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Relations involving certain special planar lattice paths and certain
sequences of integers have been studied previously [1], [2]. We will state cer-
tain basic definitions which pertain to these studies, develop additional results
involving other planar lattice paths, and finally, indicate generalizations of
these results for lattice paths in k dimensional space, For convenience of
reference some of the definitions are collected together and presentedin Part 1,

The remaining material will be found in Part 2,
Part 1

In Euclidean k-dimensional space the set X of points suchthat p belongs
to X if and only if each coordinate of p is an integer is called the unitlattice
of that space.

The statement that P 1is a lattice path in a certain space means that P
is a sequence such that

1) each term of P is a member of the unit lattice of that space, and

2) if X isatermof P and Y is the next term of P and x; and yj

are the ith coordinates of X and Y respectively, then [xi -Yil =
1 or 0 and for some j, ﬁxj —yjﬂ = 1.
If each of X and Y is a point of the unit lattice in Euclidean k-dimensional

space, then the statement that the lattice path P is a pathfrom X to Y means

that P is finite, X is the first term of P, and Y is the last term of P, If
P is a lattice path, X is a termof P, and Y is the next term of P, then
by the step [X,Y] of P is meant the line interval whose end points are X
and Y.

A lattice path P in Euclidean 2 or 3-space is said tobe symmetric with
respect to the line k if and only if it is true that if X is a point of some step
of P, then either X is a point of k or there exists a point Y of some step
of P such that k is the perpendicular bisector of the line interval [X,Y ]

Suppose that S = [(x4,yy), (X5,y5)] is a step of some lattice path P in
Euclidean 2-space. 8 is said tobe x-increasing if x, -x; = 1 and x-decreasing
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if xy -xy = -1, The terms y-increasing and y-decreasing are similarly
defined, A step is said to be xy-increasing if it is both x-increasing and

y-increasing, To say that S is x-increasing only means that S is x-

increasing but neither y-increasing nor y-decreasing, P is said to be x-

monotonically increasing if and only if it is true that if X is a step of P,

then £ is not x-decreasing, The term y-monotonically increasing is simi-
larly defined. Astep X is said to be vertical if it is neither x-increasing nor
x-decreasing. A step X is said to be horizontal if it is neither y-increasing

nor y-decreasing, The statement that the path P is duotonically increasing

means that P is both x-monotonically increasing and y-monotonically

increasing,
Part 2

In Euclidean 2-space a path from (0,0) to (n,n) is said tohave property
G if and only if:

1) it is duotonically increasing,

2) it is symmetric with respect to the line x+y = n, and

3) no step of it which contains a point below the line x +y = n is

vertical,

A path having property G will be called a G-path,

Theorem 1 (Greenwood)

Let g(0) = 1 and g(1) = 1, For each positive integer n = 2, let g(n)
denote the number of G-paths from (0,0) to (n -1, n - 1), The sequence
{g(0), g(1),°+-,gM),---} is the Fibonacci sequence,

Proof, By definition g(0) = g(1) = 1. Suppose n = 2, The only G-paths
from (0,0) to (1,1) are {(0,0),(1,0),(1,1)} and {(0,0), (1,1)}, thus g(2) = 2,
For n = 3, the G-paths from (0,0)to(2,2) are {(0,0),(1,0),(2,0),(2,1),(2,2)},
{(0,0),(1,0),(2,1),(2,2)} and {(0,0),(1,1),(2,2) }, so that g(3) = 3.

Suppose n = 4, Each G-path from (0,0) to (n -1, n - 1) has as its
initial step either [(0,0),(1,0)] or [(0,0),(1,1)]. If a G-path has as its initial
step [(0,0),(1,0)],then,because of symmetry, its terminal step is [(n-1, n-2),
(n -1, n-1)];andthusit contains as a subsequence a G-path from (1,0) to
(n -1, n - 2), But the number of G-paths from (1,0) to (n - 1,n - 2) is the
number of G-paths from (0,0) to (n-2, n-2), i.e,, gn-1).

Likewise, if a G-path has as its initial step [(0,0), (1,1) ]s then its

terminalstep is [(n -2, n - 2), (n -1, n-1)], andit contains as a subsequence
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a G-path from (1,1) to (n -2, n - 2)., The number of such G-paths is the
number of G-paths from (0,0) to (n -3, n- 3), which is g(n - 2), Thus
gn) = gn - 1) + gn - 2),

The statement that a path in Euclidean 2-space has property H means
that it has property G and is such that one of its terms belongs to the line
x+y = n, A path having property H will be called an H-path,

Obviously, if n is a positive integer, then the set of all H-paths from
(0,0) to (n,n) is a proper subset of the set of all G-paths from (0,0) to
(n,n); yet,using an argument similar to the above, we may establish the
following,

Theorem 2,

Let h(0) = 1 and,for each positive integer n, let h(n) denote the num-
ber of H-paths from (0,0) to (n,n). The sequence {h(0),h(1),--,h(n),--- }
is the Fibonacci sequence. '

An obvious but interesting corollary is that the number of H-paths from
(0,0) to (n,n) is the number of G-paths from (0,0) to (n -1, n~ 1),

Greenwood has discussed G-paths [1] . A method of enumeration dif-
ferent from that used by Greenwood leads to the following [ 2].

Theorem 3,

Let

z(1,i) = 1,

z(2,1) = [i ; 1] . where [] denotes the greatest integer function,
z(3,i) = z(3,i-1) + z(2,i-1) ,

z(4,i) = z(4,i-2)+2z(3,i-2) ,

z(2n,i} = z(2n,i-2) + z(2n - 1,i - 2),

z2n+ 1,i) = z(@n+ 1,i -1) + z(2n,i - 1) ,
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‘with the restriction that z(k,i) = 0 if k >i, For each positive integer i,
let

The sequence {f(i) ]i =1,2,..- } is the Fibonacci sequence,

The proof is direct and is omitted. A geometric interpretation of the
numbers z(k,i) and f(i) is given in [2].

It is interesting to note the sequence obtained by considering paths in
3-space that are analogous to H-paths in 2-space, In Euclidean 3-space,a
path from (0,0,0) to (n,n,n) is said to have property F if and only if it is
such that:

1) it is symmetric with respect to the line z = (n/2) in the plane x +

y=n,

2) if the step [Py, P,] of it is z-increasing only, then P, belongs to the

plane x+y = n,

3) if S is a step of it which is not z-increasing only, then either S is

x-increasing only, y-increasing only, or xyz-increasing, and

4) some term of it belongs to the plane x+y = n.

We will call a path an F-path if it has a property F.

We define f(0) = 1; and.,for each positive integer n, let f(n) denote the
number of F-paths from (0,0,0) to (n,n,n), We note that (1) = 2 and f£(2)
=5, If n>2, then each F-path has as its second term either (1,0,0),
(0,1,0), or (1,1,1), If an F-path from (0,0,0) to (n,n,n) has as its second
term (1,0,0) or (0,1,0), then it has as its next to last term (n,n -1, n) or
(n -1, n, n) respectively, The number of F-paths from (0,0,0) to (n,n,n)
which have as their second term either (0,1,0) or (1,0,0) is the number of
F-paths from (0,0,0) to (n -1, n -1, n - 1), Hence,the number of F-paths
from (0,0,0) to (n,n,n) whose second term is either (1,0,0) or (0,1,0) is
2f(n - 1). Similarly, the number of F-paths from (0,0,0) to (n,n,n) whose
second term is (1,1,1) is f(n - 2), Hence,if n > 2, then f(n) = 2f(n - 1) +

f(n - 2),
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It is noted that the expression f(n) = 2f(n - 1) + f(n - 2) is the special
case of the Fibonacci polynomial fn(x) = xfn_i(x) + fn—z(x) for fy(x) = 0,
fix) = 1, and x = 2,

Using the methods of finite difference equations we may obtain an expres-
sion for calculating f(n) directly. Consider again the recursion relation f(n)
= 2f(n - 1) + f(n - 2) in the form of the second order homogeneous difference

equation
fm + 2) - 2fn + 1) - fm) = 0 .
The corresponding characteristic equation
r> -2r -1 =0
has roots
ry = 1+n~N2 and Ty = 1 -N2 ,
The general solution of the above difference equation is

fn) = Cy1 + NN + Co(1 -2 .

Using the initial conditions of £(0) = 1 and £(1) = 2, the constants C; and

C, are found to be
(N2 + 1)/242 and (N2 - 1)/242

respectively, so that we have finally

_ @+ \fi)nﬂ - a - @)11+1
2 N2

f(n)

An analysis similar to that used to obtain the recursion relation for
F-paths in 3-space suffices to show that in k-dimensional space the number
of paths from (0,0,0,--.,0) to (n,n,n,--.,n) that are analogous to F paths

in 3-space satisfies the recursion relation f(n) = (k - 1)f(n - 1) + f(n - k + 1),
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