
Z E C K E N D O R F I N T E G E R A R I T H M E T I C

Peter Fenwlck
Department of Computer Science, The University of Auckland

Private Bag 92019, Auckland, New Zealand
p.fenwick@auckland.ac.nz

(Submitted June 2001)

1. I N T R O D U C T I O N

Of the many ways of representing numbers, as described by Fraenkel [3] for example, the
most usual and most important represent an integer N as the scalar product

N = D.W

where D is the digit vector (the visible digits of the representation) and W is a weight vector.
To conform with normal conventions for displaying number representations these vectors are
written in the order

. . .Wi,Wi-.i, . . . ,W2,Wi,W0.

The weight vector is in turn derived from the base vector B by

fc-i

In the conventional uniform base number systems such as binary or decimal, 6* = 6 V i and
Wk = bk, where the constant b is the base of the number system. So a number such as
40 = 1 x 25 + 1 x 23 has the binary (base 2) representation 101000. For measurements in a
mixed base system, the base vector has an appropriate mixture of values. As an example for
{miles, yards, feet, inches}, the base vector is B = {1760,3,12,1} and the weight vector is
W = {63360,36,12,1} to give lengths in inches.

But Zeckendorf has shown [8] that the Fibonacci numbers

Fn = . . . , 34,21,13,8,5,3,2,1,1 (least-significant weight on right)

can be used as the weight vector, in conjunction with a digit vector D in which d» E {0,1},
for a representation which resembles a binary number. This gives what is now called the
Zeckendorf representation on the integers; we will denote the Zeckendorf representation of N
as Z(N). The Zeckendorf representation usually omits the redundant bit corresponding to
Fi — 1, so that the least-significant bit corresponds to F2 (which is also equal to 1). For
example as 30 = 21 + 8 + 1, Z(30) = 1010001. It has the important property that the
Zeckendorf representation of a positive integer will never have two or more adjacent Is; by
the definition of its Fibonacci weights, any bit string such as . . . 00110. . . is equivalent to
. . . 0 1 0 0 0

The Zeckendorf representations are of more than just intellectual interest. For example,
Apostolico and Fraenkel [1] and Fraenkel and Klein [4] show that the Zeckendorf represen-
tations (although they do not call them by that name) are the basis of a "variable length"
representation of the integers. These representations are important in coding theory, where
a sequence of integers must be represented as a stream of bits, such that the average length

2003] 405

ZECKENDORF INTEGER ARITHMETIC

of each integer in the bit stream is minimised, and the representations are self-delimiting.
By transmitting the Zeckendorf representation least-significant bit first and following its most
significant 1 by another 1, we get the illegal sequence .. .011 which can act as a terminating
"comma".

Here though, we are more interested in showing that it is possible to perform arithmetic
on integers in the Zeckendorf representation.

2. A R I T H M E T I C W I T H Z E C K E N D O R F I N T E G E R S

There is a little prior work in this connection. Graham, Knuth and Patashnik [7] discuss
the addition of 1 in the Zeckendorf representation, but do not proceed to actual arithmetic.
Freitag and Phillips [6] discuss addition and multiplication, and refer to Filiponi [2] and their
own earlier paper [5] for subtraction. Thus no previous work discusses arithmetic as a coherent
whole, covering all of the major operations, including multiplication and division.

The emphasis of this paper is frankly pragmatic, developing practical algorithms to per-
form the arithmetic operations. All have been implemented and tested on a computer. Most of
the algorithms are developed by analogy with conventional arithmetic methods, supplemented
as necessary by the requirements and constraints of the Zeckendorf representation. For exam-
ple, multiplication will be performed by the addition of suitable multiples of the multiplicand,
selected according to the bit pattern of the multiplier. Division will use a sequence of trial
subtractions, as in normal long division.

2.1 A D D I T I O N

We start addition by adding each pair of bits as separate numbers, giving an initial sum
whose digits are di E {0,1,2}, where each di corresponds to its Fibonacci number i^. We then
sweep over the whole representation until there is no further change, applying the following
rules to eliminate the 2s (which are illegal digits) and consecutive Is. The representation must
be extended by one place to include as a trailing digit the d\ term which is usually omitted.
Remova l of c 2 ' digi ts : From the fundamental relation that Fn — F n _ 2 + F n _ i , it is readily
shown that 2Fn = F n + i + F n _ 2 . In digit patterns, we replace . . . 00200.. . by . . . 01001 . . . ,
subtracting the 2 and adding the two Ts to the nearby positions. Equivalently, a digit pattern
x2yz transforms to (l-\-x)Qy(l + z). A least-significant digit pattern of . . . 20 clearly overflows
beyond the least significant bit. We handle this by temporarily extending the representation
by one place to include the d\ digit so that the original . . . 020 converts to . . . 1001. (This rule
does not apply to the d2 and d\ terms with weights of 1; this is covered by the special case
below.)
Remova l of adjacent I s : Again using the fundamental relation Fn — jFn_2 + i^n-i? we can
replace two adjacent non-zero digits by a more-significant 1. This step should be performed by
the left-to-right scan through the representation to avoid a "piling up" of the left-propagating
carry with long runs of Is.
Least-significant I s : The first rule fails if we have 2 in the least-significant (F2) digit, because
there is nowhere to receive the rightward carry propagation. In this case we restore the Fi
term and replace the least-significant . . . 20 by . . . 11, which has the same numeric value. If
the extended bit pattern is now . . . I l l , the first two Is may be eliminated by the "adjacent
Is" rule. If the F 3 bit is a 0, bit pattern . . .011, we can immediately transform to . . . 100

406 [NOV.

ZECKENDORF INTEGER ARITHMETIC

(still extended), and then eliminate the extension bit. It may in turn be replaced by . . . 100,
by the rule for consecutive Is. (This rule could be eliminated entirely by an extension of the
representation to include do with a non-standard weight w$ = 1.)
Remove t h e t e m p o r a r y di t e r m : If at any stage, cfe = 0 and d\ — 1 we can set d2 — 1 and
set d\ = 0 (the two bits have the same weight), which is equivalent to discarding the d\ term
which was introduced. Setting efe = 1 may force a removal of adjacent Is.

A d d i t i o n
Consecutive Is

Eliminate a 2

Add 9 r ight b i t s
d2>2

di > 2 (alternate)

di = 1

S u b t r a c t i o n
eliminate —1

Fibonacci weights

becomes

here x > 2
becomes

here x > 2
becomes

becomes

becomes
Fibonacci weights

becomes
and again

Fi+2
1
0
0

Fi+1
X

X

w
w + 1

F3

w
w+1

Fi+1
0
1
1

Fi
y

y + i

X

x-2

F2
X

x-1

X

x-2

0
1
Fi
0
1
0

Fi-i
1
0

y
y
Fi
0
l

0
0

I
0

Fi-!
0
0
1

Fi-2\
1
0

z
z + 1

Fi-2\
-1 i
- 1
0

Table 1: Adjustments and corrections in addition and subtraction

Zeckendorf addition has two carries, one going one place left to higher significance and
one two places right to lower significance. The first is entirely analogous to the carry of
conventional binary arithmetic, while the second reflects the special nature of the Zeckendorf
representation.

These adjustments and corrections are summarised in Table 1, which also includes the
sign-fill from subtraction (Section 2.2). Note that in all cases which show a 1 being inserted,

2003] 407

ZECKENDORF INTEGER ARITHMETIC

augend
addend
initial sum
consecutive Is
result
Check - 38+23=

augend
addend
initial sum
carries
consecutive Is
remove Fi bit
result
Check - 15+23=

=61

=38

1
1

1

1
0
0

1
1
1

0
1
1
0
0

1
1
1
0
0
0

0
0
0
0
0

1
0
1
1
0
0
0

0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
1
1

0
0
0
0
0
0
0

1
0
1
0
0

0
0
0
1
1
1
1

0
1
1
0
0

1
1
2
0
0
0
0

1
0
1
1
1

0
0
0
0
0
1
1

= 38
= 23
= 61!
= 611
= 611

= 15
= 23
= 38

1 = 3 8
1 = 3 8

= 38
= 38

Figure 1: Two addition examples, (38 + 23) and (15 + 23)

the real action is to add the 1 to the previous value of that digit; eliminating one 2 may very
well change another 1 to a 2, which must in turn be corrected. The removal of a 2 is likewise
performed as a subtraction, rather than a simple deletion.

The addition may be compared with conventional binary addition. Binary addition (or
decimal, or in any other polynomial number system) has a single carry which propagates to
more-significant digits. If we start the add from the least-significant end we need only a single
pass and the carry management is readily included in the standard simple algorithm. The
two carries of Zeckendorf addition make the operation much more complicated and seem to
necessitate multiple passes to absorb carries.

To illustrate, Figure 1 shows the addition of 38 + 23 = 10000101 + 1000010 and 15 + 23 =
100010 + 1000010. Both display the decimal value to the right of each line to emphasise
that the correction and redistribution of bits does not affect the value. One example shows
the temporary extension of the Zeckendorf representation to include the F± term. Each line
presents the representation and value after the operation given at the start of the line. The
various rules of Table 1 may be applied in any order, possibly changing the intermediate values
but not the final result.

2.2 S U B T R A C T I O N

For subtraction say X — Y -> Z, where X is the minuend, Y the subtrahend and Z the
difference, we start with a digit-wise subtraction X{ — yi —> Zi, giving Z{ & {—1,0,1}. The two
values 0 and 1 pose no problem, as they are valid digits in Z{Z).

The case Z{ = — 1 is rather more difficult. From where Z{ = — 1 we scan to its left looking for
the next most-significant 1 bit. Then rewrite this bit by the Fibonacci rule 100 • • • -» 0 1 1 . . . ,
and then repeat rewriting the rightmost 1-bit of the pair of Is

1000 • 0110 > 001011 • 00101011...

until one of the two rightmost 1 bits coincides in position with the —1 of

408 [NOV.

ZECKENDORF INTEGER ARITHMETIC

subtrahend
minuend
subtract digit-by-digit
rewrite 1000
rewrite 0110, cancelling -1
rewrite adjacent Is
Result

1
1

0
0

1
0
1

0
0
0
1
1
1
1

0
0
0
1
0
0
0

0
1
-1
-1
0
1
1

0
0
0
0
1
0
0

1
0
1
1
1
0
0

= 481
= 371
= HI
= 1 1 !
= 1 1
= 1 1

~~= 1 1

Figure 2: Example of subtraction —(48 — 37)

the result and cancels it, leaving a 0 result. (There may of course be no more significant 1.
This corresponds to a negative result; we introduce a suitable large Fn and proceed from there,
producing an "Fn complement55 as discussed later.) The scan, for digits zi — — 1 should be
performed from most-significant to least-significant digits. This action is included in Table 1
earlier.

The preceding rule eliminates all of the digits whose value is — 1, but often introduces
other digits greater than 1, or pairs of adjacent Is. All of these situations must be handled by
the rules already introduced for addition. Subtraction is therefore an extension of addition.

Figure 2 shows an example, subtracting 37 from 48. As with addition, the various rewriting
rules may be applied in any order; changing that order will change the finer details of the
subtraction.

Note that we cannot easily propagate a borrow left from the place where Z{ = — 1. The
rewriting rule steps two positions at each step and without knowing the distance to the next-
significant 1 we know neither the alignment of the 01 bits which are introduced nor which of
the two final 11 bits will be finally cancelled. (Conventional binary subtraction rewrites, for
example, 10000 as 01100 + 100 -> OHIO + 10 -» 01111 + 1; the final + 1 is cancelled against
the 1 of the subtrahend. Each stage proceeds by only one place and there is no ambiguity in
reversing the process for the conventional right-to-left borrow propagation.)

2.3 C O M P L E M E N T I N G

Subtraction quickly leads to negative numbers and their representations. Computer de-
signers now prefer the 2s complement representation in which a number and its complement,
added as unsigned quantities, total 2n.

By analogy we can represent a negative value by its Fn complement. Also by analogy
we say that a value is negative if its representation has its most-significant bit a 1. But this
immediately introduces a major problem. An Fn complement representation has F n _ 2 values
with a leading 1 and F n _ i values with a leading 0; there are about 1.6 times as many positive
values as negative and about 38% of all positive values have no complement! (Complementing
seemed almost incomprehensible until its asymmetrical range was realised. By analogy with
binary numbers it was expected that' there would be similar numbers of positive and negative
values but there was no simple way of differentiating signed integers.)

2003] 409

ZECKENDORF INTEGER ARITHMETIC

N
1
?,
3
4
5
6
7
8
9
10
11

Z(N)
1
10
100
101
1000
1001
1010
10000
10001
10010
10100

F(8) comp
101010
101001
101000
100101
100100
100010
100001
100000
-
-
-

F(9) comp
1010101
1010100
1010010
1010001
1010000
1001010
1001001
1001000
1000101
1000100
1000010

F(10) comp
10101010
10101001
10101000
10100101
10100100
10100010
10100001
10100000
10010101
10010100
10010010

F(ll) comp
101010101
101010100
101010010
101010001
101010000
101001010
101001001
101001000
101000101
101000100
101000010

Table 2: Illustration of Fibonacci F(n) complements

If a positive number N requires n bits, then N < F n +i . The signed number — N requires
at least n + 2 bits and must use at least the F n + s complement. (Numbers of this precision
will require at least the original n bits, place space for the sign. The "sign" of a negative
number is, by definition, a ' 1 ' bit, but this 1 must be followed by a 0 for a valid Zeckendorf
representation.)

Complementing is most easily handled by subtraction from zero; there seems to be simple
complementing rule. In comparison with binary arithmetic it is complicated considerably by
the bi-directional carries and by the "sign-fill" pattern of 101010.. . . whose alignment with
respect to the significant bits is not easily decided. Because the sign fill pattern is 1010. . . an
extension from unsigned to signed numbers requires at least 2 extra bits.

Some complements are shown in Table 2. We see that a negative number is characterised
by a leading 1010. . . bit pattern, rather than the 1111 . . . usually associated with binary
numbers. The 1010. . . pattern has two alignments with respect to the bits of the value being
complemented; these two alignments and interactions with the "numerically significant" bits
lead to two different bit patterns in the complement. In the example, 2(7) — 1010 and the
two patterns are . . . 0001 for n even and . . . 01001 for n odd.

2,4 M U L T I P L I C A T I O N

In the introduction we discussed the representation of an integer N as the scalar product

N = D.W

where D is the digit vector (the visible digits of the representation) and W is a weight vector.
We now develop multiplication by analogy with conventional multiplication, building on this
representation. Only positive values will be considered for both multiplication and, later,
division.

To calculate the product Z " f - I x Y , w e first write X (the multiplier) as X.W, giving

Z ^-X.WxY

410 [NOV.

ZECKENDORF INTEGER ARITHMETIC

whence
Z *" ^Xi.Wi.Y = Y^xUwi.Y).

multiplicand
multiplier

1

M a k e Fibonacci Multiples of multiplicand
F3 multiple 1 0 0
JF4 multiple 1 0 1
F6 multiple 1 0 1 0
F6 multiple 1 0 1 0 1
Accumulate appropriate multiples
add F4 multiple 1
add F6 multiple 1 0 1
product 1 0 0 1

0
0
0

1
1
0

0
1

0
0
1
0

0
0
1

0
0

0
0
0
0

0
0
0

1
1

0
1
0
0

1
0
0

0
0

0
0
0
0

0
0
0

1
0

0
1
1
0

1
0
1

= 1 7 J
= 11

= 34 |
= 51 |
= 85 |
= 136 |

= 51
= 136
= 187

Check that 17 x 11 = 187

Table 3: Example of Zeckendorf multiplication (17 x 11)

The product is the sum of appropriately weighted multiples of the multiplicand Y, each
multiple in turn multiplied by the multiplier digit x%. In a uniform base number system the
scaling is easily done by "left shifting", or appending 0s to the right of Y, as in standard long
multiplication.

With Fibonacci arithmetic, the scaling must mirror the generation of the Fibonacci num-
bers themselves; we can no longer use simple shifts or inclusion of 0s. The weight vector W is
now the Fibonacci numbers; given a multiplicand Y, we generate its Fibonacci multiples Mn

as -
MX = M2 = Z(Y), M3=M1+M2,...yMk = Afc-i + M&_2, - - -

and then add these weighted by the bits of 2(X). (All arithmetic is of course done using the
Zeckendorf addition of Section 2.1.)

An example of multiplication given in Table 3. It shows first the two factors, then the
multiples of the multiplicand, and finally the steps of the multiplication proper.

3 . D I V I S I O N

Division is, as might be expected, the reversal of Multiplication. The procedure is precisely
that of a conventional "long division", but adapted to use the Fibonacci multiples of multipli-
cation rather than the scaled multiples of conventional arithmetic. Starting with the dividend,
we try to subtract successively decreasing Fibonacci multiples of the divisor, entering quotient
bits as appropriate, a 0 for an unsuccessful subtraction and a 1 for a successful subtraction.
Again, we restrict ourselves to positive inputs.

Table 4 shows an example of Zeckendorf division. We start by building a suitable table
of the Fibonacci multiples of the divisor, stopping when the multiple has more bits than the
dividend. Note here that the dividend, assumed unsigned, must be extended by at least 2 bits
to accommodate the negative values which arise during division.

2003] 411

ZECKENDORF INTEGER ARITHMETIC

We then enter the cycle of trial subtractions. At each stage, if the residue1 is negative
("unsuccessful" subtraction), we enter a 0 bit in the quotient and restore the previous residue.
If the residue is positive ("successful" subtraction"), we enter a quotient bit of 1 and use the

dividend
divisor

1

Make Fibonacci Multiples
F-i multiple

. Fz multiple
i<4 multiple
F5 multiple
Fe multiple
Fi multiple
Fs multiple
Fg multiple
Trial subtractions
Fg overdraw =
Fs overdraw =
F7 residue =
F5 overdraw =
Fi residue =
F2 residue =
quotient =
remainder =

1
1 0

0 0 1

of divisor

1
0
1

1
0
1
0

1
0
1
0
1

1

0

1
1
0
1
0
1
0

0

0

0
0
1
0
1
0
0

1

1

0
1

1
0
1
0
1
0
0
0

0

0

1

1
0

0
0
0
1
0
0
0
0

0

0
1

T~
1

0
0

0
0
0
0
0
0
0
0

0

1
0
0
0

1
1

1
0
1
0
0
0
0
0

1

0
1
1
1

0
0

0
0
0
0
0
0
0
1

0

1
0
0
0

1
1

1
0
1
1
0
1
1
0

0

0
0
1
0

=300
=17

=17
=34
=51
=85
=136
=221
=357
=578

=79

=28
=11
=17
=11

Check -300 -M7 = 17(+rem = 11)

Table 4: Example of Zeckendorf division (300 -=-17)

new residue for the next trial subtraction. As an optimisation with a successful subtraction,
we can avoid the next multiple completely, going immediately from say Mi to Mj_ 2 . The
subtraction with the M^-i multiple cannot succeed because that would give two consecutive
Is in the quotient.

4. C O N C L U S I O N S

Although we have demonstrated the main arithmetic operations on Zeckendorf integers,
this arithmetic is unlikely to remain more than a curiosity. It is much more complex than nor-
mal binary arithmetic based on powers of 2 and the Zeckendorf representations are themselves
more bulky than the corresponding binary representations.

Another problem lies in the representation of fractions. Powers of 2 extend naturally
to negative powers and fractional values. Extending the Fibonacci numbers Fn for n < 0
repeats the values for positive n, but with alternating sign; they provide no way of representing
fractions.

There is no generally accepted term for- the working value from which divisor multiples are subtracted during division.
While some authors use "partial remainder" or "partial dividend", the preference here is for "residue".

412 [NOV.

ZECKENDORF INTEGER ARITHMETIC

R E F E R E N C E S

[1] A. Apostolico and A.S. Fraenkel. "Robust Transmission of Unbounded Strings Using
Fibonacci Representations." IEEE Trans, on Inf. Th. IT-33 (1987): 238-245.

[2] P. Filipponi. "The Representation of Certain Integers as a Sum of Distinct Fibonacci
Numbers." Tech Rep. 2B0985. Fondazione Ugo Bordoni, Rome (1985).

[3] A.S. Fraenkel. "Systems of Numeration." Amer. Math. Monthly 92 (1985): 105-114.
[4] A.S. Fraenkel and S.T. Klein. "Robust Universal Complete Codes for Transmission and

Compression." Discrete Applied Mathematics 64 (1996): 31-55.
[5] H.T. Freitag and C M . Phillips. "On the Zeckendorf form of Fkn/Fh." The Fibonacci

Quarterly 34.5 (1996): 444-446.
[6] H.T. Freitag and C M . Phillips. "Zeckendorf Arithmetic." Applications of Fibonacci

Numbers, Volume 7, pp. 129-132. Edited by C E . Bergum, A.N. Philippou and A.F.
Horadam. Kluwer, Dordrecht 1998.

[7] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics. Addision-Wesley,
Reading, MA 1991, pp. 295-297.

[8] E. Zeckendorf. "Representation des nombres naturels par une somme de nombres de
Fibonacci ou de nombres de Lucas." Bull. Soc. Roy. Sci. Liege 41 (1972): 179-182.

AMS Classification Numbers: 11B39, 03H15

»S& *3E< >•&

2 0 0 3] 413

