ON SUMMATION FORMULAS AND IDENTITIES FOR FIBONACCI NUMBERS

DAVID ZEITLIN, University of Minnesota, Minneapolis, Minnesota

1. REMARKS ON THE PAPER OF BROTHER U, ALFRED

Alfred [1] has shown that

n-i m
m _ i i m
(L.1) Zk Frg = Z( DF 3@ ) +Cp
k=0 i=0 :

where C; is a constant independent of n and Ag() = g(n + 1) - gn), with

Alg(n) = A(Ai—ig(n)). The following result yields (1.1) as a special case:

Theorem 1, Let Hp4y = Hpyy+Hp, n = 0,1,°°-, with Hy =P and

H; =, Thenfor n=1,2,-°+, we have

n-i m m
. m i. i s
L2) ) KTH, =" (S) D 1) (i) FyiGmos [n
k=0 s=0 i=0
m m
m i. i s
JrHmrﬂz (S) Z('l)l(lf)inﬂGin—s n” + Cy
$=0 i=0
(r,m: 0:1:°"):
where
m m
i, i i, i
(1.3) Cp = -H_ D (-1)'(!)F3iGm - Hreg ) (1) () FrirCm
i=0 i=0

(r,m=0,1,°°),

and Gin (see [2]) are Stirling numbers of the second kind with the properties
that Gl =0 if i #0, G =1, i=0,1,-+-, G =0 if i#0, and G = 0
if i > s,
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Proof of Theorem 1. We assert that

n-1 m
(1.4) E kak+r = E -1)'Hyjimsr+ 8 @) + Cy
k=0 i

We notethat if Agl) = Ah(n), then gln) = h{) + Cy. Thus, using the A oper-

ator on both sides of (1.4), we obtain

m
@5 2, = D DHimirn e ¢ D7
1=0
m
- D Byt A ™)

i=0

Since @ + )™ - 2™ = A0™), wehave Ai(n + 1) = Ai(nm) + Ai+1(rlm ) Thus,

since Hp+y = Hp+y + Hp, (1.5) simplifies to
m .
m j j+1, m
(1.6) nH L= E ) Hjinirnd ™)
j:::
m
+ E (1) HyjmarA @™ ).
i=0
Let j+1 =i in the first sum of (1.6). Since Am+1(11m) =0, the right-hand

side sums cancel, except the term for i = 0, which yields ann 4p°

We proceed now to simplify (L.4), Since [2, Pe 9]

. o i
(1.7 Algl) = 1)t E (-l)k< )g(n+k) @ = 0,1,°°°) ,
k
k=0

we have for gm) = n'"
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i
i, m, _ i k(i m
(1.9) Aa™ = 1) e (k)(n )
k=0
i m
_ i k(i m\ ., m-s s
" Z(—l) (k)z (S> K8,
k=0 0

|S=

m 1

= Z (‘sﬂ) ns(-l)iz (¥ G{) S

s=0 k=0

since [2, p. 169, (3)]

i
o) viael - ) enk (11{) K (= 0,100 ,m) .
k=0

Buschman [3, p. 6, (12)] showed that
(1.10) Hoo = FH _ + P B
and thus from (1.10), with s = 2i and p = n+1r + 1, we obtain

(1.11) Hyij+n+r+1 = Failptr + FaitiHn+r+

Using (1.11), we obtain from (1.4)

n-1 m
m _ i, A, m
(1.12) E k Hk+r = Hn+r E (-1)Feid )

m
i i m
N Hn+r+12 :('1) in+1A(n )+ Ce
i=0
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If we substitute for Ai(nm) in (1,12) by (1.8), we obtain, upon interchanging
summations, (1.2). Add ann o to both sides of (1.2). Then, for n = 0,
all terms in the sums are 0 except for s = 0, and so we obtain C, as given
by (1.3).

If p=0and g =1, then H =F , and Cp (1.3) yields C; in (1.1).
For calculation purposes, (1.2) is more suitable than (1.,1), since Stirling num-
bers are tabulated. Moreover, (1.2) and (1.3) are inthe simplest formpossible.
Using the properties of Fn and G;, we note that the coefficient of Hn 4y I

T
(1.2) is a polynomial in n of degree m - 1, while the coefficient of Hn I
is a polynomialin n of degree m.

The following result is a generalization of Theorem 1:

Theorem 2, Let

P(x) =Zajxj, a £0 ,

=

where aj, j =0,1,°°*,m, are constants, Then for n = 1,2,°°°, we have

n-1 mjm m
_ i, . j\~1 s
(1.13) E PRH, , = Hn+r§ E (-1)" (i) Foi E aj(s)Gj-s n
k=0 s=0 | i=0 j=sti
m[m m
i, 3 j\~1i (Ls
+Hn+r+1}__: Z("l) () Foiq Zaj(s)Gj—s n~ + Cg
s=0 | i=0 j=s+i
(r,m = Oala"'),
where
m m
(1.14) C3 = —Hrz -1 )szZa].G;
i=0 j=i

m m
z : i, Z i

- HI"H. ("'1) (1! )F21+1 a_]GJ
i=0 j=i

r,m = 0,1,--°).
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Comments, If aj =0, j=0,1,o¢+,m-1, and a = 1, then (1.13)
and (1.14) reduce to (1.2) and (1.3), respectively. A special case of (1,13)
occurs when

m
coo(k - ZE:jj
k(k = 1)eee(k - m + 1) Smk )
=1

where (see [2, p- 142]) S r]n are Stirlingnumbers of the first kind, Then, since
(m) _ k
k = m! (m » we have

n-1i n-1

z : (m) _ k ’ -
k Hk+r~m! m Hk+r M =m+1, m+ 2, ).

k=0 k=m

Moreover, since a:i = Sr]n’ j=20,1,°"°,m, we have

m m

Yol -Sosiel - (wli)- bk
7] mj m-i 0 if i

= =

ol
BB
—

(see [2, p. 182, (1)]). Using (1.10), we obtain from (1.14)

(1.15) C5 = (™

+1

(m!) (FamHy + FymaiHrr) = D7 () Hymer+g

It should be noted that Cs in (1.14) was obtained from (1.13) for n = 0. For
Pk = k(m), the same value of Cs (1.15) is also obtained from (1.13) for
n=01+,m-1 (m 21). Let P =k™ in(1.13), where a = sgﬂ, and
let (1.13) be written as follows:

n

(1.16) Zk(m)Hk+r - n(m) Hn+r
k=0

- m
= Ll(m’n)Hn+r + Lz(m,n)Hm_r_l_1 - 1) (@m!)H

°

2m-+r+1
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We obtain from (1.16)

(1917) (—1)m(m! )H2DG+I'+1 = Li(m, n)Hn+I- -+ Lz(m, Il)Hn+r+1
m=0,1,°°°,m - 1),

From (1,10) with p =n+r+1 and s = 2m - n, we obtain
(1.18) Hom+r+t = Fom-nHn+r + Fomttennir+1 o

If we substitute for Hym+p+q in (1.17) by (1.18) and then equate coefficients of

Hy4p and Hpipsy in (1.17), we obtainthe following identities:

m{m m
m = z : Lo yF: 2 : i) qd ol S
(1.19) 1) () Fem-pn = (-1) (i) Fy <s> SmGj—s n
8=0 }i=0 j=s+i
(n: 0’1’oou,m_1; m=1,2,'“),
mf{ m m
m i/ j j ~1 s
1.200 D™ @!)Fympisy = Z ) Fiaq Z (;) slcllln
s=0 i=0 j=s+

= 0,1,°*°,m-1; m = 1,2,°*°).

By repeated additions, one obtains {interchanging summations inthe final result)

m m m
1L.21) D@ Fpmigen = Z(—l)i(i!)in+kZ Z <;>sr3n Gji__s n®
=

5=0 \j=s+i

&k =01-;n=0,1,-*»,m-1; m = 1,2,-)

Proof of Theorem 2. Noting that AmHP(n) = 0, we find, imitating the

proof of Theorem 1, that
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n-i m
E P(k)Hk+r = E (—-1)1Hzi+n+r+1 AIP(n) + Cg
k=0 i=0
m m
_ i i i :
= H .. E (-1)'Fp; A P() + Hpirty E (-1)'Fyi41 A'P(n) + Cq
i=0 i=0
Since m m
Pm) = E aJnJ, A'P@) = E a.a'@)
=0 j=0

and using (1.8), we have

m m m
ZO(—l)leiAlP(n) = Z(-—l)lei Zaj Ale)
i= i=0 j=0

m m j
= - i . i1 ] i S
E (1) Foi E aj(l.)z<s) Gj—sn
i=0 j=0 s=0
m m ( m
= = i, o3 j i‘ S
> etar ) 1y :aj(s) Gl ln
i=0 s=0 \ j=s
m [ m m
= - i 3t . j i S
E g ( 1) (ln )le aj <S> Gj—-S n 9
§=0 | i=0 j=s+H

" since

m j m m

ZZf(s,j) = ZZf(s,j) and Gji_s =0 if j-s<i .
j=0 s=0 s=0 j=8

The value of Cs is obtained from (1.13) for n = 0.

2, REMARKS ON THE PAPER BY R. REICHMAN

The operator A, where Agh) = g(n+1) - gln), is referred to as the
forward difference operator, while the operator V, where Vg) = g(n) -gl~1),
is referred to asthebackward difference operator, Indeed,

i i
(2,1) Vig(n) = Z(-l)s (;) gln - 8) = (—1)123(—1)k (i{) g ~i+k) .
5=0 k=0
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If we compare (2.1) and (1.7), we note that

(2.2) Vig(n) = Aig(n - i) (i = 0,1,°0°) ;
and if g) = n™, we have
(2.3) Vi(nm) = Ai(n -)™ G =0,1,°c,m+1),

Reichman [4] gave the following results:

©.4) Z Z(-l) P iVin™) + ¢,

i=0
n m .
(2.5) kasz = Z(—1)1F2n+1—ivl(nm) + Cs
k=0 i=0
n
(2,6) kaFZk_1 = Z(—l) Fa iV (™) + Cg .
=0 i=0

Rao [5] generalized (2.4) and gave

n

m
@.7) kank - Z D g VI ™) + CF

k=0 i=0

The following results contain (2.4), (2.5), (2.6) and (2.7) as special cases.
The notation is consistent with Theorems 1 and 2,

Theorem 3, For n = 0,1,°c°3r = 0, 1, 42, **+, we have
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n
@8 D PloH
k=0

m
i, i (i) i
1'G@)F, z 1)'a, (s) G| p°

j=s+i

m
= -Hm+r§ -1)°
S=0

m ) m m ’
+ Hoptr+t E -1)° (‘1)Sas +Z(_1)l(i!)Fi—1 Z(_l)Jaj(;)GJ'l-S' -
s=90 i=1 j:S+i

+C7 (m: 071>°'°)’

where

m m
@9  Cr = H|a +E(—1)i(i!)Fi Z(—l)jajG§
i=0 j=i

m m ¥
- Hpag |2 + ) D' P (Dlagl].
i1 =i

Proof of Theorem 3. Since VPm + 1) = P + 1) - Pn), we have
viPrm) = ViPm + 1) - VP + 1), and VP + 1) = 0. Thus, imitating
the proof of Theorem 1, we find that

n m
Z:P(k)szﬂC = Z(—1)1H2n+r+1_ivlp(n) + Cq
k=0 i=0
m m . .
- H2n+r2(-1)iF_iViP(n) + Hypprr Y (D'FyiV'P@) + Gy
i=0 i=0

since Hyn+p+i-i = F_jHon+r+ Fy-iHan+r+1, which is obtained from (1.10) where
2n +r + 1. Using (2.1) and (1.9), we obtain

I

S =-iand p
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- - . j .
W= i Z :(-1)S<JS)G1
S=0

Since

m

vipw) = Zajvinj ,

=0

we have

Z(—l)F VP —ZuF ZZ(-DS“LJ () i_snS

- imo 5=0 .
- Zi! F_iz<—1)snsz(-1)jaj (]s) G‘jj[—s
i=0 §=0 j=s
Z(—l) Z'F. Z(l)] () ol |n®.

=s+i

Additional s1mp11f10at10ns are obtained by noting that F_ i = (—1)1-!_1 and

F o)) T (-1) F _,» The value of Cy is obtained from (2.8) for n = 0.

Comments, We notethat (2.5) and (2.6) are special cases of (2.8). Suppose
now

m
P = (™ - Z(-vjsjnkj

Since (-k)(m) = (<K)(-k-1)e** (-k-m+1) = (-1)™'k(k + 1)e+ (k + m - 1), wehave

n

k+m-~-1
Z(-k)(m)sz+r = 1) (m'>z< ) Hylrr s

k=0
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-

Thus, from (2.9), with a; = 0 and aj = (—1)]'81:';[19 j = 1,°°°,m, we obtain
(using (1,10))

and
m

m

SRS T B jai 1 if i

(2.10) E,(l) aJ.Gj smGJ [0 pra
=i

=i

N S

2.11) Cr = (D)F H -F_H_)

= —(m,!)(F_er * Fi—erﬂ) = -(m! )Hr+1-m

The following result, derived via forward differences, is an alternate
form of Theorem 3, which was derived via backward differences.

Theorem 4, For n = 0,1,¢¢e; v = 0, 1, 2,22+, we have

n
2.12) Zp(k)ﬂzk+r
k=0

m m m
— i, ] i s
= Hop+r E (-1) (L'»)Fi_2 E aj (s) Gj-s n
s=0 |i=t j=s+i
m [m m
+H 1)) F; z a (1) el tpf+c
an+r+i 1Fj1 ils is 7
s=0 | i=0 j=s+i
(m = 0’ 1’0 ° -) )
where
m m m m
i i i,. i
(2.13)  Cqg=H |ag~- E (—1)1(11)Fi_2§ ajG; - Hyty (—1)1(1:)Fi_1§ aGil .
i=1 j=i i=0 j=i

Comments. If we compare (2.8) with (2.12), we conclude that for arbi-

trary 255 j=0,1,°°°,m,
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(2.14) (—1)S+1 1) (1.)F Z(—l)J () al

j=s+i
m m
= — i i1 . j 1
E 1) F, E 2 (S> GJ_S
i=1 j=s+i

(s = 0,1,°++,m - 1);

@.15) (1) Z( D Fi Z 1), () Gl

j=s+i

m m
- Z{.-l)l(iz )Fi-q Z a; (i) Gl_
=

j=s+i

(s = 0,1,"",:[!1) .

For a, = srln, j=0,1,+,m, (2.14) and (2.15) with s = 0, yield (noting (2.10)),

respectively,

m m
m-1, _ i, gl Al - cao) .
2.16) (D™ ) Fy,, _Z<_1> (L)FiZ(—l) sJG)  m=1200)

m m
@17 DPm!)Fy =Z(-1)i(i!)Fi_1Z (_1)jsxjnG§ (m = 0,1,°°°) .
Addition of (2.16) and (2.17) gives

@.18) (1™ (m!)Fp,_ —Z( 1l >F1+1Z<- Mslal =1z

Since L][1 = Fn ut Fn- 0 addition of (2.17) and (2.18) gives
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@19) D™ L, —Z(-l) (it )LIZ‘ Disich =1z

i=0

We note that (2.17) may be written as
@.200  m!)Fy,_i[-1+)™] = Z( i) F Z( 1)JSJ
(m = 1,2, )

Thus, for m = 2n, n = 1,2,°°-, (2.20) gives

2n-1 2n
@.21) Z (—1)1(1!)}5‘1_12( pis] l L0 =1z
i=0 =1

Since ([2, pp. 149, 171))

n-1 _ 2n\ _ on-1
Son _'(2>_"G2n ’
(2.21) may be written as
m-2 a L
(2.22) (2n)! @n - DFyy_y = z D) Fiq E (-1’s),G:
=0 j=i
(n = 17 2, ° 00

Suppose now

m
Pl = k™ =Zs}3;nkj
j=1

13
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in (2.12). Noting (2.10), we obtain from (2.13)

@2.23)  Cp= (1™ mt)(Fm_oHy + Fm_iHr) = D™ m! ) Hpimog

If we rewrite (2.12) as
‘ n
(2.24) E k(m)H2k+r = Litm,n)Hpir + Lylm,n)Hypirsq + C;
k=0
we obtain from (2.24)

2.25)  -D™m!)Hppy 1 = Lim, n)Hyptp + Ly(m, n)Hypspty @=0,1,-,m-1) .

From (1.10) with p = 2n+r+1 and s = m - 2 - 2n, we obtain

(2.26) Hytmot = Fm-g-onHon+r + Fm-i1-anHon+r+1

If we substitute for Hyy.,_ 4 in (2.25) by (2.26) and then equate coefficients of

Hon+y and Hyptr+y in (2.25), we obtain the following identities:

m m m
@27 1D™m!)Fme soom =Z Z(—l)l(i!)Fi_z Z (JS ) shal gl [o°
j=s+i

s=0 | i=1

m m m
.28 (1)™m)Fypsom =Z Z(—l)i(j!)Fi_i Z (JS) sll;nc;ji_s n®
s=0 | i=0 j=s+i

n=01,--,m-1;, m=1,2,-*)

Proof of Theorem 4. It is readily verified that




1967] AND IDENTITIES FOR FIBONACCI NUMBERS 15

n-1 m
(2.29) E P()Hykry = E 1)'Hpnir-14i A'P@) + Cy
=0 i=0

m
Hopsy| -P@) +Z )'Fy, Alpm)

i=1
m
+ Hoptr+1 E ¢1'Fi_; A'P) + C¢
i=0

since Hypip_1+i = Fi-gHop+r + Fi-iHyp+r+i, which is obtained from (1.10)
where s =i-2 and p = 2n +r + 1. The simplification of (2.29) to the form
(2.12) proceeds in the same manner as in the proof of Theorem 2., The value
of Cy (2.13) is obtained from (2.12) for n = 0,

The following result, derived via backward differences, is an alternate

form of Theorem 2, which was derived via forward differences. Since

1

m
D D g VPO + G

i=0

n
(2.30) ZP(k)Hk_I_r
k=0

m
Hyip [P@) +Z(—1)1Fi+1ViP(n)
i1
m
+ Hn+r+1z CDFVP@ +c

i=0
Wwe may now state
Theorem 5, For m = 0,1,°°°;n = 1,2,°°° ,
- m m
=1

n-i m
- s o J J i 8
(2.31) E PH,, = Hn+r§ {-1) z it Fiqg E (-1) 8 <S> Gi g |n
k=0 8=0 i j=s*i |
m m m
+H (-1)5 it F; -da. (1) al n°
n+r-+i - s hit2 ils j-s
S=0

i=0 j=s+i

+Cy
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where
m m m m

(2.32)  Cy = -Hp ) ilFiy Z(—I)JajG; - Hrs1) il Fiag Z(-l)JajG;
i=1 j=i =0 j=i

r,m = 0,1,°°¢) ,

Comments. If we compare (1.13) with (2.31), we conclude that for arbi-

trary aj, j=10,1,e00,m,

m m
(2.33) DCD@IT| Y 2 (33) Gy
i=1 j=s+i
m m . .
= (D®) ) #F| Y -D'a (JS) G
i=t j=s+i
(s=0,1,°"*, m-1) ;
m m
@34) D DU Faar] Y. a, (;) Gy
i=0 j=s+i

m m
EVIPICE Ny oia (i) i
= (-1) Z il Fyap Z 1'a, (s) G g
i=0 j=s+i
(5:011:"'3 m) .
For a; = (_1)351311, j=0,1,-+-,m, (2.33) and (2.34) with s = 0, yield (noting
(2.10)), respectively

m m
(2.35) miFyy = Y CD'EDF Y (Ds) G]?
i=1 =i

(m = 1:2"'") H
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m m
. L
(2.36) miF ., = Z(—l) (1!)F21+1Z(—1)JSIJnG; (m = 0,1,07+) .
i=0 =i

Suppose now

m
Pk = (0™ = 3 (plsid
it

in {2.31). Then

n-1i n-1
(m) _ m k+m-1
2 0™ = (0T mn Y Sl S
and from (2.32) we obtain
{2.37) Cs = -m!)(Fm+iHy + Fy+Hr+) = -mD)Hm4r+g

We note that (2.4) and (2.7) are special cases of (2.30).

3. ADDITIONAL RESULTS

In terms of forward differences it is readily verified that

n-1 m
i—ict i
(3.1) > P®Hgy = S 02 i 101 AP@) + Cy
k=0 i=0

m
i .
H3n+rz (-1)'27 Py, A'P)
i=0

m
e .
+ H3n+r+1z 12 Ey, A'PR) + Gy

i=0

17
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Moreover, in terms of backward differences, it is readily verified that

n m
3.2 Y PMHer = 3 D2 Hyniari VPO + G
k=0 i=0
m .
= Hypir ) D2, viPm)
1=0

m
i )
+ H3n+r+1z -2 Fz_iVIP(n) + Cg .
i=0

The following result is a restatement of {3.1) and (3.2):

Theorem 6, For n = 1,2,°°°; r = 0,%1,42,°2», we have

n-1 m [m m
- iy omiete | i L
(3.3) Z PHzk+r = Hpr Z Z (-1)"GN27 " Fyig Z 8 (S) Gj—s
k:O s=0 { i=0 j:s+i |
m{m m
1jigye—i-1 j i
+HSn+r+1Z Z(—l) ()27 Faig Z 8 (Js) Gj—s
s=0 | i=0 j=s+i
+ Cg (m = 0,1,-++) ,
where
m m
- ipeyo—i-1 i
(B4 Gy = -Hp ) (1627 Fy,| ) a0
i=0 j=i
m m
iyo—i-1g | i
- HI‘+1 E ('1) (1!)2 F21_1 Z aJGJ
i=0 j=i

For n=20,1,°-: v = 0,%1,£2,--+, we have
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n m " m m
39 L PWHr = A 3 (0% T2 e 3 oy (1) ol |
k=0 s=0 i=0 j=s+i
m m m
s sy o—i-1 j j i §
e 3 07| T e 3 eyl | b
=0 i=0 j=sH
+ Cg (m =0,1,°-°) ,
where
i m
(3.6) Cg=Hplag-Y i277F, ;1> 1lag
g = Hr| 2 Z 1-i Z( )'a,G;
i=0 j=i
m m
Lol i
- Hpyg ) i127 T Fagl )0 1) a,Gy
i=o0 j=i

Comments. Add P{n)Hzp+y to both sides of (3.3). Then, comparing (3.3)

and (3.5), we conclude that for arbitrary aj, = 0,1,°°°,m,

m ‘ m
iy o-im1, i\ .i
3.7 a+ Z -1)' @2 FZH' Z 2, <S) Gy
i=0 j=sH
m m
_ s Lo—i-1 . j j i
= (D) w2 Ty > ¢ aj(s) G g
i=p j=s+i
(S = 0’ 1,' :m) H
m m
i omiedn, i\ Ai
(3.8 D (D' Fag| Y aj<s) G g
i=0 j=sH

m m

B S R 5 | i. (] i - oes

= D% Y 2T TR | ) D) aJ.(s) G gl G-0Lm
i=0

j=s+i
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For a, = ijn’ j=0,1,2++,m, (3.7) and (3.8) with s = 0, yield (noting (2.10)),

respectively

m m
2 1o~ M-1 = it -i-1 : _ igh gt = oso

(3.9) m! 27 Py 21.2 Fy-i Z( V)Gl =120,
= —
m

(3.10) m! 2 g = Y it IR, E (‘1)331311(}; m = 0,1,°+°),
i=0 i

which maybe simplified by noting that ¥y_j = (—1)1Fi_1 and Fy_j= (—1)1+1Fi_2,
I oa = »'s), j =01, ,m, (.7 and (3.8) with s = 0 yield,

respectively,

(3.11) ()2 ™ F
m m
= Dent a2 Ry Y (s e mo= 1z
: =
(3.12) —(mz)z‘]““‘1Fm_2
Z (IRCE R E v's]c (m = 0,1,-**)

By repeated additions, (3.9) and (3.10), as well as (3.11) and (3.12), give similar

identities for Lucas numbers, Ln
Suppose now

m
Pl = k™ = Y sdid
j=
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in (3.3). Then, from (3.4), we obtain

+1 -m-1i
DM mn2 M (FymgHy + Fym-gHr4q)

Csg

+{ - -
1™y el

From (1.10) with p = 3n+r+1 and s = 2m - 2 - 3n, Wwe obtain
Hom+r-1 = Fom-2-snHsn+r + Fom-1-snHsn+r+1 .

If we substitute for Cg in (3.3) and then equate coefficients of Hgp+r and

Hsn+r+1, we obtain the following identities:

3.13) D™ m)2 ™ Fomozosn

m m m
_ iy yomitin i) o A S
- Y T e e 3 (Y shel |
s=0 | i=0 j=s+i

m=0,1,o++,m-1; m=1,2,2--),

(3.14) (—1)m(m!)2—m—1F2m—1—3n

m m m
S i) o i s
= 2D enlan2 g Y (S) SRR )
s=0 | i=0 j=s+i

= O,l,‘“,m—l;m=1,2,--~).

Suppose now

m
P = (0 = 3 elslid
=
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in (3.5). Then from (3.6), we obtain

—-m-1 -m-1
Cg = -m!)2" ™ (F By + FoomHr+t) = -@)2 " Hyipem .

4., GENERALIZATIONS

Let a, b, Uy and Uy be arbitrary real numbers, and consider the follow-

ing three sequences:

(4:-1) Un+z = aUn+1 + bUn, ab = 1, a 7é -1, (n = 0, 1,'“") )
(4.2)  Up+y = alps + Up, a # 0, n=0,1,°°°) ,
(4.3)  Up+a = Up+q + bUp, b = 0, = 0,1,+) , .

We note that (4.1), (4.2), and (4.3) reducetothe Fibonacci sequence for the proper
choices of a and b. We shall obtain summation formulas, using both forward
and backward differences, for each of the three sequences, as defined by (4.1),
(4.2), and (4.3), which yield the previous results, i.e., Theorems 2, 3, 4, 5,
and 6, as special cases for the proper choices of a and b, We have already
seen how certain procedures may be used to obtain various identities from our
Theorems 2,+°°,6, In view of space limitations, no attempt will be made to
usetheseprocedures to fully exploit the general results obtained inthis section.
Identities given in the proofs of Theorems 2 and 3 will be used to obtain the
explicit formulas cited in our general theorems, whose proofs are similar to
that used for Theorem 2 (if forward differences are involved) or to that used
for Theorem 3 (if backward differences are involved). We shalluse repeatedly

the following identity [3, p. 6, 12]
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(4.4) Up+s = bobsUp-y + ds+Up

where ¢; = 0, ¢; = 1, and ép+y = app+{ + bep, n = 0,1,°°-. We note that
(4.4) yields (1.10) for a = b = 1. All results in this section are valid for the
parameter range, r = 0, 1, +2,..., P(k) (see Theorem 2) is defined as

before. For negative subscripts, we define
(4.5) U_p = (UVn - Up)/(-b)n o =1,2,°") ,

where Vo = 2, Vi =a, and Vp4y = aVp4+ +bVpy, n = 0,1,°+- . We note
that ¢_p = b /D)2, n = 1,2,°°+ .
(i) Let U, satisfy (4.1). Since

n-1 m
@6 Y PWUger = 3 D@ + D)7 Ugner_paai AP0) + Cy
k=0 i=0
o .
= DUger 3 D@2 + 07y, ATPE)
i=0
m .
+U3n+r+1z 12 + b)_i—1¢2i_1 A'P@) + CF
i=0

and

n m
(4.7) Z P Usletr Z(_nl(az + b)) Wsnirte-i V' P@) + Ch

k=0 i=0
m
. o
= DUspar 9 (D@2 + D)7y V'P@)
i=0

m
b Ugprt 3 CDa2 + 07y VIP@) + CF

i=0
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We may now state

Theorem 7. Let Up satisfy (4.1), ‘,and m = 0,1,°°-,

For n = 1,2,°"

we have
n-1
@8 D PMUkir
k=0
m
= bUsp+r D) @2 + p ois a, <J> G.i_ n°
Z Z =Zs+ i\s) "i-s

3) ! ns+C;,

m
‘ U3n+r+1Z Z‘ Do b Y (]
s+i

=

where
m m
@9 cF = _bUrZ<_1)1(n)(a2 b by ZajG;
i=0 =i
m m
i, —i-1
- Ur+1§ :(-1>1<1z)(a2 + )7t 4’21'12"" Gl
i=0 j=i

For n=0,1,+», and m = 0,1,*°°, we have

n
(4.10) Z P Ugicrr
k=0

= bU3n+rZ(—1) Zl. (a2 + p)~ it bi-i Z (-1)a, () i

j=s+

m m
. . . . s N
J n -+ Cg,

m
e Y 0| Yt 0| Y el (1) of,
S=0 i=0

j=s+i
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where

) m m
(4.11) Cy = Up|ag - bz it (a2 + b) "y z (—l)JaJ.G;
i

i=0
m m
- Upn Y _itlat + 7, ) Cla 6l
im0 =i

For a = b = 1, Theorem 7 yields Theorem 6.
(ii) Let Un satisfy (4.2). Since

n-i m
(4.12) E PR)Uspry = E D2 MUy poiti AP@) + CF
k=0 i=0

1l

m
Uner|-P@) + ) (D' 7lg;, alp@)

i=1
m
+ Umntr+t E 1'a ¢y a'P@) + CF
i=0

and
n m

(4.13) Zp(k)mkﬂ = E ) Yy s VP@) + CF
k=0 i=0

m
= Upptr Z(_l)la_l—ld)_i v'P)

i=0

m
i it .
+ Upptp+ E D2 ¢y VP@) + Cf

i=0

we may now state



26 ON SUMMATION FORMULAS [Feb.

Theorem 8. Let Un satisfy (4.2), For n,m = 0,1,---, we have

n
@14 D POV
k=0
m

m § m y
2 : 2 : isyy i1 j i s
= Usp+r -D'aat iy aj (;) Gj—s n
j

§=0| i=1 =g+

m j m

i,y —i-1 j i s *
e * Ut E DHEaT ey E a2 (Js) Gj—s n” + C7 ,
=0 1

8= { i j=sti
where

m m

i.,y.-1-1 i
4.15) CT = Uyl g _v(—l) it)a ey, ZajGj
i=1 j=i

m

m.
- Ur+1Z(—1)l(ﬂ ya~iles Zaja;
i=0

=

For n,m = 0,1,°*+, we have

n
@16 ) PRV
k=0

m

m m
a3 e 5 e (1) of,
s=0 =

i=0 j=sti

m m m
RN S R )3 T T B RS CY R
§=0 =0

i j=s+i

*
+ Cy ,
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where
m m 7
@1n  Cy = Upla, —Zil a” g Z(-Djajc}]?
i=0 j=i
) m m
- Ur+1Zi! a e, s Z(-l)jajG§
Fn =

For a =1, (4.14) and {4.15) yield Theorem 4; and (4.16) and (4.17) yield
Theorem 3.

(iii) Let U, satisfy (4.3). Since

n-1 m
(4.18) E P Uiy = 2 1) Upapastas AP0 + CF
k=0

i=0

i

m
bUn+rZ(~1)ib—i_i¢2i alp@)

i=0

m
iy .
+ Un+r+1 E (—1)1b ! i+ AlP(n) + C;

i=0
and
n m
@19) ) POUr = Y (DT UpVP0) + €
k=0 i=0

Il

m
BUper| 7P + ) 159 P 0)

i=1

m
+ Un+r+1§ D' 14, VPM) + CF
i=0
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We may now state

Theorem 9. Let Un satisfy (4.3). For m = 0,1,°°*; n = 1,2,°°*, we

have
n-1
(4.20) E PR Uty
k=0
m
- 2 : -i-1 j i s
= bUn+rZ ( 1) (1' )b ¢21 Z aj (S) Gj"s n
s=01 i=0 j=s+i
m[m m i
+ Un+r+1z Z:(-l)l(i! b gy E a; <JS ) Gjl_s n® + cf ,
$=0| i=0 j=sti
where
m m
@.21)  CF = -bUp ) (1'ab oy Z X
i=0 j=i
m
- Up+y E -1) (1' )b—l— ¢21+1 E ]G; °
i=0 j=1i

For m = 0,1,°°+; n=1,2,°++, we have

n-1 m " m m
(4.22) ZP(k)Uk+I' = bUn'l'I‘Z(‘l)s Zi! b—i_1¢i+1 Z 1)] < ) ji_s
k=0 5=0 i=1 i=s
m m m
¥ Umrﬂz(—l)s Zixb‘i‘1¢i+g Z 1, (;) Gl
s=0

i=0 j=s+i

*
+ Cg )

where

-
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m m
4.23) Cj; = —bUrz it iy 2 (_1)jajG§
i=1 j=i
m

m
i o
- Ur+1§ :1zb i E 1%aGi{.
=i '

i=0

For b =1, (4.20) and (4.21) yield Theorem 2; and (4.22) and 4.23)
yield Theorem 5.

5. APPLICATIONS FOR A SUMMATION FORMULA

Recently, the author [6] proved the following result:
Lemma 1, Let U, i=0,1,°e¢,p - 1, be arbitrary real numbers, and

let un, n=20,1,---, satisfy a homogeneous, linear difference equation of
order p with real, constant coefficients.

(5.1) boun+p + biun+p—1+"' + bplln = 0 (bobp )’é O) °

Let x be a real number. Then

" p T n p-i[ k )
(5.2) - E bixi Z :ukxk - z E b{lin -+ | n+i+k
i=0 k=0 k=0| j=0
p-1| k

k
- E E bjug_j[x 3

k=0 | j=0
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o P.Z-:1 [%2 bjuk-j] K

(5.3) E ukxk = xLj=

k=0 =0

The series in (5.3) converges for| x| < | Al, where A is the root of bpxP+ ...
+ byx + by = 0 with the smallest absolute value.

In [6], (5.2) was used to obtain a closed form for

n
E kpxk
k=0

If xy is a value of x such that

p
E biX(:% =0,
i=0

then

is obtained from (5.2) by applying L'Hospital's rule.
As before, let

and consider u = P(k)qu+r, k=20,1,*+, where q = 1,2,--+;r =0, %1,

+2,-++, and
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(5.4) Wpg + diWneq + dgwn = 0, dydy # 0, 63 -4dy # 0, @ = 0,1,2¢),
If o and B are the roots of x%+ djx +d, = 0, then Uk = qu +r satisfies

(5.5) Uk_|_2 - Vqu+1 + d(lek =0 k = 0,1,°¢0) ,

since (x - od)(x - pd) :Xz—VqX+dgi, where V= A +pR, o= 0,1,000,

with Vy = 2, Vy = -dy, satisfies (5.4). We note that P(k)quH. is a solution
of a homogeneous, linear difference equation of order 2m + 2 with real, con-

stant coefficients whose characteristic equation is given by

(5.6) [ - 0 - pO]TT = 6 - vx + aH™ = 0,

Since

am-+2
s
% - qu + a3 ymH = E bom+e-sX s
§=0

we have that

2m-+2
(1 - Vgx + dglxz)m+1 = 2 ijJ .
j=0

In [2, p. 30, example 3], it is shown that

m-+1
(5.7) by = 1)’ Z (m § 1) ( jl_ i) v;i-idgl‘l"l’ (G=10,1, "% 2m+2)

i=0
- Thus, (5.2), in which p =2m + 2 and bj defined by (5.7), yields a closed form

n
) k
E P(k) qu X o
k=0

for
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[Feb.
It w = Hp, then dy = dy = -1, Vg = Lq, and (5.2) yields
n
+1
6.8 -1 - Lgx + (DB ploHg
k=0
am+1 [ k ’
_ . n+i+k
- Z ijp(n T LAk - g | X
k=0 | j=0
o+l [k 7
1 k e © 00
_ E E b]P(k - J)Hq(k—3)+r X (Il = 0, 1, ) N
k=0 | j=0
where (see {5.7))
m+1
(5“9) bJ — (_1)J(q+1) E (_1)1 <m :‘ 1) < J i 1>L(211—j (J = 0’ 1,0 0o, 2m + 2)9
i=0
¥ P) = (m) _ kY . .
k) =k = ml in (5.8), we conclude that for arbitrary x,
om+ |k
n+1+k—j n+i+k
(5.10) E b, ( m J) Hy (+1+k-j)+r | X
k=0 } j=0
2m-+1 k
_ k-j k
o Z‘%( m )an«:—jm x
k=0 j=0

(n = 0,1,°°*, m ~ 1; m = 1’2’009)

If n =0 in (5.10), the coefficient of X2m+2 must be 0, i.e.,

2m-+1

(5.11) Z b, (2“‘ T2 j) Hy@miz-jir = 0 (m = 1,2,+0) .

=
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¥ Pk = {- k)(m) ~0"m r)<k * E - 1) in (5.8), we conclude thatfor

arbitrary x and n = 0,

am+1 |

.12) Z Zb( Sivm >Hq(1+k—j)+r K

2m-+1

"2 Zb< T g g s Lz,
J=

m-2

In (5.12), the coefficient of < must be 0, i.e.,

2m-+1

(5.13) Z bj ( om :nl - ) Hq(2m+2-j)+r =0 (m '= 1,2,°0°) .
j:O

I Pk
author [7, p. 105, (5)], using a different procedure.

1, then (5.8) yields a result which has already been proved by the

11

Noting that wy, = cos mé and wp = sinné satisfy wpiy - 2cosOwp+y +
wp =0, n = 0,1,°+s, with V; = 2 cosné, where 6 # 0,m, 0 <6 < 2,

we obtain from (5.2) the following two identities:

n
(5.14) -[1 - 2{cos gf)x + Xz]mﬂz P(k){_ 008 (g + r)O}Xk

sin (gk + 1)@
k=0
2m-+1 ]
cos [qmn+1+k-j) +r 0} n+i+k
Z ZbP(n+1+k—J){Sm Eq(n+1+k~j)+r]0 X
k=0 | j=0 .
am-+i

cos [alk - j) +r] @ k (n
Z pr(k {sm%q(k—j)w]a}x =0 L)

where (see (5.7))
. m-1
_ j m+1 i 2i-j - vee .
(5.15) ;= (-1) }: ( i ) (j i )(2 cos q8) (j=0,1,*°,2m+2),
i=0
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The relative simplicity of our results, (5.14) and (5.15), may be compared with
the less general (as well as less elegant) results obtained by Schwatt [8,
pp- 217—219], who used the differential operator, (xd/dx)™.

For choices of P{k) = k(m)
as {5.11) and {(5.13)) the identities (pairwise)

or (-k) (m) , we obtain (in the same manner

am-+H C ]
2m+2 - j}fcos|q@@m +2 -j) +r 0}2 -
(5.16) E bJ.( m ){ sin [q(zm +2 - J) + 1] 0 (m=1,2--),
=0
am+

, 3m+1-j\fcos[q@@m+2-j +r]el_ _
.17 Z bj( m ){Sin [q(2m+2-j)+r]6}“ 0 (= 1,2000).

j=0
Identities (5.16) and {5.17) may be transformed to hold for hyperbolic functions

by recalling that cosh (i8) = cos¢ and sinh (i¢) = i sing.

As an application of (5.3), we have

Q0
(5.18) (1 - Vgx + dix? )mHZ P (&)Wl

k=0
skt |k
= 2 ijP(k - Pwg(k-j)+r Xk s
k=0 | j=0

where loj is defined by (5.7).
It is desirable to have check formulas for the computed values of bj‘ In

our discussion, consider bj’ as given by (5.7), where

2m+2
(5.19) @ - Vgx + d9x2)™* = E ijJ (m = 0,1,°2°).
=

We may set x = 41 in (5.19). A substantial reduction in the effort required

to evaluate all the bj’ j = 0,1,°++,2m + 2, is afforded by noting that
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(5.20) bam+a-j = dg(m+1—3)bj G = 0,1,000, m+1) ,

To prove (5.20), multiply both sides ef (5.19) by dg(mﬂ) , and so
2m-+2

(5.21) @ - dyVx + Q%) Z bj d(zjl(m+1)xj
j=0

Replacing x in (5.21) by x/dg, we obtain (in reverse order)

2m-+2 2m-+2
(5.22) &2 - Vgx + df)™t = E bjdg(m““J)XJ = E bomt2-X 3
J:O j:0

and thus (5.20) is obtained by comparing the coefficients of % in the sums in
(5.22).

Let t = 1,2,°++, andlet gt+1(x) = 0 (where gt+{x) is a polynomialin
x of degree t + 1) be the characteristic equation determined by Hgk +p+ Then
the characteristic equation determined by W = P(k)Hglk+r is given by

{g-t+1(x)]m+1 = 0. Since

(t+1) (m+1)

[Xt+1gt+1(1/X)] m-+i - § : bJXJ R
j=0

(5.2) may be applied to yield a closed form for

n
t k
Z P qu+rX °
k=0

A formidable obstacle in this procedure is the complex nature of the bj’ which

involve multiple summations,
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: ; 2 2 2 2
As a simple example, consider Hn i where Hn ity ZHn w2ty ~ 2Hrl -
+H, =0, and gy(x) = x® - 2x* - 2x + 1. Then x’g(1/x) = 1 - 2x - 2x? +x3

and

3{m-+1)
2 m-+i - ]
1 - 2x - 2x2 + %) _ijx .

i=0

Using the binomial theorem and then applying (5.7) (with the proper change of

notation for the coefficients), we obtain

m-+i

m-+i m + 1 i i
(1 - 2x - 2x% +x9) = Z( i )(—ZX) [1+x- &¥2)]
i=0
m-+ 2i 3m-+3
D TRED WD 3
i=0 k=0 j=0
where
i
Ck :Z(;)<k-s-s)(—1/2)k~s (k:0:15°'°: Zi) ’
S=0
and
m+i
_ m+ 1 ;
(5.23) b]. = Z ( i ) (—2)10]._1
i=o0
m-+i i
_ ~j i fm+1 s [i s
= (-2) Z 221< i )Z(—Z) (S) <J._i_s)
i=0 s=0

G = 0,1,°°+, 3m + 3) .

Thus, from (5.2) with p = 3m + 3 and w = P(k)HIZ{
is defined by (5.23)),

i Ve obtain (where b].
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(5.24) -1 - 2x - 2x* + %3 mHZP(k) k+r

k=0
3m-2 3m+2
9 Il+1+k
E E bP(n+1+k )Hn+1+k ]+rX E E bP(k jYH2 k]+r
k=0 | j=0 k=0 | j=0

Recalling the manner by which (5.11), (5.13), (5.16), and (5.17) were
obtained, we may now state the following result:
Theorem 10. Let

(t+1) (m+1)
(5.25) [Xt+1gt+1(1/X)] m+l Z ij] (m =1,2,°--).
j::
Then
(t+1) (m+1)-1
t+Dm+1)-j) 4t -
(5.26) Z bj ( m ) Hq(tm+t+m+1—j)+r -

i

@t,m = 1,2,e005 T =0, 21, 3,+++) ;

(t+1) (m+1)-1

t+Dm+1)-j-1+m)t =
(5.27) Z bj < o m ! ) Hq(tm+t+m+1—j)+r -0

j=0
(Qt,m = 1,2,°¢¢; v = 0, 31, ¥2,°°°) .

We note that (5.26) and (5.27) are identical for m = 1.



38 ON SUMMATION FORMULAS [ Feb.

6. REMARKS ON THE PAPER BY LEDIN [ 9]

From our (2.31) with r = 0, H_=F, and P() = K™ (sothat a =1

a. =0, j=0,1,e0,m-1), we conclude (see 9, (3a), (3b) for notation)

j

6.1) E k+1 J G=0,1,°¢°) ,
k:
j k
6.2) Mz,j E k! Fk+2G] G =0,1,°°°) ,
k=0
From [9, (6a)], we obtain for i = 3
i A
6.3) Zk' FiwGy - 00 G =0,1,00)

Thus, the assertion [9, (66)] is valid only for i = 1,) (with j = 0,1,°-¢) and

=3(=1,2,++). Since FkJr F1 1Fk+2 1 sz+1 (see (1.10)), we obtain

from [9, (6b)], using (6.1) and (6.2) above, that
j
= J i = a0 e
6.4 M, Z e J Z(k + D'F, G=120-"2) .

k=0

Noting (6.1), (6.2), and (6.4), we are tempted to define

J
= k 3 = ® 00
—Zleij G = 0,1, ) .
k=0
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It should be noted that (6.1) and (6.2) are not uniquely defined. In the
notation of [9, (8)], our (1.2) (with r = 0 and Hk = Fk) can be written as

6.5) S(m,n - 1) = FnPs(m,n) + Fn—1P2<m’n) + C(m) ,

where (using 9, (2b), (3b) )

(6.6) cm) = )™M o @010

Thus, from (1.2), we obtain

j
6.7 M, = 1)) Z(—l)k(k! )Fy +2G1.< G

= 0’ 1,--. s
i )
k=0
)
N,k k
= — ] — 1 = oo
6.8 M= €D DS RIF, LG (= 0100
k=0
Since Msj =M, j + 1\/[1j for j = 1,2,°°*, we obtain from (6.7) and (6.8) that
j Po=
(6.9) = (-1) E (—1) (k.)FZk i G =1,2,--°)
Since F2k+i_ = F1-1F2k+1 Fi—zFak (see (1.10)), we obtain from [9, (Gb)],

using (6.8) and (6.9), that

i—4

j
(6.10) M= (—1)32(—1)k(k! )Fy s (G 3 Z(k+1)JF
k=0

=0
(]“1,2: °') °

From (6.4) and (6.10), we conclude that

(6.11) (-—1)32(_1) (k')sz—m . J Z:k'Fkﬂ i (G = 1,2005i=0,1,000).
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It should be noted that [9, (7c)] was obtained from [9, (6a)], using |9,
(7a)]. Since 9, (7c)] is a linear difference equation of second order in i, its

solution is

i-38
6.12) Py = B Pnn) + F_ P aon) - ) (- WUF
k=0 (i:3,4!"') o

Using (6.12) and (1.10), [9, (8)] can be simplified to

(6.13) Sm,n-b) = F P m,n) +F_, P mn) + (-1)1“11\/[2’m
h~2
_Z(n -RUF - 1-nTE L (h=2,3,000) .
k=0

Since P;(m,n) = (—1)mP3(m, -n) |9, (9)] can be simplified (using |9,
(6a), (7c)]) to

n
m _ m
(6.14) E h-k+1) Fk = Mi,an+1 + 1\/[2,an+2 +n
k=1

- (_ 1)m+1

(Pz(m,—n) + Pi(m:_n)) (m =1,2,¢¢- ) °

Since (see |9, (A1)]) Pi(m,n) = D™Qun,-n+1i-1), where Qm,n)
are the Weinshenk polynomials in n of degree m (see reference [8] citedin
[9]), it follows that

m

(6.15) Q(m,n) = (-1)™P,(m,n) :Z (Ijn) Mi’jnm—j

=0

Thus (6.15), where 1\/[1 Kk is defined by (6.1), affords a closed form for the co-
efficients of Q(m,n). From (6.12), with n replaced by -n, we obtain the

following recursion relation for the Weinshenk polynomials:
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6.16) Qm,n+i-1) = Fi_iQ(m,n +1) + Fi-ZQ (m,n)
i-3
—Z(n+k)mFi_1_k (i = 3,4,°°°) .
k=0

In [9, (7a)] there is defined

m
6.17) Pi(m,n) = Z (-1)j (T) Mi’jnm_j (m =0,1,°°°).
j=0

If we apply the well-known inverse pair relations,

m m
k ok
(6.18) A = z (-1) <1£) B, B = z (-1) (IE) A
k=0 k=0

to (6.17), we obtain as its inverse
m
- 2 : j (m -y -] -
6.19) Mi,m = -1) (J) Pi(],n)n (m = 0,1,°°") .
j=0
Since Pi(j,n) = (—l)jQ(j, -n+1i-1), we obtain from (6.19)

(6.20) M.

E
1l
™M

(1;1) QG,-n+1i - )™

From (1.19), we obtain for n = 0, recalling (6.9),

1l

m
(6.21) P nr, =l
=1

m=1,2,"*°) .
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From (1.20), we obtain for n = 0, recalling (6.8),
m
m _ iqd - cen
(6.22) CDT@OF, L= Y DS M (o= 0,10
j=0
From (2.35), we obtain, recalling {6.9),
m
R — j = cen
(6.23) mF = Z SIM, i (m=1,200) .
=t

From (2.36), we obtain, recalling (6.8),

m
1 = j = o e
(6.24) mF_ ZSmMZ,]. (m = 0,1,00+).
j=0

If we set b = 2 in (4.3), then Un = (-1)® is a solution of (4.3). In
(4.20), set P(k) = k™ so that an =1 2 =0, j=01, - ,m-1 Thus,
(4.20), with b = 2 and r = 0, gives a closed form for

1l

n-1
Z (- 1)kkm
k=0

ACKNOWLEDGEMENT

This paper, consisting of the first five sections, was submitted to this
Quarterly on September 21, 1964, after the author reviewed the paper by Alfred
[1]. Section 6 of this paper was written, in essence, after October, 1966, after
having read the paper by Ledin [ 9]. I wish to thank Dr. Hoggatt for the oppor-
tunity of reading the papers | 1] and [9 ] before their publication. As a result,

my present paper is more complete.



1967] AND IDENTITIES FOR FIBONACCI NUMBERS 43

L

REFERENCES

n
Brother U. Alfred, "Summation of 3 kka .+ Finite Difference Approach, "
k=1
Fibonacci Quarterly, Vol. 5 (1967), pp. 91-98,

C. Jordan, Calculus of Finite Differences, Chelsea, New York, 1960.

R. G. Buschman, "Fibonacci Numbers, Chebyshev Polynomials, General-
izations, and Difference Equations," Fibonacci Quarterly, Vol. 1, (1963),
Noo 4, ppo 1"‘7“

R. I. Reichman, "A Summation Formula Involving Fibonacci Numbers,"
Scripta Math. Vol. 20, March-June, 1954, pp. 111-112.

K. Subba Rao, "Some Summation Formulae Involving Fibonaceci Numbers, "
Scripta Math., Vol. 21, June-Sept., 1955, pp. 214-217.

n n
D. Zeitlin, "On the Sums ) K and > (—1)kkp, " Proc. Amer. Math.
k=0 k=0
Soc., 15(1964), pp. 642-647,

D. Zeitlin, "On Summation Formulas for Fibonacci and Lucas Numbers, "
Fibonacci Quarterly, Vol. 2 (1964), pp. 105-107,

I. J. Schwatt, An Introduction to the Operations with Series, Chelsea,
New York, 1962.

G. Ledin, "On A Certain Kind of Fibonacci Sums, ' Fibonacci Quarterly,
Vol. 5, No. 1, pp. 45-58.

L & 28



