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1. I N T R O D U C T I O N 

The purpose of this paper is to study properties of mapped shuffled Fibonacci languages 
F(afi) and F^vy Let X — {a?6} be an alphabet and let X* be the free monoid generated 
by X. Let 1 be the empty word and let X+ — X* \ {1}. The length of a word u is denoted 
by lg(w). Every subset of X* is called a language. For two words u, v E X +

? we consider the 
following type of Fibonacci sequence of words: 

W\ = U, W2 = V, Ws = UV, . . . , Wn = Wn-2Wn-i, . . . , Tl > 3 . 

Let FUjV = {wi\i > 1}. If u — a and v = b, then FUjV is denoted by Fa$. The sequence of 
Fibonacci words plays a very important role in the combinatorial theory of free monoids for 
the recursively defined structure and remarkable combinatorial properties of Fibonacci words 
can be shown. Some properties concerning the Fiboancci language FUyV have been investigated 
by De Luca in [2], by Fan and Shyr in [3] and by Knuth, Morris and Prat t in [6]. 

In [1], properties of Fibonacci words generated through the bicatenation operation, i.e., 
Fi = Fi-tFi-2 U Fi-2Fi-\ = {uv,vu\u E Fi-i,v E i^„ 2 } where Ft = {a} and F2 = {&}, are 
investigated. Here we consider the shuffle operation. For u,v E X*, the shuffle product of u 
and v is the set uov defined by: 

UOV = {U1V1U2V2 ' ' -UnVnlUijVj E X * , 1 < i, j < U, U\U2 " ' Un = U, V\V2 ' ' ' Vn = v}. 

For A, B C X*, the shuffle product of A and B is defined as: A o B = \JueA V€B(U ° v)- We 
consider the following type of Fibonacci sequence of sets: 

Fi = {a}, F2 = {&}, Fn+2 = Fno Fn+1 for n > 1. 

Let F(atb) — Ut>i Fi. Remark that every word in the same F{ has the same length. For u,v E 
X + , let the homomorphism h : X* —>• X* be defined by h(a) = u and h(b) — v. The mapped 
shuffled Fibonacci language F(u^v) is defined to be the language h(F(a^) = {h(w)\w E F^a^}. 

Section 2 concerns properties of the mapped shuffled Fibonacci language -F(Ujt/) related to 
the theory of formal languages. We prove that -F(a,&) is equal to the set of all combinations 
of words in the Fibonacci language Fa$. In [3], Fan and Shyr show that Fa$ is regular free. 
Then clearly Fa^ is not a regular language. For more complicated cases, we show that F^u^ 
is neither dense nor context-free for any {u,v} / X . In Section 2, we also show that F(u^ is 
a context-sensitive language. 

Section 3 is dedicated to investigate the relationships between Fibonacci words in F(UjV) 
and primitive words. In [3] and [5], the powers of a word which can be contained as a subword 
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in a Fibonacci word are studied. Here we show that F(a^ contains only primitive words. 
Some properties of words u and v such that F(UiV) contains primitive words are investigated 
in Section 3 too. 

In Section 4, some conditions of u and v such that the homomorphism h : X* —)• X* 
defined by h(a) = u and h(b) = v is palindrome preserving or d-primitive preserving are 
studied. We also count the number of palindrome words in each F*. Codes contained in F(u^ 
are investigated in Section 5. 

Items„not defined here or in the subsequent sections can be found in [4] and [9]. 

2. T H E M A P P E D S H U F F L E D F I B O N A C C I L A N G U A G E FM 

In this paper we let the sequence of Fibonacci numbers rrti be defined by mi = 1, ra2 = 1 
and rrti — rrii-i + rrii-2 for i > 3. We also let ra0 = 0. Let the Fibonacci language Fa^b 

be ordered in the lexicographic order as Fa^ — \w\, ?z/2, W3,. - . , wni...}. For u E X + , C(u) 
denotes the set of all combinations of the word u. 

Let Fi = {a}, F 2 = {h}. Then 

F 3 = {ab,ba} = C(ah) = C(w3), 
F 4 = {hab,ahb,bba} = C(abb) = C(w4), 
F5 = {abbab, babab, haabb, abahb, aabbb, abhba, babba, bbaba, bbaab, bbbaa} 

= C(aabbb) = C(ti/5). 

For u E X* and a E X , let na(u) denote the number of a's in w. We shall show the above 
observations can be applied to all F{. That is the following property: 
P r o p o s i t i o n 2 .1 : Fx = {a}, F 2 = {6} and F, = C(ami-2bmi-1) = C(w;) for i > 3. 

Proof: From the previous observation, it is true for i = 1,2,3,4,5. Suppose that 
the hypothesis holds true for i < n with an integer n > 5. Now consider sets F n + i 
and C(amn-1bmn). From the facts that F n _ i = C(am—36m"~2) and F n = C(am—26m"-1) , 
it follows that F n +i = F n _ ! o Fn C C(aTOw-16TOw). Next, let w E C(amw-16TO»). Let 
w E C(am n~36m n-2) = F n _ i be the word arranged in the same order as the first m n _ 3 
a's and the first ran_2 6's of w. One can take v E X + such that w e u o v. Then 
we get na(v) = na(w) - ra„_3 = m n _ 2 and w&(t;) = nb(w) - ran_2 = ran-i- Thus 
t; E Cfa™*-2^*-1) = F n . Therefore, w E uov C F n _ i o F n = F n + 1 . Q 

For L C X*, let C(L) = U«€£C(W)- Pr<>P°sitiQn 2-1 derives that F(0j&) = C(Fa,6). A 
language L is said to be dense if L n X*uX* ^ 0 for every u E X*. 
P r o p o s i t i o n 2.2: The language F(a?&) is dense. 

Proof: It is clear that na(wi) = ra*_2 and nb(wi) = rrii-i for i > 3. For every K E X*, 
let & = lg(w),ra = rrik+2 - na(u) and n — rrik+z - m(u). Then a7nubn E C(w&+4) C F(0>&). 
Thus F(0j6) is dense. D 

For a given language L C X*, the principal congruence Pz, determined by L is defined as 
follows: 

u = ^ ( F L ) ^=^ (#uy £ -̂  ^=^ #^2/ £ L Vx,y E X*). 

It is well known that the language L is accepted by a finite automaton if and only if L has 
finite PL congruence classes, that is PL is a finite index. A language which is accepted by a 
finite automaton is called a regular language ([4]). We call a language L disjunctive if PL is 
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the equality. Clearly, a disjunctive language is not regular. It is known that every disjunctive 
language is dense (see [9]). 
Coro l la ry 2.3: The language F(a^ is not disjunctive. 

Proof: For any two distinct words u,v E X* with na{u) = na(v) and n^{u) — n&(t;), in 
view of Proposition 2.1, we have xuy E F(a,b) if a n o - onh if XVV £ ^(a,6) f° r x,y G X*. Hence 
the Fibonacci language F(a,6) is not disjunctive. D 
L e m m a 2.4: ([13]) Let h : X* -> X* be a homomorphism. If h(L) is dense for some L C I * , 
then /i(X) = X. 
Corol la ry 2*5: For u,v E X + , if {w, v} 7̂  X , then F(UjV) is not dense. 

Proof: If {u, v} 7̂  X , then by Lemma 2.4, h(F(a^) = F(UJVJ is not dense . • 
Corollary 2.3 shows that .F(0,&) is not disjunctive. Moreover, Corollary 2.5 shows that 

F(u^v) is not dense for {u, v} ^ X. In the following we shall show that F^v) is neither regular 
nor context-free for any u,v E X + . A language L is said to be regular free (context-free 
free) if every infinite subset of L is not a regular (context-free) language. Of course, if a 
language is context-free free, then it is also regular free. It is known that if L is an infinite 
context-free language, then there exist xi,X23^3,^4,#5 E X* with lg(^2^4) > 1 such that 
{xix^xsx^xsln > 0} C L (see [4]). The language of the form {xix^x^x^x^n > 0} is called a 
context-free component. 
P r o p o s i t i o n 2*6: For any u,v E X + , F^v) is context-free free. 

Proof: Suppose on the contrary that F^v) is not context-free free. Then there is an 
infinite context-free subset of F(u^vj. That is, there exist x±,X2, ^33 ^4? ̂ 5 E X* with Ig (2:2^4) > 
1 such that {xix^x^x^n > 0} Q -^Wo- Remark that F\ = {u},F2 = {v}, Fi = F j_2oi 7 i_ i 
for i > 3, -F(Wjt;) = U»>i ^ ? anc^ mi < mi+i f° r every i > 2. There is k > 3 such that 
xix3

2xzx\x5 E jFfc for some j > 1 and uik-i > lg(x2a?4)- This implies that rrik+i = mfc__i+ 
m*; > lg(xix^+1X3^4+1X5). Thus xiX2+1X3X3

4
+1x5 £ i*(tt,v), which leads to a contradiction. 

Therefore, -F^w) is context-free free. D 
Moreover, we shall show that F(UyV) is a context-sensitive language. For definitions and 

properties of context-sensitive languages and linear bounded automata, one is referred to [4]. 
P ropos i t i on 2*7: For u, v E X + , -F(UjV) is a context-sensitive language. 

Proof: Here we consider the language L — .F(a,&) \ \@>°> &}• It is known that if L is context-
sensitive, so is F(a?5). By Proposition 2.1, Fi+2 = C(amibmi+1) for i > 1. We construct a 5 
track linear bounded automation such that the first track stores the input word w, the second 
track stores the number m^_i, the third and fourth tracks store the number mi and the fifth 
track stores the number rat-+i. This automation is initialized by i = 1, i.e., track 2 stores 
mo, track 3 stores m i , and so on. For any input word w in track 1, we check the number 
mi stored in track 4 with a's in w. If na < m*, then w ^ L. If na > m*, then we put m^ 
from track 4 into track 5, put ra^-i from track 2 into track 4, replace the number in track 2 
by mi in track 3, replace the number in track 3 by the number in track 4, and compare the 
number in track 4 with a3s in w again. If the number m» in track 4 equals na(w), then we 
compare the number TOi+i in track 5 with 63s in w. If mj+i = ra&(w), then w E L. Otherwise, 
w ^ L. This automation is a linear bounded automation which accepts L. Therefore, L is 
context-sensitive. As context-sensitive languages are closed under 1-free substitution, F^u^ is 
also a context-sensitive language. D 
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Here, we consider one property of Fibonacci numbers. Then we shall study the difference 
between the shuffled Fibonacci language F^a^ and the inserted Fibonacci language i"(a,&)-
P r o p o s i t i o n 2.8: Let % > 10. Then 
(1) [mi/(mi-2 + 1)J = 2 = Lmi-i/(™*-3 - 1)J and 
(2) 0 < mi -2 — 2(rai_4 — 1) < rrii-4 — 1. 

Proof: By definition, m^ = 5, rni = rrtis + 2m^_2 and mi = ra^-i + m^_2 > rrii-i + 5 
for i > 7. Let i > 10. Then mi_ 2 + 1 > 77^-3 - 2 > 0 and ra;_3 - 1 > rrii-4 + 2 > 0. This 
together with the equalities ra^/(rai_2 + l) = 2 + (rrii_3 —2)/(rai_2 + l) and mi_i / (mt_3 —1) = 
2 + (rai_4 + 2)/(mi_3 - 1) imply that Lra;/(ra;_2 + 1)J = 2 = [m;- i / ( ra ;_ 3 - 1)J- Moreover, 
0 < rrii_2 - 2(rrii-4 — 1) = mi_5 + 2 < rrii_4 — 1. D 

For i , B C X*, the insertion of B into 4̂ is defined as: 

B -$ A — {uvw\u, w E X*,uw E A,v E B}. 

Let Ji = {a}, I2 — {6} and li = ^ -2-^-^-1 for & > 3. The inserted Fibonacci language I(a,b) 
is defined by I ( a j 6 ) = Ui>i^. Clearly, I; C C(ami-2hmi-1) = C(«/,) = i^ for i > 3. By 
observation, I* = F^ for z = 1,2,3,4,5,6,7,8,9. 
P r o p o s i t i o n 2.9: I* C F» for every i > 10. 

Proof: It is clear that J* C 1* for i > 1. Let w = a7614a7614a766. Then w E Fxo but 

w £ ( IsAlg) = Jio- Indeed, one can take r = rrii-2— 2(ra*_4 — 1) and 5 = nti-i— 2(mi_3 + l) for 
i > 10. This is conjunction with Proposition 2.8 yields 0 < r < 771̂ -4 — 1 and 0 < s < mi-3 + l. 

Let w = (ami-4-1bmi-3+1)2arbs. Then w E Ci/n™*-^™*-1) = F< and w £ C(am*-46TO*-3) -4 

C(am<-s6m*-a) = Fi_2 A Fi_i . Since h = Ji_2 -4 J<_i C JFi_2 A F ^ i , we have w i I;, which 
completes the proof. • 

3 . FM A N D P R I M I T I V E W O R D S 

A word p E X + which is not a power of any other word is called a primitive word. Let 
Q be the set of all primitive words over X ([9]). It is known that every word in X+ can be 
uniquely expressed as a power of a primitive word ([8]). In [3], Fan and Shyr have proved that 
the Fibonacci language Faj, is a subset of Q. Here we show that -F(0,6) Q Q- We also want to 
find words u,v such that F(UiV) C Q. 
P r o p o s i t i o n 3 .1: -F(0,6) Q Q-

Proof: We consider w E F{ for some i > 3 whenever a, 6 E Q. By Proposition 2.1, 
w E C(anii-2brrii~1). Since m*_2 and rrii-i are relatively prime, w E Q. Therefore, 
F(a,b) Q Q. • 

For u E X + , if u = pn and p is a primitive word, then ^fu = p is called the primitive root 
of u. For a language L C X + , let %/L = {v^ l^ E L}. A language L C X4" is called pwre if for 
any u E L + , V ^ £ ^ + -
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A non-empty language L is a code if for x±, x2,. - . , xn, 2/1,2/2? • • • ? 2/™ E •£» 2-1^2 • • • xn — 
V1V1 '"Vm implies that m = n and X{ — yi for i = 1,2, . . . , n. Let {u, v} be a code and let 
ft : X* •-> X* be defined by h(a) = w and ft(6) = t?. Then ft being injective is derived directly 
from the definition of codes. 
P r o p o s i t i o n 3,2: ([10]) Let ft : X* -» X* be an injective homomorphism. If ft(X) is a pure 
code, then ft preserves the primitive words. 
P r o p o s i t i o n 3.3: For two distinct words u,v E X + , if {u,v} is a pure code, then F(UiV) C Q. 

Proof: By Proposition 3.1, -F(a,6) Q Q- Let {w,?;} be a pure code. We define the injective 
homomorphism ft : X* —)• X* as h(a) = u and ft(6) = v. Also, for a language L C X + , 
let h(L) = {h(u)\u E L}. Clearly, F(u>v) = ft(JF(a>&)). Prom Proposition 3.2, one has that 

The definition of pure codes makes checking whether {u^v} is a pure code not easy. We 
are going to find some other properties of u and v related to the primitivity of F(UfVy. A word 
u is a conjugate of a word w if there exist x,y E X* such that u = xy and w = yx. The 
following lemmas concerning basic properties of decompositions and catenations of words will 
be needed in the sequel. 
L e m m a 3.4: ([8]) For x , | /G X + , x y = yx implies that y/x = y/y. 
Remark: In fact that for x,y e X4", xy = yx if and only if y/x = y/y. 
L e m m a 3.5: ([11]) Let xy =p%,x,y E X + , p E Q,i > 1. Then yx = ql for some q E Q. 
L e m m a 3.6: ([12]) Let xqm = gk for some m, k > l,x E X + , g E Q and g E Q, with a; £ c?+. 
Then g / g and lg(5) > lgfa™-1). 

If it* = xy f° r xiV ^ 3£*•> then x is called a prefix of w and it is denoted by x <p u; the 
word y is called a suffix of w and denoted by y <s u. 
P r o p o s i t i o n 3.7: Let u,v E X + with lg(tx) = lg(t/) and tw E Q, and let ft : X* -> X* be 
a homomorphism defined by h(a) = u and ft(6) = v where X = {a, 6}. Then ft preserves 
primitive words except a and b. That is, h(Q)\Q C {w,v}. 

Proof: Let u,v £ X + , lg(w) =lg(v) and wi; E Q. By Lemma 3.5, t/w E Q. As wv E 
Q, u^ v. Define ft : X* —)> X* by ft(a) = u and ft(6) = v. Since {w, v} is a uniform code, ft is 
an injective homomorphism. We want to show that h(w) E Q whenever w E Q\{a,6,a6,6a}. 
Suppose on the contrary that there exists w E Q\{a,6,a6,6a} such that h(w) £ Q. As 
w E Q\{a,b, ab,ba},lg(w) > 3. Let w1 be a conjugate of w. From Lemma 3.5, one has that 
w E Q if and only if it/ E Q. As lg(w) > 3 and w E Q^na{w) / 0 and n&(t//) / 0. If 
no conjugate of w contains any one of the following subwords b2a or a26, then w — (ah)1 or 
ti; = (6a)* for some i > 2. This implies that w fi Q, a contradiction. Thus there is a conjugate 
of w that contains a subword b2a or a26. In the other word, there exists a conjugate wl of w 
such that a <p wf and 62 < s w7, or 6 <p wl and a2 <s wl. Without loss of any generality, we 
let a <p wf and 62 <s w!. Clearly, u <p h(wf) and v2 <s h(wf). Note that h(wf) is a conjugate 
of h(w). This in conjunction with h(w) fi Q and Lemma 3.5 yields h{wl) £ Q. That is, there 
exist p E Q and j > 1 such that h(wf) = p*+1. Since lg(u) =lg(v) and ?;2 < s h(wr)1 by Lemma 
3.6, we get lg(p) > lg(u). Hence there exists y E X + such that p — uy. 

If y E {u^v}+j then h(wf) — (uyY+1 and uy E {te,t;}+. This implies that w1 — 
ft~1(ft(w/)) = h~1((uy)j+1) = (/i"1(ttj/))J'+1 ^ Q? a contradiction. Hence, y ^ {«, v } + . Since 
(uy)j+1 E {w,?;}"f, we have y(uy)j E {?i,?;}+. Hence there exist ?/i E {n,t;}* and y2 E X + 

such that y = yiy2 and lgd/2) <lg(w). The fact (uy^)^1 = p^+1 = h{wl) E {u,v}+ implies 
that wi = 2/2(^2/1^2) '̂ E {w,t?}+. Not that lg(wi) = fc lg(v) for some positive integer fc and 
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that lg(t/;i) > lg(v). Hence lg(wi) > 2 lg(v). This in conjunction with v2 <s uy\W\ = h(wf) 
yields v2 <s w\. We consider the following cases: 
(1) u <s uy\. As v2 <s wi and lg(v) > lg(2/2), there exists 2/3 G X+ such that v = 2/32/2-

It follows that wi — y4{y$y2)2 for some 2/4 G {i4,u}*. Since u < s ££2/i, we obtain u <s 
U2(uyiy2)j~1uy1 = 2/4(2/32/2)2/3- This together with lg(w) = lg(t/) yields w = 2/22/3- Now we 
consider the following four subcases: 

(1-a) u2 = 2/22/32/22/3 < P ^ i = 2/2(^2/12/2)^ Then 2/32/2 < P ^2/i2/2- As \g(u) = lg(2/22/s), « = 
2/32/2 = v. This implies that uv £ Q, a contradiction. 

(1-b) uv = 2/22/32/3̂ 2 < P wi = 2/2uy1y2{uy1 y2K"1. Then 2/2 < P 2/32/32/2 < P (uy1y2)j. There exist 
2/4 < P 2/3 and r > 0 such that 2/2 = yjjjte- Thus yl+1y± <p 2/3^42/32/i2/2(t*2/i2/2)i~1

J i.e., 
2/32/32/4 <P 2/42/32/12/3- It follows that 2/3 = 2/42/5 = 2/52/4 for some y5 £ X*. By Lemma 3.4, 
we have ^Jyi — yfyl = -s/yi. This is conjunction with y2 = 2/32/4 and lg(*0 = lgO>) yields 
u = 2/22/3 = 2/32/2 = v and uv £ Q; a, contradiction. 

(1-c) vu = 2/32/22/22/3 < P wi = 2/2(2/22/32/i2/2)J- This implies that 2/32/22/2 = 2/22/22/3. By Lemma 
3.4, ^ / ^ = y^yf = ^fyi. Thus 2/22/3 — 2/32/2 and u — v. Hence, uv £ Q, a contradiction. 

(1-d) v2 <p w\. As v <p w\ = 2/2(̂ 2/12/2)̂  and 1; = 2/32/2 5 there exists 2/4 G X + such that 
v = 2/22/4 with lg(?/4) = lg(2/3)- Since v2 = 2/22/42/22/4 < P wi = 2/2(̂ 2/i2/2>7 and lg(u) = 
^(2/22/3) = lg(2/42/2), w = 2/42/2- Consider the case that lg(y4) < lg(y2)- There exists 
2/5 G X* such that 2/2 = 2/42/5- Then v = 2/42/52/4 and u = 2/42/42/5- As v2 = 2̂/42/52/4 <s 
wi = (2/2^2/1)̂ 2/2 = (2/2W2/i)J2/42/5,2/52/4 = 2/42/5 and w = v. Hence uv £ Q, a, contradiction. 
Now, let lg(2/4) > ig(2/2)- There exists 2/5 G X+ such that 2/4 = 2/22/5- Then w = 2/22/52/2 
and v = 2/22/22/5- As v2 = 2̂/22/22/5 <s wi and uy2 = 2/22/52/22/2 <s ^ i , 2/22/22/5 = 2/52/22/2- By 
Lemma 3.4, y/y^ — y/y^ — v^/5- This implies that yfu = -̂ /v and uv £ Q, a, contradiction. 

(2) v <s uy\. As v2 <s w\, there exists 2/3 G X + such that v = 2/32/2 = 2/22/3- By Lemma 3.4, 
y/l/2 — y^3- That is, there exist q G Q and r i , r2 > 1 such that 2/2 = (f1,2/3 = <?r2 and 
v = g r i + r 2 . We consider the following four subcases: 

(2-a) u2 <p wi = 2/2(^2/i2/2p- There exists 2/4 G X + such that w = 2/22/4 = 2/42/2- Thus 
V^4 = y/yz- This in conjunction with ^fyi — s/vi yields u — g r i + r 2 = v and uv £ Q, a 
contradiction. 

(2-b) tit; < p wi = y2{uyiy2y. There exist t/4,2/5,2/6 G X + such that te = 2/22/4 = 2/42/5,̂  = 
2/52/6,lg(2/5) = lg(sfe) = lg(gr i) and lg(y4) = lg(2/s)- Thus 2/5 = ^ n = 2/2- As w = 2/22/4 = 
2/42/2, by Lemma 3.4, ^fyi = ^/y^. Thus uv — 2/22/4 ^ Q, a contradiction. 

(2-c) t;2 = 2/22/32/22/3 <p ti/i = 2/2(ti2/i2/2)J- The condition lg(w) = lg(v) implies that u = y3y2 = v 
and uv £ Q, a contradiction. 

(2-d) ?;ti < p wi. As v = 1/22/3 ^p w i — 2/2(^2/i^2)^, there exist 2/4,2/5 G X + such that u = 
2/32/4 = 2/42/5 with lg(j/4) = lg(2/2)- This implies that 2/4 = (2/s)r32/6 for some r3 > 0 and 
2/6 < P 2/3- Since lg(y4) = Ig(^) = lg(^r i) and 2/3 = gr2,2/4 = g n • 
Thus u = qTl+r2 = v and uv $ Q, a contradiction. • 
Prom the proof of Proposition 3.1, we have the following result immediately. 

Coro l la ry 3.8: Let A = {a, b} and 1? a finite nonempty alphabet. If h : A* -» J3* is a 
homomorphism of ^4* into S* defined by /i(a) = w and h(b) = v for some primitive words 
u, v G B + such that lg(ti) = lg(?;) and uv is a primitive word, then h preserves primitive 
words. 
Coro l la ry 3.9: F(UjV)\Q C {urv} for any two words u,v G X + with lg(w) = lg(v) and uv G Q. 

Proof: Let u,v G X + with lg(?i) = lg(t;) and «v G Q. By Proposition 3.1, F(a?&) C Q. 
Prom Proposition 3.7, one has that F(UyV^\Q C {w,v}. D 
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For u, v E X + , we conjecture that {uv, uv2} C Q if and only if F^U^\Q C {w, ?/}. This 
is left for our further research. The partially primitive-preserving homomorphisms is also an 
interesting research topic for our further work. 

4. PALINDROME WORDS AND d-PRIMITIVE WORDS IN . F ^ 

If x — aid2 - - - an, where a* E X, then we define the reverse (or mirror image) of the word 
x to be x — an - • • 0201. A word x is called palindromic if x = x ([7]). 
P ropos i t i on 4 .1 : Let n* be the number of palindrome words in F{ — C(ami-2bmi-1). Then 
n\ = 1^2 — 1, and for i > 3, 

if mi is an even number, 
Tbi \ .1 . 

is an odd number, 

f 0, if m* is 

where Jfci = [ ^ f M and k2 = L ^ J = 
Proof: If w is a palindrome word with lg(w) > 2, then there exist u E X4" and v E 1 U { 1 } 

such that w = uvu. By the definition of reverses, we have na(u) = na(u) and ra&(w) = n&(fi). 
Thus at most one of na(w) and ra&(ii/) can be odd whenever w is a palindrome word. Prom 
definitions: m\ — l,rri2 = 1 and m% = mt*_i + wii-2 for i > 3, it follows that mi is an even 
number if and only if ra»_i and rni-2 are odd numbers. Consider i > 3. Then m^ > 2. If 
w E F{ and m^ is an even number, then lg(w) = w^ and «/ E C(am i~25m i-1) where both rrii-i 
and mj_2 are odd numbers. This implies that there exists no palindrome word in Fi if ra» is 
an even number. Now we consider the case that mi is an odd number. Let w = uvu E F{ for 
some w e l + a n d ^ G X. Then « E C(afcl6fc2), where fci = \J^\, k2 = L 1 ^ 1 ] - This implies 

that^ = % g ? - D 

L e m m a 4.2: ([7]) Let u,v E X + be two distinct words and let h : X* —> X* be defined by 
h(a) = u and h(b) = v. Then w and t; are palindrome words if and only if h is a palindrome 
preserving homomorphism. 

It is known that {u, v} C X + is a code if and only if yfu i=- y/v (see [9]). For two words 
u,v E X+,{u,v} being a code implies that h is an injective homomorphism where h(a) = u 
and h(b) = v. 
P r o p o s i t i o n 4*3: Let u,v E XH~ be two palindrome words. Then y/u =̂  y ^ ^ a n < i o n l y ^ -̂  
and h(L) contain the same number of palindrome words for every L C X + . 

Proof: Let w, v E X + be two palindrome words with -y î 7̂  -0/ . For 11/ E X*, by Lemma 
4.2, h(w) is a palindrome word whenever w is a palindrome word. Now, let w = ata2 • • • an be 
such that /i(w) is a palindrome word, where a» E X, 1 < i < 71, i.e., /&(«;) = /&(«;). Note that 
/i(w) = h(an)h(an-i) - - • /i(ai) = h(an)h(an-i) • • -/&(ai) = /i(w). This in conjunction with 
the fact that /i is injective whenever y/u / y ^ yields w — w^ i.e., w is a palindrome word. 
Therefore, L and h(L) contain the same number of palindrome words for every L C X + . 
Conversely, we assume that for every L C X + , L and ft(i) contain the same number of 
palindrome words. Let L\ = {a, 5} and L2 = {a6,6a}. Then a, 6 being palindrome words, 
by Lemma 4.2, implies that both h(a) — u and h(b) = v are also palindrome words. Since 
ab and ba are not palindrome words, uv ^ uv = vu = vu. By the remark of Lemma 3.4, we 
obtain y/u ^ y/v. U 
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Proposition 4.3 derives that for two palindrome words u and v, if h(a) = U, h(b) = v and 
^fu 7̂  y/v, then Fi and ̂ (Fi) contain the same number of palindrome words for every i > 1. 
A word d E X* is said to be a proper d-factor of a word z E X + if d ^ z and z = dx = yd 
for some words x, y. The family of words which have % distinct proper d-factors is denoted by 
D(i). A word x E X"1" is d-primitive if x = dy\ = y2d, where d E X + and yi,y2 E X*, implies 
that x = d and y± = y?. — 1. The set £)(1) is exactly the family of all d-primitive words. For 
the properties of D(i), one is referred to [13]. For u^v E X + , let dUyV denote the maximal word 
in X* being such that u = xdUjV and v = dUyVy for some x, | /G X*. 
L e m m a 4.4: ([7]) Let u,v E X + be two distinct d-primitive words such that dUjV = dViU — 1 
and let h(a) — u and h{b) = v. Then h is d-primitive preserving. 
P r o p o s i t i o n 4.5: Let u,v E D(l) with du?v = dt,)W = 1 and let h(a) = u and h{b) = v. Then 
the following two statements hold true: 
(1) w E D( l ) if and only if h(w) E Z?(l); 
(2) L and /i(X) contain the same number of d-primitive words for any L C X + . 

Proof: By Lemma 4.4, h is d-primitive preserving. If w E -O(l), then /i(w) E 1^(1). Now 
assume that w E X + \ .D(1) . That is, there exist d, x,y E X4" such that w = xd = dy. Then 
h(x)h(d) = h(xd) =•- /i(w) = /i(d?/) = h(d)h(y). This implies that /i(d) is a non-empty d-factor 
of h(w) and h(w) £ D(l). Thus statement (1) holds true. For any L C X + , as h is injective 
and by (1), L and /i(X<) contain the same number of d-primitive words. • 

Proposition 4.5 derives that for u,v E D(l) with dUjV = dv,u = 1, F{ and h(F{) contain 
the same number of d-primitive words where h(a) = u and h(b) = v. 

5. FM A N D C O D E S 

Proposition 2.1 derives that F(a^ D {amibmi+1\i > 2} which is a bifix code. Let Faj> be 
ordered in the lexicographic order as {wi,W2,... ,wn,...}. In [3], Fan and Shyr show that 
languages {w2n\n > 1} and {w2n-i\n > 1} a r e codes. In [14], we show that for k > 2, {wnk\n > 
1} is a code. Here we are going to find some other codes contained in F^u^vy 
Example : For a given integer k > 2, let Ln = C{amn-2bmn~1~mn-k)bm^-k for n > k. Then 
L = U{>2Lik is a suffix code contained in F(a^y 
L e m m a 5.1 ([10]) Let h : X* —> X* be a homomorphism. Then the following statements are 
equivalent: 
(1) h is code preserving; 
(2) h is injective; 
(3) \h{X)\ = |X| and h(X) is a code. 
Coro l la ry 5.2 For u, v E X + , let 7i(a) = w and /i(6) = v. Let L C F^a^ be a code. Then 
{uj v} being a code implies that h(L) is a code. 

According to Corollary 5.2, we then consider codes in F^a^ instead of codes in F(Wjt/). We 
quote the following lemma from [14], which is needed in the sequel. 
L e m m a 5.3: ([14]) 
(1) For every i>l,W{ /£pWi+i; 
(2) W{ <p Wj implies that j — i is an even number; 
(3) for k > 5 and 1 < i < k — 4, W{ <p Wk implies that WiWi+iWi+iWiWi+i <p Wk] 
(4) for each k > 2,W{Wi £p Wk for every i < k. 
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P r o p o s i t i o n 5.4: Let Li = wi-iX™1-2 for i > 3. For k > 3, let L C Un>i£n& be such that 
\L n Lijb| = 1 for each i > 1. Then L is a code. 

Proof: Suppose there exists k > 3 such that there is L C (Jn>i -k»fc w ^ 1-̂  n ^ i f c l = 1 
for each i > 1 and that £ is not a code. Then there exist u^u^.. .wnjVi,V2,.. • ,vm E £ 
for some finite integers m , n > 1 such that u\ / v\ and u\U2 — -un = v\V2- • °vm. Since 
wi 7̂  vi, without loss of generality, let u± <p vi. There exist i\ < ji such that u± G Lkix 
and vi E Lkjx. This implies that w^-i <p wkj1-i. By the definition of £ and ii > 1, 
&ji — 1 > fc^i + fe — 1 > 2fc — 1 > 5. Moreover, kji — kit > 3 which follows immediately from 
the inequalities k > 3 and j i > i i . Then apply (2) of Lemma 5.3 to get kji — ki\ > 4, i.e., 
(kii — 1) < (fcji — 1) — 4. This is the case considered in the following: 
(*) By (3) of Lemma 5.3, wki1-.iwki1wkilwkil-.iwkil <p Wkj1-i <p v\- This in conjunction 

with ui <p vi.ui E w ^ - i l ^ i - 2 and wkil = Wki1-2Wki1-i yields u\ — wkil-iwkil-2. 
Thus 

UlWkil+iWkil+i = UiWkii-lWkiiWkii-lWki! <P Vi. 

Let u2 E Lk%2 for some i2 > 1. If <2 > *i> then lg(w2) = rnki2-2 + m>ki2-i > 
mfci1+i + mkil+2 > lg(wkil+iwkil+1). This together with wiw 2 "-w n = ^1^2 • • -vTO 
and wityjbti+itwfcti+i <p *>i yields w&^+i < p wki2-i <p u2. By (1) of Lemma 5.3, 
k%2 — l>ki\-\-2. This implies that Wkii+iWkii+i <P Wki2-i> i n contradiction with (4) of 
Lemma 5.3. Thus i2 < h- We consider the following two subcases: 

(*1) H = h- Then u2 = ui = wkil-iwkil-2 and uiU2Wkil-iwkil-1wkil <p vx. Let 
^3 £ £&i3 for some is > 1. Then again by (4) of Lemma 5.3, mkil+i > 2mici1-i = 
Igiwki^iWk^-i) > lg(ti7fci3_i) = friki3-i' Thus <i > i3 and m ^ 3 < 2mki1-i- It 
follows that us <p Wkii-iWkii-iWkii- If is = *i>t*3 E w ^ - i X ™ * ^ - 2 implies that 
^ 3 == wki1-iwki1-3VJki1^4 7̂  Wi. This contradicts the fact that \L (1 L^] = 1. Thus 
one has the following case: 

(*!') is < i\. Then we have ki\ — 1 > ki$ + k — 1 > 5. Since fcii — ki$ > 3, by (2) of Lemma 
5.3, kii - kis > 4. Note that U1U2 - - -un = V1V2 • • -vm,uiU2Wk%1-iWki1-iWk%1 <P v and 
^3 £ wki3-iXmki3-2. Hence U/JM3-I < jpwjbti-i <p vi- By (3) of Lemma 5.3, we obtain 
wki3-iwki3wki3wki3-.iwki3 <p wkil-i <p vi. This is the same case as the case (*). 

(*2) %2 < i\- This case is analogous to the case (*1') which is the same as the case (*). 
This implies that U\U2 • • • un <p vi, i.e. U1U2 - • • un / ^1^2 — mvm, a contradiction, which 
completes the proof. D 
Clearly, L C F(a,b)^{Jn>i ^nk w ^ ^ \LnLnk\ — 1 is also a code for any k > 3. Remark that 

the code £ given in Proposition 5.4 can be neither a prefix code nor a suffix code. Furthermore, 
we conjecture that if we choose a word from each F 2 n , n > 2, to form a set £ , the £ is a code. 
This is left for our further research. 
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