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Define the sequence of Fibonacci polynomials {f (x)} by 

fi(x) = 1, f2(x) = x; fn(x) = xfn_l(x) + fn_2(x) ( n - 3) 

Then it has been shown [3] that 

i—n \ 1 ' 
(i) 

i i 

j=0 

where [x] represents the greatest integer contained in x. Since f +1(x) = 
i U (ix/2), where the U (x) are the Chebyshev polynomials of the second 
kind, we note that the Fibonacci polynomials are essentially the Chebyshev 
polynomials. Define the Fibonacci sequence { F I- by Ft = F2 = 1, F = 
F + F (n > 3), and the Lucas sequence {L } by ht = 1, L2 = 3, L 
= L + L (n > 3). It then follows from these recurrence relations that n-i n-2 ' 
f (1) = F . By the height of f (x), denoted by m(n), we mean the greatest 
coefficient of f (x), that is n 

n-1) m(n) = max j l " j x | (j = 0 , 1 , . . . , [(n - 1)/2J) . 

Since the coefficients in (1) are diagonals of Pascal!s Triangle, the m(n) are 
the maximum entries along these diagonals, and they form the pattern ex-
hibited below. Interest was first aroused in these numbers when it was ob-
served that if the heights m(n) and m(n + 1) were in adjacent columns, then 
they were in the ratio of consecutive Fibonacci numbers (e. g. , 1:2, 4:6 = 2:3, 
21:35 = 3:5). Although this is not true in general, some interesting proper -
ties derived from these ratios were found. 
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In order to define these cross-over ratios, we must first verify that this 
initial pattern continues, so that the only changes in the column pattern are 
lateral jumps of one column. We do this in the following: 

Theorem 1. Denote logical implication by ,r=s>n. Then 

<*> (:) - (J ; i) - (" il) ^ : i) - ( k : i) - (2: i) 
Proof. We prove (i), the other parts using similar techniques, (i) is 

trivial for n < k + 1. Assume n - k > 2, so that denoting logical equivalence 
by n <=£>" we have 

f k l ~ ( k + i r n ( k + 1 ) ~ ( n - k ) ( n - k - l ) = > n ( k + l ) + n - k - 2 = (n-l)(k+2) 

^ ( n - k ) 2 - 2 + 8-5(n-k) = ( n - k - 2 ) ( n - k - 3 ) ^ / £ ~ M ^ ( ^ + 2 / ' 
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A little reflection will show that these results imply that if 

m(n) = fy. t h e n m ( n + l ) = ( U
v

+ 1 ) or ( / + ^ 

Call the column of ones the 0 column, and label the other columns of Pascal 's 
Triangle consecutively. Choose n such that m(n) appears in the (k - 1) 
column and m(n + 1) appears in the k column. Then r1 = m(n)/m(n + 1) 
is called the k cross-over ratio. By Theorem 1, r, is well-defined and 

unique. 
Theorem 2. For r, as defined above we have — k 

r k = k/[£(k + 1 + Vsk2 - 2k + 1)] 

where [x] denotes the greatest integer contained in x. 
Proof. If n is the greatest integer for which 

then clearly 

is the greatest height in the (k - 1) column. This criterion is equivalent to 

nk > (n - k - l)(n - k) <^^*n2 - ( 3 k - l ) n + k 2 - k < 0 . 

The greatest n for which this holds is the greatest integer contained in the 
largest root of 

n2 - (3k - l )n+k2 - k = 0 

so that 
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n --= [|(3k - 1 + V5k2 - 2k + 1) ] 

Thus 

rk = (k - i ) / ( k) = irrtn = ^(k.+ iH-Va^kT-i),. 

This result makes computation of the cross-over ratio for a given column 
simple. A limited evaluation of the expression in the denominator is given 
later in the paper. From Theorem 2 we may conclude 

Theorem 3. For a = (1 + V5)/2, we have 

lim r = 1/a n_*oo n 

Proof. Since 

n/{f(n + 1 + V W - 2n + 1)} < r < n/{*-(n - 1 +V5n2 - 2n + 1)} , 

the result follows from 

lim n/{ |(n + 1 + V W - 2n + 1)} = lim n/{^-(n - 1 + V5n2 - 2n +1)}=1/a 
n-— oo 

It has been shown [4J that 

lim F / F ,„ = lim L / L , = 1/a , n-*cjo n n+i n-*oo n n+i 

so it is not surprising to observe that F / F is a cross-over ratio for 
n ^ 2, and L / L is one for n ^ 4. It is our aim to prove this holds in ' n n+l 
general. 

Theorem 4. Let h(k) = [ |(k + 1 + V5k2 - 2k + 1)]. Then h(F ) = F^+ 

for n ^ 2, and h(L ) = L for n ^ 4. 
' n ' n+l 

Proof. We will prove h(F ) = F , the proof for Lucas numbers in-
volving no new ideas. Since x - 1 < [x] ^ x, the assertion is equivalent to 
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| ( F n - 1 + VSF^ - 2F n + 1) < F n + i * f (F n + 1 + V 5 F ^ - 2 F Q + 1) . 

The right side is equivalent to 

( 2 F n + i " F n - 1 ) 2 = <Ln ~ 1 ) 2 ~ 5 F n " 2 F n + 1 

« L ^ - 5 F ^ 2 ( L n - F n ) = 4 F n _ i . 

Now it is known [2; Identity XI] that L2 - 5F2 = 4( - l ) n , so the last inequality 
is valid for n > 2. The case n = 2 is verified directly. The left side is 
equivalent to 

(2F - F + I)2 = (L + l)2 > 5F2 - 2F + 1 n+i n ' v n n n 

<=>L2 - 5F2 > -2(L + F ) n n v n n ' 

<^>4( - l ) n > -4F , ^ n+i 

which is valid for n=^ 1, completing the proof. 

Theorem 5. F / F „ is a cross-over ratio for n — 2, and L / L ' 
n n+i n n+i 

is a cross-over ratio for n — 4. 
Proof. By Theorems 2 and 4 we have r-̂ , = F / F for n - 2, and 

J F n n+i ' r T = L / L , for n ^ 4. L n n+i 
We mention in passing that the results of Theorem 4, 

Fn+i = Ci(Fn + X + V 5 F n " 2 F n + ^ ( n ~ 2 ) 

L , = [4(L + 1 +V5L2 - 2'L + 1)] ( n ^ 4) , n+l L 2 v n n n / J V ' ' 

form an essentially different solution to Problem B-42 [ l ] , perhaps an im-
provement over the published solution since the value of n is not required. 

We shall apply these results in a test to determine whether a given inte-
ger is a Fibonacci number, but we need first to establish a certain property 
of Fibonacci-type sequences. 
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Theorem 6. Define a Fibonacci sequence {f } by specifying two inte-
gers fn and f 1, along with the recurrence relation f = f + f . Then 
° u l' a n n-i n-2 

l fn+ 1-Wn- ^ l = k i - ' A - 4 l = ° 

for all n 2: 0. 
Proof. We proceed by induction. The statement is true for n = 0. 

Assume it is true for n = k ^ 0. Then 

D = k+i - Wk - £ I = 14+1
 + f

k + i f k + f
k

+ f L i + f
k + 1

fk - %+i ~ f
k +i fkl 

- I ff + f >2 _ f /f . f \ _ f2 I = f2 _ f f _ f2 I 

so the assertion is true for n = k + 1, completing the induction step and the 
proof. 

Now for the Fibonacci sequence D = | F2 - FJFQ - FjJ |-= 1. Since h(F ) 
= F , , all Fibonacci numbers F satisfy n+iJ n J 

h2(F ) - F h(F ) - F2 = 1 n ' n n nl 

We shall show that only Fibonacci numbers satisfy this equation, thus provid-
ing a necessary and sufficient condition for an integer to be a Fibonacci 
number. 

Theorem 7. Let m be a positive integer, and g(m) = |h2(m) - mh(m) 
- m2|. Then m is a Fibonacci number if and only if g(m) = 1. Also, m ^ .7 
is a Lucas number if and only if g(m) = 5. 

Proof. We have shown above that if m is a Fibonacci number then 
g(m) = 1. Now assume g(m) = 1, and we wish to show m is a Fibonacci 
number. Since h(m) ^ m, we may form a decreasing Fibonacci sequence 

(2) h(m), m, h(m) - m, 2m - h (m) , ' " ' , ii9 f0 , 

where f0 is the least nonnegative term of this sequence. Then f^ ^fu for 
if f A > f0 > ±ft, then there is another term of the sequence ".JLj such that 
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0 ^ JLj = fj - f0 < f0 contradicting the definition of f0, while if f0 = -̂fl9 f0 -
(fj - f0) = 0 is another term of the sequence <f0, again contradicting the 
definition of f0. Thus it = 2f0 4- a where a > 0. But by Theorem 6, 1 = 
g(m) = | (2 f0 + a)2 - (2f0 + a)f0 - f2 | = | f2 + 3af0 + a2j, and since f0 and a are 
nonnegative integers, we must have f0 = 0, a = 1, so that ft = la Hence 
m is a member of a Fibonacci sequence which begins with f0 = 0 and f1 - 1; 
that is , m is a Fibonacci number. 

We now prove the latter half of the theorem,, Suppose m => 7 is a Lucas 
number L . For the Lucas sequence D = 5, and so by Theorems 4 and 5 we 
have g(m) = 5e Now assume g(m) = 5 where m > 7, and as above let f0 

be the least nonnegative term in a decreasing Fibonacci sequence defined in(2)8 

Clearly f0 > 0, for f0 = 0 implies 5 = g(m) =|fj - f^o - fo| =jfi. Also, 
as in the first section, f0 < ^iu so f1 = 2f0 + a where a > 0„ Then 5 ~ 
g(m) = I (2f0 + a)2 - (2f0 + a)f0 - f\ = |f2 + 3af0 + a2 , and since f0 and a. are 
positive integers, we must have f0 = a = 1, so that ft = 3„ Thus m belongs 
to a Fibonacci sequence with f0 = 1, fi'= 3; that i s , m is a Lucas number. 

We note that Theorem 6 is also implied by the result of Long and Jordan 
[ 5] that the only solutions of the diophantine equation |x2 - 5y2 = 4 are x -
L , y = F . . • • " n' J n 

Define 
h (k) for n > 0 

by 
h0(k) = k and hn(k) = h{hn_1(k)} 

for n a 0„ Then 

is a sequence of integers for each choice of k. Values of h (k) for 1 < k < 
10 and 0 ^ n ^ 9, which were computed by Terry Brennan, are given in 
Table 1. It appears from the Table that 

obeys either a homogeneous or nonhomogeneous Fibonacci recurrence relation. 
We prove this holds in generaL 
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Table 1 
Values of h (k) 

kN 1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

n 0 

I 
2 

3 

5 

5 

6 

7 

8 

9 

10 

1 

2~ 

3 

5 

6 

8 

10 

11 

13 

14 

16 

2 

3~~ 

5 

8 

10 

13 

16 

18 

21 

22 

26 

3 

5~~ 

8 

13 

16 

21 

26 

29 

34 

35 

42 

4 

8~ 

13 

21 

26 

34 

42 

47 

55 

56 

68 

5 

13~~ 

21 

34 

42 

55 

68 

76 

89 

90 

110 

6 

21~~ 

34 

55 

68 

89 

110 

123 

144 

145 

178 

7 

34~~ 

55 

89 

110 

144 

178 

199 

233 

234 

288 

8 

55~~ 

89 

144 

178 

233 

288 

322 

377 

378 

466 

9 

89 

144 

233 

288 

377 

466 

521 

610 

611 

754 

Theorem 8. For each choice of k the sequence {h (k)} obeys one of 
the following recurrence relations: 

h (k) = h (k) + h (k), n = 0 , 1 , " ° (Fibonacci homogeneous) 

h (k) = h (k) + h (k) - 1, n = 0 , l , - # * (Fibonacci nonhomogeneous) 

Proof. The assertion is true for k = 1 since h (1) = F obeys the 
first relation. We thus consider k ^ 1. We shall use the property that x - 1 
< [ x ] < x to show that h2(k) = h0(k) + hA(k) or h0(k) + h^k) - 1. We shall 
then use induction to prove this initial recurrence continues to hold throughout 
the sequence. For sake of brevity we let throughout the rest of the paper 

hn(k) EE h n , h0(k) = k, ht(k) = h(k) = h , and »<£=" 

mean TTif!?0 From the definition we have 

A(h - 1 +V5h2 - 2h +~i) < h , <4(h + 1 +V5h2 - 2h + 1) . 2V n n n ' n+i ^v n n n ' 

Then 
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h2(k) > k + h(k) - 1 <= 1 (h - 1 + V 5 h 2 - 2h + 1) ^ k + h - 2 

<5=>5h2 - 2h + 1 > (2k + h - 3)2 

h2 > k2 + kh - h - 3k + 2 

k2 + j (k 2 + k + kVsk2 - 2k + 1) - }(k - 1 + 

V 5 k 2 - 2k + 1) - 2k + 2 < ±(k - l ; + 

V s k 2 - 2k + l ) 2 

8 < 8k 

which i s valid. Also 

h2(k) < k + h(k)<=> £(h + 1 + V5h2 - 2h + 1) < k + h + 1 

<=s> 5h2 - 2h + 1 < (2k + h + l ) 2 

< ^ 4h2 < 4(k2 + kh + h + k) 

<s= (k + 1 + V s k 2 - 2k + l ) 2 ^ 4k2 + 

2(k + l)(k - 1 + V 5 k 2 - 2k + 1) + 4k 

<s=> 4 ^ 4k 

which i s t r ue . Together these imply 

h2(k) = k + h(k) or k + h(k) - 1 . 

We now show in the homogeneous case that this r e c u r r e n c e continues. Assume 

h. . + h. = h. _, for i = 1 , 2 , • • - , n where n ^ 2. 
l - i l i+ l 

We will prove that 

h + h , = h o , n n+i n+2 

that i s 
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*<hn+l - l + V 5 h W ~ 2 V l + 1 ) " hn + hn+i * ±KH + X ' 
+V5h 2 - 2h + 1). n+i n+i ' 

The r ight s ide i s equivalent to 

(2h + h , - l ) 2 ^ 5 h 2
M - 2 h H + l v n n+i ' n+i n+i 

<=> h2 + h h A - h < h2 
n n n+l n n+i 

^ > h2 - h h - h2 < h n n n- i n - i n 

• <= M - h^o - 4 * n2 < hn 

(3) <= | i (h 0 + 1 +V5h 2 - 2h0 + l ) 2 - {h0(h0 - 1 +V5h 2 - 2h0 + 1) 

<^> | i ( h 0 + 1 + V 5 h 2 - 2h0 + 1)| < h2 

<= |{(h0 + 1 +V5h 2 - 2h0 + 1)| ̂  hi + 1 < hi + h0 = h2 . 

But this l a s t s ta tement i s t r u e , verifying the r ight s ide. The left side i s equiva-

lent to 

5h2 - 2h + 1 < (2h + h + l ) 2 

n+i n+i v n n+i ' 

<^>h2 < h2 + h h + h + h n+i n n n+l n+l n 

<^> -(h2 - h h - h2 ) < 2h + h = h v n n n - i n - i n n - i i n+2 

which i s cer ta in ly t r ue in light of (3) and Theorem 6. Proof of the nonhomogen-

eous ca se u se s essent ia l ly the s a m e techniques , although it i s m o r e c o m p l i -

cated and i s there fore omitted. 

It is na tura l to ask for which in tegers k the sequence {h (k)} is homo-

geneous and for which it i s nonhomogeneous. 

Theorem 9. The sequence {h (k)} is nonhomogeneous if and only if 
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(4) h2(k) < k2 - k + kh(k) . 

Proof0 Using Theorem 8 it follows that {h (k)} is nonhomogeneous if 
and only if 

k + h(k) = h2(k) - 1 

i(h + 1 + V5h2 - 2h + 1) < k + h 

5h2 - 2h + 1 < (2k + h - l)2 

h2 < k2 - k + kh . 

However the characterization of the k which obey (4) seems difficult. 
It appears that numbers of the form k. = F + 1 (m > 5) satisfy (4), but 
there are others. 

From the recurrence relations of Theorem 8 we may establish the fol-
lowing generating functions using standard techniques. If {h (k)} is homo-
geneous , 

P(x) 
•1 - x - x z 

n=0 

E vk>xn • 
where p(x) = {h(k) - k}x + k; if {h (k)} is nonhomogeneous, 

q(x) = E hn(k) X" ' (1 - x)(l - x - x2) 
v /v ' n=o 

where q(x) = (h2(k) - 2h(k)}x2 + (h(k) - 2k}x + k. 
Finally we rhow an interweaving of the numbers h (k) in Table 1. 
Theorem 10. For r ^ 0 let M (n) be the number of integers not 

r OO 

greater than n which do not appear in. the sequence {h (j)}._ . Then for n 
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M (h (k)) = h (k) - h (k) . rv i r " rr ' n-r ' 

Proof. We begin by observing that if s > t then h(s) > h(t). First 
assume n = r , so that h _ (k) = h0(k) = k. The k distinct integers h (1), 
• • • ,h (k) are the only members of {h (])}._ not greater than h (k), so that 
M (h (k)) = h (k) - k = h (k) - h _ (k), as required. Now assume n ^ r , 
and let h (k) = m. Then h (k) = h (m), so by the above n _ r \ / n \ / r \ /> J 

Mr(hr(m)) = hr(m) - h0(m) 

which implies 

M (h (k)) = h (k) - h (k) , rv xv " xv n-rv ' 

the desired result. 
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