed integers.) 
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N 
1 
?, 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Z(N) 
1 
10 
100 
101 
1000 
1001 
1010 
10000 
10001 
10010 
10100 

F(8) comp 
101010 
101001 
101000 
100101 
100100 
100010 
100001 
100000 
-
-
-

F(9) comp 
1010101 
1010100 
1010010 
1010001 
1010000 
1001010 
1001001 
1001000 
1000101 
1000100 
1000010 

F(10) comp 
10101010 
10101001 
10101000 
10100101 
10100100 
10100010 
10100001 
10100000 
10010101 
10010100 
10010010 

F(ll) comp 
101010101 
101010100 
101010010 
101010001 
101010000 
101001010 
101001001 
101001000 
101000101 
101000100 
101000010 

Table 2: Illustration of Fibonacci F(n) complements 

If a positive number N requires n bits, then N < F n +i . The signed number — N requires 
at least n + 2 bits and must use at least the F n + s complement. (Numbers of this precision 
will require at least the original n bits, place space for the sign. The "sign" of a negative 
number is, by definition, a ' 1 ' bit, but this 1 must be followed by a 0 for a valid Zeckendorf 
representation.) 

Complementing is most easily handled by subtraction from zero; there seems to be simple 
complementing rule. In comparison with binary arithmetic it is complicated considerably by 
the bi-directional carries and by the "sign-fill" pattern of 101010.. . . whose alignment with 
respect to the significant bits is not easily decided. Because the sign fill pattern is 1010. . . an 
extension from unsigned to signed numbers requires at least 2 extra bits. 

Some complements are shown in Table 2. We see that a negative number is characterised 
by a leading 1010. . . bit pattern, rather than the 1111 . . . usually associated with binary 
numbers. The 1010. . . pattern has two alignments with respect to the bits of the value being 
complemented; these two alignments and interactions with the "numerically significant" bits 
lead to two different bit patterns in the complement. In the example, 2(7) — 1010 and the 
two patterns are . . . 0001 for n even and . . . 01001 for n odd. 

2,4 M U L T I P L I C A T I O N 

In the introduction we discussed the representation of an integer N as the scalar product 

N = D.W 

where D is the digit vector (the visible digits of the representation) and W is a weight vector. 
We now develop multiplication by analogy with conventional multiplication, building on this 
representation. Only positive values will be considered for both multiplication and, later, 
division. 

To calculate the product Z " f - I x Y , w e first write X (the multiplier) as X.W, giving 

Z ^-X.WxY 
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whence 
Z *" ^Xi.Wi.Y = Y^xUwi.Y). 

multiplicand 
multiplier 

1 

M a k e Fibonacci Multiples of multiplicand 
F3 multiple 1 0 0 
JF4 multiple 1 0 1 
F6 multiple 1 0 1 0 
F6 multiple 1 0 1 0 1 
Accumulate appropriate multiples 
add F4 multiple 1 
add F6 multiple 1 0 1 
product 1 0 0 1 

0 
0 
0 

1 
1 
0 

0 
1 

0 
0 
1 
0 

0 
0 
1 

0 
0 

0 
0 
0 
0 

0 
0 
0 

1 
1 

0 
1 
0 
0 

1 
0 
0 

0 
0 

0 
0 
0 
0 

0 
0 
0 

1 
0 

0 
1 
1 
0 

1 
0 
1 

= 1 7 J 
= 11 

= 34 | 
= 51 | 
= 85 | 
= 136 | 

= 51 
= 136 
= 187 

Check that 17 x 11 = 187 

Table 3: Example of Zeckendorf multiplication (17 x 11) 

The product is the sum of appropriately weighted multiples of the multiplicand Y, each 
multiple in turn multiplied by the multiplier digit x%. In a uniform base number system the 
scaling is easily done by "left shifting", or appending 0s to the right of Y, as in standard long 
multiplication. 

With Fibonacci arithmetic, the scaling must mirror the generation of the Fibonacci num-
bers themselves; we can no longer use simple shifts or inclusion of 0s. The weight vector W is 
now the Fibonacci numbers; given a multiplicand Y, we generate its Fibonacci multiples Mn 

as -
MX = M2 = Z(Y), M3=M1+M2,...yMk = Afc-i + M&_2, - - -

and then add these weighted by the bits of 2(X). (All arithmetic is of course done using the 
Zeckendorf addition of Section 2.1.) 

An example of multiplication given in Table 3. It shows first the two factors, then the 
multiples of the multiplicand, and finally the steps of the multiplication proper. 

3 . D I V I S I O N 

Division is, as might be expected, the reversal of Multiplication. The procedure is precisely 
that of a conventional "long division", but adapted to use the Fibonacci multiples of multipli-
cation rather than the scaled multiples of conventional arithmetic. Starting with the dividend, 
we try to subtract successively decreasing Fibonacci multiples of the divisor, entering quotient 
bits as appropriate, a 0 for an unsuccessful subtraction and a 1 for a successful subtraction. 
Again, we restrict ourselves to positive inputs. 

Table 4 shows an example of Zeckendorf division. We start by building a suitable table 
of the Fibonacci multiples of the divisor, stopping when the multiple has more bits than the 
dividend. Note here that the dividend, assumed unsigned, must be extended by at least 2 bits 
to accommodate the negative values which arise during division. 
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We then enter the cycle of trial subtractions. At each stage, if the residue1 is negative 
("unsuccessful" subtraction), we enter a 0 bit in the quotient and restore the previous residue. 
If the residue is positive ("successful" subtraction"), we enter a quotient bit of 1 and use the 

dividend 
divisor 

1 

Make Fibonacci Multiples 
F-i multiple 

. Fz multiple 
i<4 multiple 
F5 multiple 
Fe multiple 
Fi multiple 
Fs multiple 
Fg multiple 
Trial subtractions 
Fg overdraw = 
Fs overdraw = 
F7 residue = 
F5 overdraw = 
Fi residue = 
F2 residue = 
quotient = 
remainder = 

1 
1 0 

0 0 1 

of divisor 

1 
0 
1 

1 
0 
1 
0 

1 
0 
1 
0 
1 

1 

0 

1 
1 
0 
1 
0 
1 
0 

0 

0 

0 
0 
1 
0 
1 
0 
0 

1 

1 

0 
1 

1 
0 
1 
0 
1 
0 
0 
0 

0 

0 

1 

1 
0 

0 
0 
0 
1 
0 
0 
0 
0 

0 

0 
1 

T~ 
1 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 

1 
0 
0 
0 

1 
1 

1 
0 
1 
0 
0 
0 
0 
0 

1 

0 
1 
1 
1 

0 
0 

0 
0 
0 
0 
0 
0 
0 
1 

0 

1 
0 
0 
0 

1 
1 

1 
0 
1 
1 
0 
1 
1 
0 

0 

0 
0 
1 
0 

=300 
=17 

=17 
=34 
=51 
=85 
=136 
=221 
=357 
=578 

=79 

=28 
=11 
=17 
=11 

Check -300 -M7 = 17(+rem = 11) 

Table 4: Example of Zeckendorf division (300 -=-17) 

new residue for the next trial subtraction. As an optimisation with a successful subtraction, 
we can avoid the next multiple completely, going immediately from say Mi to Mj_ 2 . The 
subtraction with the M^-i multiple cannot succeed because that would give two consecutive 
Is in the quotient. 

4. C O N C L U S I O N S 

Although we have demonstrated the main arithmetic operations on Zeckendorf integers, 
this arithmetic is unlikely to remain more than a curiosity. It is much more complex than nor-
mal binary arithmetic based on powers of 2 and the Zeckendorf representations are themselves 
more bulky than the corresponding binary representations. 

Another problem lies in the representation of fractions. Powers of 2 extend naturally 
to negative powers and fractional values. Extending the Fibonacci numbers Fn for n < 0 
repeats the values for positive n, but with alternating sign; they provide no way of representing 
fractions. 

There is no generally accepted term for- the working value from which divisor multiples are subtracted during division. 
While some authors use "partial remainder" or "partial dividend", the preference here is for "residue". 
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