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1. I N T R O D U C T I O N 

Let x be any nonzero real number. The n by n generalized Fibonacci matrix of the first 
kind, Tn[x] — [fij], is defined as 

/, i j ~ \ 0 
~3 i - j + 1 > 0, 

i-j + l<0. 

We define the nhy n generalized Fibonacci matrix of the second kind, TZn[x] = \ru\, as 

(1) 

r * 7 J > 

(Ft -j+ixi+J-2 i-j+ 1>0, 
i-j + l<0. (2) 

Note that Tn[l] = lZn[l] and Tn[l} is called the Fibonacci matrix (see [3]). 
The n by n generalized symmetric Fibonacci matrix, Qn[x] — [qij], is defined as 

Qij = Qj 
1 Qij-2x2 + qij-ix i + 1 <j, 

where gi,o = 0. Then we know that for j > 1? qij = qji = FjX3 x and q2j — qj2 — Fj+ix3. 
Qn[l] is called the symmetric Fibonacci matrix (see [3]). For example, 
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Let V — {x = (#i, x2, • • •, xn) E Rn : x± > x2 > • • • > xn}, where R is the set of real 
numbers. For x, y E V, x -< y if ^ = 1 X t < X^= i^? ^ = l ? 2 , . . . , n and if k = n then 
equality holds. When x -< y, a; is said to be majorized by y, or y is said to majorize x. The 
condition for majorization can be rewritten as follows: for x, y E T>, x -< y if J2i=o xn-% > 
Yli=o Vn-ii & = 0 , 1 , . . . , n — 2 and if fc = n — 1 then equality holds. 

The following is an interesting simple fact. 

{Xj . . . , X) -s \Xij . . . j X n j 3 

7^= E L i J More interesting facts about majorization can be found in [4], where x = 
An n x n matrix P = [p -̂] is doubly stochastic if Pij > 0 for i, j = 1,2,. . . ,n , X^ILi^i ~ 

1, j = 1,2, . . . , n , and J2]=iPij = l , i = 1,2,.. . , n . In 1929, Hardy, Littlewood and Polya 
proved that a necessary and sufficient condition that x -< y is that there exist a doubly 
stochastic matrix P such that x = yP. 

We know both the eigenvalues and the main diagonal elements of a real symmetric ma-
trix, are real numbers. The precise relationship between the main diagonal elements and the 
eigenvalues is given by the notion of majorization as follows: the vector of eigenvalues of a 
symmetric matrix majorize the main diagonal elements of the matrix (see [2]). 

In [1] and [5], the authors gave factorizations of the Pascal matrix and generalized Pascal 
matrix. In [3],the authors gave factorizations of the Fibonacci matrix Tn[l} and discussed the 
Cholesky factorization and the eigenvalues of the symmetric Fibonacci matrix Qn [1]. 

In this paper, we consider factorizations of the generalized Fibonacci matrices of the first 
kind and the second kind, and consider the Cholesky factorization of the generalized symmetric 
Fibonacci matrix. Also, we consider the eigenvalues of Qn[#]-

2. F A C T O R I Z A T I O N S 

In this section, we discuss factorizations of ^ [ x ] , TZn[x] and Qn[x] for any nonzero real 
number x. 

Let In be the identity matrix of order n. We define the matrices Sn[x], Tn\x\ and Gk[x] 
by 
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andSk[x] = S0[x]®Ik, fc = l , 2 , . . . , Tn[x] = [ l ]e^n- i[a?] , G1[x] = In, G 2 W = J „ - 3 e S . i [ i ] , 
and, for k > 3, Gk[x] = Jn_fc © Sk-3[x]. 

In [3], the authors gave a factorization of the Fibonacci matrix !Fn[i] as follows: 
T h e o r e m 2 .1 : For n > 1 a positive integer, 

^ [ l ] = G 1 [ l ]G 2 [ l ] . . .G„[ l ] . 

Now, we consider a factorization of the generalized Fibonacci matrix of the first kind. 
From the definition of the matrix product and a familiar Fibonacci sequence, we have the 
following lemma. 

452 [NOV. 



THE LINEAR ALGEBRA OF THE GENERALIZED FIBONACCI MATRICES 

L e m m a 2,2: For k > 3, 
Tk[x)Sk-zlx) = Jr

k[x). 

Recall that Gn[x] = Sns[x], G^x] = In and G2[x] = I n _ 3 © SLijx]. As an immediate 
consequence of lemma 2.2, we have the following theorem. 
Theorem 2.3: The n by n generalized Fibonacci matrix of the first kind, JFn[x], can be 
factorized by G&[x]'s as follows. 

Fn[x] = G1[x]G2[x}...Gn[x]. 

We consider another factorization of JviM- Then n by n matrix Cn[x] = [cij] is defined 
as: 

Fix*'* j = h 
Cij = { 1 i = j , 

0 otherwise, 
i.e., Cn[x] = 

Ft 0 . . . 0 
F2x 1 . . . 0 

h.JfnX n - l 

The next theorem follows, by a simple calculation. 
T h e o r e m 2,4: For n > 2, 

Tn[x) = Cn[x]{h - ©Cn_i[x])(J2 © Cn-2[x))... ( 4 - 2 e C2[x)). 

Also we can easily find the inverse of the generalized Fibonacci matrix of the first kind. We 
know that 

SoM"""1 
1 0 0 

-x 1 0 
-x2 0 1 

S-ilx}-1 = 
1 0 0 
0 1 0 
0 -x 1 

and Skix}-1 = Soix}-1 ® h- Define Hk[x] = Gk[x]-X. Then Hi[x] = G^x}'1 = In, H2[x] = 

G2[x}-1 = Jn-3 0 S-dx}-1 = In-2< 1 0 
-x 1 

and Hn[x] = Sn-3[x] *. Also, we know that 

Cnix}-1 = 
-F2x 

Fnxn-X 

0 .. 
1 .. 

0 .. 

. 0 

. 0 

. 1 

and (Ik © Cn-klx})-1 = h® Cn-k[x] 1. 

So, the following corollary holds. 
Corollary 2.5: For n > 2, 

fn[x}-1 = Gn[x}-1Gn-1[x}-l...G2[x]-1G1[x}-1 

= Hn[x]Hn_1[x]...H2[x}Hl[x] 
= ( /n -2 © CM-1) . . . ( / ! © Cn-M'^Cnlx]'1. 
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Prom corollary 2.5, we have 
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(3) 

For a factorization of the generalized Fibonacci matrix of the second kind, 7Zn[x], we 
define the matrices Mn[x], 1Zn[x] and Nk[x] by 

M0\x} = 
1 
X 

1 

0 
x2 

0 

0 
0 

X2 

, M„1[x} = 
1 0 0 
0 1 0 
0 x x2 

and Mk[x] = M0[x]®x2Ik,k = 1,2,. . . ,nn[x] = [ 1 ] ® V I H » ^ I W = In,N2[x] = 4 - 3 ® 
M_i[x], and, for k > 3, iV&[x] = I"n_& © M&_3[x]. Then we have the following lemma. 
L e m m a 2.6: For k > 3, 

Kk[x] = Kk[x]Mk-3[x]. 

Proof: For k — 3, we have 7J3[a;]Mo[x] = %s[x]. Let k > 3. From the definition of the 
matrix product and a familiar Fibonacci sequence, the conclusion follows. • 

As an immediate consequence of lemma 2.6, we have the following theorem. 
T h e o r e m 2.7: The n by n generalized Fibonacci matrix of the second kind, 1Zn[x], can be 
factorized by JV^'s as follows. 

Un[x} = N1[x]N2[x}...Nn[x). 

Now, we consider another factorization of 7Zn[x}. The n by n matrix Ln[x] = [kj] is 
defined as: 

n j 

FiX
%-> j = l, 

x2 i = jj>2 
0 

i.e., Ln[x) = 
otherwise, 

Ft 
F2x 

.Fnx' n — l 

.. o 

.. 0 

x J 

Prom the definition of the matrix Ln[x], the following theorem holds. 
Theorem 2.8: For n > 2, 

Unix] = Ln{x](h © L»_ i [ s ] ) ( J 2 e £„_ 2 [x ] ) . • • (In-2 © L2{x\). 
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We can easily find the inverse of the generalized Fibonacci matrix of the second kind. We 
know that 

Mo"1!*] "f 
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0 " 
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1 

, MZl\x] = 
"l 
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1 

_ 1, 
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1 

X-Z-

and for k > 1, 

M^[x] = M^[x}®\lk 

Define Uk[x] = N^[x]. Then Ux[x\ = In, U2[x] = N^[x] = J n _ 3 © MZ\[x], and, for k > 3, 
Uk[x] = NjZ^x] = J„_fc © Mj~}3[x\. Also, we know that 

Lnlx]-1 = 

.E2 1 
X X~^ 

-F3 0 £ 

-F4x 0 0 

0 . . . 0 
0 

.. . . . 0 

]fnx ,n-3 0 0 o x 
and (Ik © Ln-k[x]) * = Ik © -Ln_fc[a;] . Then we have the following corollary. 
Coro l la ry 2.9: For n > 2, 

^ [ x ] " 1 = i7„[x]?77l_1[x]...t/1[x] 
= (J„- 2 © i 2 M _ 1 ) • • • (Il © L n - l f x ] - 1 ) ^ ^ ] - 1 . 

From corollary 2.9, we have 

1 

Tlnlx]'1 = 

0 0 

X2 X 3 X^ 
0 - 1 - 1 

X X° X 
1 

0 0 - ^ 

0 
0 
0 
0 

1 1 
^ 2 n —3 x 2 r i — 2 

(4) 

Note that ^ [ l ] " 1 = nn[l]-\ 
Now, we consider a factorization of Qn[x]. In [3], the authors gave the Cholesky factor-

ization of the symmetric Fibonacci matrix Qn[l] as follows: 
T h e o r e m 2.10: For n > 1 a positive integer 

Qn[l} = Tn[l]Tn[l}T. 

From the definition of Qn[x], we derive the following lemma. 
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L e m m a 2.11: For n > 1 a positive integer, let Qn[x] = [qij]. Then 
(i) For j > 3, q3j = F4(F^3 + Fj.2F3)x^\ 

(ii) For j > 4, q4j = F 4 (F i _ 4 + F^4F3 + F^3F5)x^2. 
(iii) For j > 5, «y = [JFi-5*4(l + ^3 + F5) + F i - 4F6F6]a? ' + 3 . 
(iv) For j > i > 6, ^ = [ F ^ F ^ l + F 3 + F5) + F^iF6F6 + • • • + Fj^F^Fi + 

F i _ i + l J F i F i + 1 ] x ^ - 2 . 

Proof: We know that g3,3 = E&=i Ffc X 4 = (Fi2 + Fi + ^ f ) ^ 4 = F3F4xA, and hence 
g3,3 = FAF3x4 = F4(F0 + FiF 3 )x 4 for F0 = 0. By induction, q3j = F4(F^3 + Fj.2F3)x^1 for 
j > 3. Thus, we have (i). 

We know that q\j3 = q3it = F3x2 and q2,3 = *Zs,2 = F4x3. Also, we know that q^i = 
qi,4 = F4xz,q4^2 = ^2,4 = F5x4 and q3^ = q4,3 = -F4(Fi + F2F3)x5 by (i). By induction, we 
have q4j = F4(Fj-.4 + Fj-4F3 + F ^ F s ) ^ ' * 2 for j > 4. Thus, (ii) holds. 

By induction, (iii) and (iv) also hold. • 
Now, we have the following theorem. 

T h e o r e m 2.12: For n > 1 a positive integer 

Un[x]Un-![x] . . . [ / i N S n W - Tn[x)T 

and the Cholesky factorization of Qn [x] is given by 

Qn[x] = Kn[x]Tn[x]T. 

Proof: By corollary 2.9, Un[x]Un-i[x] ...U1[x] = Tln[x}-1. So, if we have Unlx^Qnlx] = 
Tnlx]71 then the theorem holds. 

Note that Qn[x] is a symmetric matrix. Let A[x] — [aij] — TZnlx]"1Qn[x}. By the 
definition of Qn[x] and (4), a -̂ = 0 for j + 1 < i. 

Now we consider the case j > i. By (4) and lemma 2.11, we know that a -̂ = fji for i < 5. 
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We consider j > i > 6. Then, by (4), we have 

ay = -2t-4 * - 2 , j 2J-3 9'"1 J + Z2i^2 * J 

1 
= 1JZ2 W - < ^ ( 1 + *3 + *i>) + Fj-iFsFn + ••• + F^Fi-iFi 

x-

+ Fj-i+iFiFi+dx**-2 

- ^[Z*{Fj-i+iMl + F3 + FB) + Fj-i+iFsFe + ••• + 
x 

F j _ i + 1 F i _ 2 F i _ 1 + Fj-i+tFi-iFilx'+i-3 

~ ~k=i[Fj-i+iFA{l + pz + Fs) + Fj-i+iFsFa + ••• + 
X 

Fj-wFi-aFi^ + Fj-i+sFi-tFi-dx**-* 
= [(Fj-i - Fj-i+t - Fj-wWl + F 3 + Fb) + (Fj-i - F^i+1 

— Fj-_i+2)i?5^16 + h (Fj-i — F j - t + l — i?j-t4-2)i?t-3^i-2 

+ ( F ^ - Fj^F^tFi + l ^ - i + x F i J i + i y - V 

Since JFJ_< - F ^ + i - Fj-i+2 = -2Fj-.i+1,Fj„i - Fj-i+1 - Fj„i+3 = - 3 i ^ -_ i + l 5 and Fj-i -
Fj„i+2 = -Fj-i+i, we have 

aid = F i - i + i [ - 2 F 4 - 2(F3F4 + F4F5 + • • • + * i_ 2 *Ui ) - ^ - 2 ^ - 1 - ^ - 1 ^ + i ^ F i + 1 ] ^ " \ 

Since JF4 = 3 and 

FlF2 + F2F3 + ... + Fi_lFi = F*~> + W-1 " * , 

we have 

- 6 - 2 ( F 2 ( j - 1 ) - 1 + fl-^M -1 _ F i F 2 _ F2F3 

Fi-tFi-i - F^Fi + FiFi+dFj-i+ixi-' 
(1 - 2F i _ 1 F i _ 2 - F 2 i _ 3 - F i - iF i + FiFi+JFj-i+tx*-*. 
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Since Fi+1 = F{ + *i_i and Ff+1 + Ff = F2i+1, 

aij = (1 - 2Fi_1Fi_2 - {Ff_x + Ff_2) + Ff) + i ^ + i x ^ 

= Fj-i+ixf-' 

= fji-

Thus, A[x] = Tn[x\T for 1 < i, j < n. 
Therefore, 7£„[x]-1Qn|x] = Tn[x\T, i.e., the Cholesky factorization of Qn[x\ is given by 

Qn{x} = nn[x}Fn[x}T. U 
example, 
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Since Qn[x]_1 = (<77„[a:]T)-172n[a;]-1, we have 

Qnix}-1^ 

3 
0 
X 2 

0 

£ o 

1 
3 

o _. 

0 
1 

0 
3 

0 
0 
_J 
0 

E 2n—6 

0 

1 

a;2n —4 

0 
2 

E 2 n - 4 

0 
0 
0 
0 

c 2 n - 4 

(5) 

Prom theorem 2.12, we have the following corollary. 
Corollary 2.13: If k is an odd number, then 

(FnFn_fc + . . . + Ffc+1F1)r 2n-k~2 (Fni^fc . ! ) - Ffc)x2"~fc-2 if n is odd, 

I (FnFn-(k-l ) ) X 2n-fe-2 if n is even. 
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If k is an even number, then 

{FnFn_{kml))x2n-k-2 if n is odd, 

(*_!) - Fk)x2n~k-2 if n is even. 
(FnFn.k + • • • + F f c + 1 ^ - f c - 2 = { )F"Fn 

3, E I G E N V A L U E S O F Qn[x] 

Let A be an m by n matrix. For index sets a C { 1 , 2 , . . . , rn} and /? C { 1 , 2 , . . . , n}, we 
denote the submatrix that lies in the rows of 4̂ indexed by a and the columns indexed by (3 
as A(a,/3). If m = n and a = /3, the submatrix yl(a ,a) is a principal submatrix of A and is 
abbreviated A{ot). We denote by A{ the leading principal submatrix of A determined by the 
first i rows and columns, A{ = A({1,2,..., i}), i = 2 , . . . , n. Note that if 4̂ is Heraiitian, so is 
each Ai, and therefore each A{ has a real determinant. 

We know that if 4̂ is positive definite, then all principal minors of A are positive, and, in 
fact, the converse is valid when A is Hermitian. However, in [2], we have the following stronger 
result: If 4̂ is an n by n Hermitian matrix, then A is positive definite if and only if det A{ > 0 
for i = 1,2, . . . ,n . We know that Qn[%] is a Hermitian matrix, det 1Zn[x] = x7^71-1) and det 
Tn[x] = 1 for n > 2. By theorem 2.12, we have det Qn[x] = det(^n[x]J"n[x]T) = xn{n~l\ 
Since x is a nonzero real, we have det Qi[x] > 0, i = 2 , 3 , . . . , n. Thus, the matrix Qn[x] is a 
positive definite matrix, and hence the eigenvalues of Qn[x] are all positive. 

Let Ai[ar], M[%]<> • • - ? An[x] be the eigenvalues of Qn[x]. Since 

k=l 

we have 

{Fn+1Fnx2n~\ FnFn.lX2n"\ ..., FzF2x\ F 2 ^ ) - ^ (Ax[x], A2[x] , . . . , An[x]). 

Let sn[x) = ]T^=1 Ai[x]. Then, 

*n[x] = Fn^Fnx2n~2 + i^ n F n _ ix 2 n - 4 + • • • + F3F2x2 + F2Ft. 

Thus, Ai[l], A 2 [ l ] ? . . . , An[l] are the eigenvalues of Qn[l] and 

F3i ?2, i ;2i ; , i )^(A1[l] ,A2[l] , . . . ,An[l]) . 

We know the interesting combinatorial property 

n — i 
i 

t = 0 
E ""' - ' « • • 
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In [3], the authors gave the following result 

Ai[l] + A2[l] + --- + An.[l] = 
l(Er=o(T)) 'f»i 

is odd, 

is even. 

Also, we have 

3 . . . j 

n n 
^(A1[l],A2[l],...,An[l]). 

So, we have An[l] < ^ < Ai[l], i.e., if n is an odd number then 

Ki=0 
nXn[l}< £ . - l < « A i [ l ] 

if n is an even number then 

»A„[1]< ( E ( n - *)) <«A![1]. 

Suppose that x > 1 and (Ai[x], A2[x],..., Xn[x]) G IX Then, from (5), we have 

-< re2' x4'"""' x2^-6 ' x27i-4 ' x2 7 1-2; \Xn[x]' An_i[x]'"""' Ai[x] 

Thus, there exists a doubly stochastic matrix T = [tij] such that 

3 A A .. 3 2 1 
™2 ' r 4 ' ' " ' ' «.2n-6 > ™2n-4 ' ™2n-2 

So, we have 

i.e. , 

\n[xY An_i[x]'"*"' Xt[x] 

til ^12 
^21 ^22 

tin 
fan 

• tnl t n 2 

o _ ^11 j fal tnl 
Xn[x] Xn-i[x] Ai[x]' 

1 _ *H , *21 . . tnl 
I — ——r-7 + — r^ + ' " ' + 3An[x] 3An_i[x] 3Ai[ar] 
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Since the matrix T is a doubly stochastic matrix, 

in + hi + • —I- tni — 1-

L e m m a 3.1: Suppose that x > 1. For each i — 1, 2 , . . . , n, n > 2, 

3 A* [a] 

Proof: Suppose that tn_( i_1)?1 > ^ f f S i = 1,2,. . . ,ra. Then 

£ n - ( t - l ) , l < 

3Ai[z] 

n - 1 

* i f . _L* ^ 3Ai[g] 3A2[x] 3An[x] 
n — 1 n — 1 

3 

n - 1 

(Ai[x] + A2[x] + .-- + An[a;]). 
n - r 

Since x > 1 and 

Ai[a;] + A2[ar] + '"" + A ^ N = Fn+1Fnx2n'2 + • • • + F3F2x2 + F2Fl > n, 

this yields a contradiction. 

Therefore, £n_(i_i),i < ^ , i = 1, 2 , . . . ,n. D 
In [3], the authors found properties of the eigenvalues of Qn[l] and proved the following 

result. 
T h e o r e m 3.2: Let r = sn[l] - (n - 1). For (Ai[l], A2[l],. • •, An[l]) E P , 

( r , l , l , . . . , l ) ^ ( A i [ l ] , A 2 [ l ] , . . . , A n [ l ] ) . 

Let <T[X] = sn[x] - rk^. Then, we have (<r[x], §, | , . . . , | ) E © and $n[x] = a[x] + I L ^ — 
Y^i=i ^iix)- ^n ^ e n e x ^ theorem, we have another majorization of the eigenvalues of Qn[#]-
T h e o r e m 3.3: Suppose that x > 1. For (Ai[x], A2[x], . . . , An[x]) E ©, we have 

( ^ M , 3 ' 3 ' • • •' 3 ) ^ (AiM> ^ M , • • •, An[x]). 

Proof: Let P = \pij) be an n by n matrix as follows: 

P = 

Pll 
P21 

F n l 

P l2 • 
F22 • 

Pn2. • 

• Pl2 
• F22 

• PTI2 
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where pi2 = n
3x-[x}'1 anc* Pn = ^ ~ (n ~ 1)P*2,« = 1,2, . . . , n. Since T is doubly stochastic 

and Xi[x] > 0, j?i2 > 0; i = 1,2, . . . , n. By lemma 3.1, pn > 0, i — 1 ,2, . . . , n. Then 

. . . *n,l . ^n-1 ,1 . . $1,1 T 
Pl2 + P22 H h Pn2 = Q . r 1 + r 1 H h r 1 = 1, 

3Ai[x] 3A2[x] 3An|xJ 
P»i + (n - l)pi2 = 1 - (n - l)pi2 + (n - l)p;2 = 1, and 

P n +P21 H hpni 
= 1 - (n - l)p12 + 1 - (n - l)p22 + h 1 - (n - l)pn2 

= n-(n- l ) (p i2+p 2 2 + YPn2) = I-

Thus, P is a doubly stochastic matrix. Furthermore, 

x r l . \ r i i i \ r l Ai[x]t„,i A2a;fn_i j i An [x t M 
Ai a; P12 + A2 x p22 + • • • + Xn[x]pn2 = - r : + r 1 + • • • + l \ 

oAi[o;J 3A2[x| 3An|xJ 
1 1 

— o(*n , l + * n - l , l H h * l , l ) = o > 

and 

Ai[a?]pn + A2[x]p2i + • • • + An[x]pni 
- Ai[x](l - (n - l)p12) + • • • + An[a?](l - (n - l )pn 2) 
= Ai[x] + A2[a;] + h An[ar] - (n - l)(Ai[a;]pi2 + A2[x]p22 + h An[x]pn2) 

= «n[a;] - (n - l )g ( t n , i + J n - i , i + • • • + *i,i) 

= crfcL 

Thus, (<r[x], | , | , . . . , | ) = (Ai[x], A2[x], . . . , An[a])P. 
Therefore, 

( ^[^]? 33 35" • •3 3 ) "̂  (Ai[ar],A2[x],...,An[x]). D 

Prom (6), we have the following lemma. 
L e m m a 3.4: Suppose that x > 1. For fc = 2 , 3 , . . . , n, 

<A*[a;]. 
3(fc - 1) 
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Proof: Prom (6), for k > 2, 

1 1 1 1 2 3 3 
Al[x] + X2[x] + ' ' ' + ~h\x] ~ X ^ ^ + ^ = 4 + ̂ 2^6 + ' " + x - 2n~2k ' 

Since x > 1, we have 

Thus, 

TTT + T~r^ + "'" + TTT < 1 + 2 + 3 + • • • + 3 = 3(fc - 1). 
Ai[x] A2[ar] A* [a;] 

^ < 3 ( f c - l ) - f T ^ + - ^ + --. + -^T 1
>) <3(*-l). 

Xk[x] \Xi[x\ X2[x} Xk-i[x)J 

Therefore, 3^-i) - AjfcN- E 

In [3], the authors gave a bound for the eigenvalues of Qn[l] as follows: for A; = 1,2, . . . , n-
2, 

A„-fc[l] < ( * + !) • 
n — k 

3 ( n - l ) ' 

In the next theorem, we have a bound for the eigenvalues of Q„[x] that is better than (7). 
Theorem 3.5: Suppose that x > 1. For k = 2 ,3 , . . . , n — 2, 

S(n-k-l)^K-k[x^^k + 2 - l n 

In particular, 

(7) 

n — k — 1 

a[x] < Ai[x] < 3 n - V - l ) ^ n ( n _ 1 ) , 

1 % . . 2n-3 
< Xn-i[x\ < 3(n - 2) 3 ( n - l ) 5 

and 

3 ( ^ 1 ) * A - w * r 

Proof: By theorem 3.3, we have a[x] < \\{x\ and Xn[x] < | . By lemma 3.4, we have 
afc=7j < xn[x}- Since 

det Qn[x] = &et{Kn[x}Tn[x}T) = xn{n~l) = \i[x}X2[x}...Xn[x], 

2003] 463 



THE LINEAR ALGEBRA OF THE GENERALIZED FIBONACCI MATRICES 

we have, by lemma 3.4, 

1 
S 7 1 " 1 ^ - ! ) ! 

< \2[x],..\n[x}. 

Thus, Ai[x] < T'l{n - l)\xni<n-l\ 
By lemma 3.4, 3 ^ 2 ) ^ ^ n - i W a n d An[x] + An-i[x] < | . So, 

We know that 

An-xN < - - Xn[x] < - - ^ — ^ = ^ — ^ . 

1 1 r n 1 , 1 1 

i.e., | + h 1 < l n n < l + | + h - V So, we have 

1 1 1 _ / 1 1 
n — 1 n — 2 n — k ~ V 2 n — fc — 1 

> Inn — ln(n — fc — 1) — 1. 
Since, by (8) and 

we have 

fc+1 
An-ibN < —^ (Anfa] + An_i[x] + • • • + A n _ f c + i [x]) , 

(8) 

An-fcH < - A; + 2 - In n 
n — k — 1 

Therefore, 

3(n-k-l)-K-k[x]-l k + 2 - In 
ri — £ — 1 
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