with equality only when $A_{i}=A_{j}$ for all $1 \leq i \leq n, 1 \leq j \leq n$. The application to the Fibonacci numbers F_{n} (with $\mathrm{F}_{\mathrm{n}+1}=\mathrm{F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}-1}$ and $\mathrm{F}_{1}=1, \mathrm{~F}_{2}=1$) is evident from the formula

$$
\sum_{i=1}^{n} F_{i}=F_{n+2}-1
$$

so that we find

$$
\sum_{i=1}^{n} \frac{1}{F_{i}} \geq \frac{n^{2}}{F_{n+2}-1}
$$

with equality only for $n=1,2$.
Zeitlin and Desmond used the Arithmetic-Harmonic mean inequality. Brown used the Schwarz inequality.

Further results are:

$$
\begin{aligned}
& \sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{1}{\mathrm{H}_{\mathrm{k}}} \geq \frac{\mathrm{n}^{2}}{\mathrm{H}_{\mathrm{n}+2}-\mathrm{H}_{2}} \quad, \mathrm{n} \geq 1 \quad \text { (Zeitlin) } \\
& \sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{1}{\mathrm{~F}_{\mathrm{k}}^{2}} \geq \frac{\mathrm{n}^{2}}{\mathrm{~F}_{\mathrm{n}} \mathrm{~F}_{\mathrm{n}+1}} \quad, \quad \mathrm{n} \geq 1 \quad \text { (Hoggatt) }
\end{aligned}
$$

Also solved by D. Zeitlin, John L. Brown, Jr., M.N.S. Swamy, D. Lind, C.B.Ā. Peck, and John Wessner.

SOME BELATED SOLVERS' CREDITS

H-37 Dermott A. Breault

H-48 John L. Brown, Jr., and Charles R. Wall
H-52 C.B.A. Peck, F. D. Parker, and D. Lind
H-57 John L. Brown, Jr., Charles R. Wall, Marjorie Bicknell, F.D. Parker, and M.N.S. Swamy

H-58 David Klarner
H-74 John L. Brown, Jr.
Continued from page 44.

REFERENCE

1. S. L. Basin and V. E. Hoggatt, Jr., "A Primer on the Fibonacci Sequence - Part II, " Fibonacci Quarterly, Vol. 1 (1963), No. 2, 61-68.
