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In[1] the problem of finding recurrence relations for the sequences
{FFn', {FLn}, {LFn}, {LLn} —where F_ and L are the 2™ Fibonacei
and Lucas numbers, respectively — is proposed. What follows is an investi-
gation of this problem and some of its generalizations,

Let r and s be any two nonzero elements of a field F*= (F, +,)in
which r" is defined in the usual way with the field operations, %+ . Define {Un}
and {Vn} by U, = @™ - s"/(x - s) and v, = ™+ " for all integers n.
Furthermore, let {Hn} be any generalized Fibonacci sequence consisting of
integers — that is H;, and H; are integers and Hn+2 = Hn+1 + Hn for all
integers n. Some recurrence relatior}s for sequences such as {UHn} and
{VHn} will be derived here,

Let {gn} be any sequence in n obeying the recurrence relation 8 4o
= (r+ s)gn_’_1 - rsg for all integers n., Then there are constants C; and C,
in F*such that g = Cx + Cys™ for all integers n. Define {Xn}, {Yn}
and {Gn} by X = Um, Y,

From here on, when n is written, understand that n can take on all integer
n

= Vu, and G, = 8H, for all integers n.

values unless otherwise indicated. For convenience write Rn =r and
H
S =38 n.
n
Consider the product Gn +2Yn i
Cpia¥pry = CiByy, + CoS IR+ 8 L)
- Ci»Rn+2Rn+1 * CoSnSnay T CiRpoSne T Oy i
= ClRn+3 * CZSn+3 * Rn+1sn+1(ciRn * C2Sn)
Hpyq '
- Grn+3 + (rs) ’ G'n
Thus,
Hn+1
1) Ghts = G lng ~ (rs) G,
—
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A corollary to (1) is the relatively simple recurrence relation for {Y}.
e )

Y

2) Y =Y .Y - (rs) N

n+3 n+2 n+i

When rs = +1, (2) is especially simple;

r=2@+B) and s =3(- B

gives
_ . 4y DL
(3) LHpys = DHpyUHRy, - CD 0 Lgy
. th
where Ln is the n™ Lucas number.
Consider the product Yn+2Gn o
Yn+2Gn+1 = ClRn+2Rn+1 * CQSn+2Sn+1 * CiRn+1Sn+2 * Can+zsn+1
= Grn+3 * Rn+1sn+1(cisn * C2Rn)
But
n n n n
Cis + Czr = (01 + Cz)vn - (Cir + C2S ) = goVn ". gn
Thus
Cisn + Can = gan - Gn s
and
Y . G = G +(s)Hn+1(Y-G)
n+2 n+1 o n+3 r g ¥y n
That is,
(4) G . =Y .G, +( s)Hn“(G Y )
n+ts  TnteonH T n = B0Yy/ -
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Add (1) and (4) to get

H
_ n+i
(5) 2G5 = Gn+1Yn+2 * Gppp¥pyy - (S) 8Yy,
Now consider the product (r - s)®’X_ .Y .
n+2" nt
Y = - -
(r = 8%, X Ry Sn+2)(Rn+1 Spt)
= Ry * Spps = By Sne By +8y)
H
_ _ n+1
Yn+3 (rs) Yn .
Thus,
_ e n+
(6) Yn 3 (r - s) Xn+2Xn+ ) + (rs) Y][1 .

Some second-order recurrence relations can be obtained by using the
following simple and easily verified identities — which hold for all integers a

and b — by putting aan and b = H or a =H and b = H

n+i n+1 n °
a b
Ua+b'rUb+SUa
_ A b _ Ay b
Va+b—er—(r—s)sUa—§Vb+(r—s)rUa

_ b
(r - s‘)Ua+b = raVb -8 Va

Some of the recurrence relations are

7 Xprr = BoXoe 780,050 = 8% * BpXy
Yoo = BYp,, - (@ - s)Sn+1Xn
=8Y  +@-sR, X
= (r - S)Ran+1 * 8heiYn

- 88X Ry Yy

From (7) it immediately follows that
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1 = -
(" 2Xnee = ZneYn ~ ZnVnm

2Y

1]

_ g)? -
For a fixed integer j define {Zn} and {W } by Z = Uy, and
Wn - VHn+j. ThU.S,

(r - 8)z_ = rjR - sjs and W= rjR + st
n n n n n n

Now,
- = 7 -
(r S)Zn+2 r Rn—HRn s Sn+1sn
- j ) Jn _ 4
- Rn(r Rn+1 S Sn+1) * Sn+1(r Rn s Sn)
- Jo_d
Rnsn+1(r )
so that
Hn
(8) Zn+2 - RnZn+1 * Sn+1Zn - (rs) S'n—1Uj
Similarly,
g
) Zovy = SpZnet T BpyZn T (rs) n—1Uj
Add (8) and (9) to get
Hn
o) 27,40 = Yolpuy + Ypo 2y - (09) O, U
Also,
= ) j
Whee = TRy By + 88,5,
- J o) j J
= Ry@Rpy, - 88,0+ 8y, TRy + 8°8)

j i
- RnSn+1(r - 8")
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and
Hn
(11) Wn+2 = (r - s)Ran1 + Sn+1Wn - (r - s)(rs) Sn-in ;
Similarly,
- Hn
12) Wn+2 = (s - r)SanJri + Rn+1wn - (5 - 1r)(rs) Rn—in
Add (11) and (12) to get
Hn
- _ q)2 ~ g)2
(13) 2Wn+2 = (r s) XnZn+1 + Yn+1wn + (r - s)“(rs) Xn—in

When r = (1 +~5)/2 and s = (1 - N5)/2, (10) and (13) become

H
. = . . n n
(14) 2FHp o+ = DHy FHp, 4 + Wy, FHpg - (D HLHn—irj

. n
2LHp 0t = 5FHL FHpy 73 © DHgy DHprj + 561 FHp—Fj

where Fn is the nth Fibonacci number and Ln is the nth Lucas number.

The techniques used above in deriving recurrence relations are not en-
tirely inhibited when sequences of the type {UKn} and {VKn}’ where {Kn}
is a sequence of integers obeying a linear, homogeneous recurrence relation
with constant coefficients, are considered. Let {Kn} obey the recurrence

relation

m
Kn+m - ijKan—j ’
J=0

where m is a fixed integer, and with pj’Kn being integers when n is non-
negative. Then {VKn} and {UKn} are defined for n nonnegative; if P, =

+1, then the definition applies for all n. Repeated application of the identity
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n

a b . . s .
Ua+b =r Ub + s Ua gives Ua1+a2+- ..am as a linear combination of Uaj’
j=1,2,...,m, with the coefficients being products of powers of r and s.

By putting aJ. = P, when n+ m -j is nonnegative, and by utilizing

JKn+m-j ’
repeatedly the identities

-n
- -(rs) Un

U

Uzn = UnVn .

k-1

_ kn jn -
Ugkstyn = Un| ) + D @) Volk-jn| » ¥ =1

j=0

m'™ order recurrence relations are easily produced for {UKH}. {VKH} may
be treated similarly by repeated application of the identity 'Va ib - i‘aVb - (r -
s)st a and by utilization of the identities

-n
V_I1 = (rs) Vn

— 2
_an

k-1
_ _.nnk _n.nj
Vikenn = ValTs) +Z(rs)Vz(k_j)n , k=1
=0

kn
Vorn - 2(rs)

_.a b
(r—s.)Ua_Ho-rV]O—sVEL

A special case of interest occurs when m = 3 and pj =1, j=1,2,3.

Letting A_ = rKﬂ and B_ = sKn D =1U and E =V then U =
n n ’ Kn n Kp a+b

n

a b .
r Ub - 8 Ua gives
(15) Divs = AnPn+ePne T AnBnssPnst * BpiBpoly
= AnAn+1Dn+2 * BB Pney An+1Bn+2Dn
and
2Dy s = 2804 Do * BroBiPos * Bro PP

Similarly,



1967] RECURRENCE RELATIONS FOR SEQUENCES LIKE {FFn} 135

2Dy = 2B BiiDniy * A Bl A EnePy -
Thus,
4“Dn+3 =28 A 7 Ban+1)Dn+2 * EnEn+2Dn+1 * EpriEnesPn -
But
AnAn+1+ Ban+1 = A‘n(A'n+1+ Bn+1) - Bn+ﬁAn - Bn)
= AnFae T Bpy @ - 8Dy
= B E i T ApnT - sID,
so that
_ _ Q)2
2(AnAn+1 * Ban+1) - EnEn+1 +(r-s) DnDn+1 ’
and
_ Q)2
(16) 4D, = (BE_ + @-sDD D  +EE D +E E D .
Also, V = raV - (r - s)st and (r - s)U = v, - st give
> Tatb b a a+b b a
an Eps = AnfniiFnee ~ AnPneFni * BuiBoeoFn
= AA L En BB Bne T AneBrnfn
and
2B = 28 B, - @ -8B D E, - @ -8B DB
Similarly,
2E = 2B B E + (r - s)A_. D E + (r-s)A_ D E

n+3 n n+1 n+2 n+2  n n+t n+2 n+i n

Thus,
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4E 4E = 2(A A + B B  )E

- 2
n+3 n n-+i n n+i T $)*D, D E

n-+2 n n+2 nt+i
+ (r - 8)?D
( ) n+1Dn+2En

and

(18) 4E = (EE

nEpyy T 0 - 8DD IJE .+ @ - 8)D

D
n n+i" nt n n+2En+1

_ 2
*(r s) Dn+1Dn+2En :

Given Dy, Dy, Dy, Ej, E; and E,, (16) and (18) completely determine {Dn}
and {En}, for n = 0.
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