THE Q MATRIX AS A COUNTEREXAMPLE IN GROUP THEORY

D. A. LIND, University of Virginia, Charlottesville, Va.

If g is an element of a group G , then $\mathrm{o}(\mathrm{g})$, the order of g , is defined to be the number of distinct elements of G in the set $\left\{\mathrm{e}, \mathrm{g}^{ \pm 1}, \mathrm{~g}^{ \pm 2}, \cdots\right\}$, where e is the identity of G . This is equivalent to defining $o(\mathrm{~g})$ to be the number of elements in the cyclic subgroup of G generated by g. It is an easy consequence that the order of g equals the least positive integer n such that $g^{n}=$ e. If no such integer exists, g is said to be of infinite order.

In an abelian group H (i. $\mathrm{e}_{\text {. }}$, $a b=$ ba for all $a, b \in H$) it is easy to show that the product of two elements of finite order must again be of finite order. Indeed, if $o(a)=m, o(b)=n$ for some $a, b \in H$, then $(a b)^{m n}=$ $(a m)^{n}\left(b^{n}\right)^{m}=e^{n} e^{m}=e$, so $o(a b) \leq m n$. However, this does not necessarily hold in general, as shown in the following counterexample involving the Q matrix.

Let G be the multiplicative group of all nonsingular $2 x 2$ matrices, and let

$$
R=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], \quad S=\left[\begin{array}{rr}
-1 & -1 \\
1 & 0
\end{array}\right]
$$

be elements of G. One can check that $R^{2}=S^{3}=I$, the identity matrix, so that R and S are of finite order. But

$$
\mathrm{RS}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\mathrm{Q}
$$

the Q matrix. Now Basin and Hoggatt [1] have shown that

$$
(\mathrm{RS})^{\mathrm{n}}=\mathrm{Q}^{\mathrm{n}}=\left[\begin{array}{ll}
\mathrm{F}_{\mathrm{n}+1} & \mathrm{~F}_{\mathrm{n}} \\
\mathrm{~F}_{\mathrm{n}} & \mathrm{~F}_{\mathrm{n}-1}
\end{array}\right] \neq \mathrm{I}
$$

for any $\mathrm{n}>0$. Thus RS has infinite order.
(See page 80 for reference.)

