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-*-* Introduction,, As Is well known., a number of remarkable and inter-
esting relationships exist between the golden ratio of the Greeks and the num-
bers in the Fibonacci sequence,, Binetfs formula is one example of such a 
relationship and another is the familiar equation 

F 
-, 1 T n+i 

« = 1 + , , 1 = n ^ m » — 
1 + 1 + • • • 

where a = (1 + V5)/2 and F denotes the n Fibonacci number. In this 
paper, we derive other interesting relationships involving the Fibonacci num-
bers and the simple continued fraction expansions of multiples of the golden 
ratio. We also extend these results to obtain more general theorems about a 
certain class of quadratic surds. 

Specifically we establish necessary and sufficient conditions for integral 
multiples of the golden ratio to be of period one, obtain sufficient conditions 
for these multiples to be of period two and establish some partial converses 
for those of period two. We then generalize by replacing the golden ratio by 
arbitrary simple continued fractions of period one and then by arbitrary sim-
ple continued fractions of period two. Some results are exactly analogous 
while others are only partial. Some curious side results are also established. 

2. Results involving the golden ratio. We begin by considering the fol-
lowing table of simple continued fraction expansions of positive integral multi-
ples of a. Of course, these expansions are periodic and the repeating part of 
the expansion is indicated by dots in the style of Hardy and Wright [ 1] . 

Careful scrutiny of the table reveals a variety of patterns. Some of the 
patterns are only apparent but others, as Indicated by the theorems following 
the table are generally true. 

Note that small Latin letters will always be used to denote positive inte-
gers. Also, L will always denote the n Lucas number. 
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Theorem 1. Let n be a positive integer. Then na = [a,b ] if and only 
if n = Fgm-!, a = F 2 m , and b = L 2 m - 1 for some m ^ 1. 

Theorem 2a Let n be a positive integer. Then mx = [ a , l , c ] if and 
only if n = F2m» a = F 2 m + 1 , and c = L 2 m - 2 for some m ^ JL. 
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Theorem 3. If we admit the expansions a = [ 2 , 1 , - 1 , 1 , 3 ] and 4a = 

[ 6 , 1 , 0 , 1 , 8 ] , then for every integer r — 1, we have 

a) L2Ta = [L2 r+i , F 2 r , 5 F 2 r ], 

and 

b) ^2T-i^ = [L 2 r ~ 1, 1, F 2 r - i - 2 , 1, 5 F 2 r - i - 2] . 

Unlike T h e o r e m s 1 and 2, the converse of Theorem 3 i s not t rue as i s 

easi ly seen by consider ing the expansions of 4a, 16a, and 36a. The following 

t heo rem, however , p rov ides a pa r t i a l converse of the f i r s t a s s e r t i on of 

Theorem 3. 

Theorem 4. Let n be a posi t ive in teger . Then na = [ a , b , c ] if and 

only if nb = F 2 m , ab = F 2 m + 1 - 1, and be = L 2 m - 2 for some m — 1. 

Before proving these r e s u l t s we der ive two l e m m a s which incidentally 

provide unusual cha rac te r i za t ions of the Fibonacci and Lucas number s . 

Lemma 1„ The Pe l l equation x2 - 5y2 = -4 i s solvable in posi t ive i n t e -

g e r s if and only if x = L 2 n _ 1 and y = F 2 n _ 1 for n ^ 1. 

Proof. Since x = y = 1 is the l eas t posi t ive solution of the given equa-

tion, it i s well known [2] that every posi t ive solution is given by 

x + yV5 1 + N5 \ 2n~l 
2 / 

n _ i _ -

a_2 L, \ 2k J 5 +
 22n_2 L \2j - l) 5 

n- l n 

22n-2 *—' \ Z K / 22 n ' 
k=o j=i 

for n a 1. On the other hand, by Bine t ' s formula, 

• 2 1 1 -
1 j / l + V 5 \ 2 n - i / l - V 5 V n - i | 

•i = ^fjV-^2—; -\—2—j j 
J- v (2n - A sj_1 

2n-2 L \2 j - 1/ 2 - j = 1 
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and 

L 2n 

n-i 
1 V ^ #2n - 1\ 5k 

92n-2 ^ \ 2 k / Z k=o \ / 

Combining these three results we have that all positive integral solutions to 
x2 - 5y2 = -4 are given by x = L^n-i and y = F 2 n - 1 for n ^ 1 as claimed. 

Lemma 2. The Pell equation x2 - 5y2 = 4 is solvable in positive inte-
gers if and only if x = L2n and y = F 2 n for n ^ 1. 

Proof. As in the proof of Lemma 1, it is easy to show that 

p£r (1 + V5)k = L k + v5 Fk • k s ° 

where we take L0 = 2. Therefore, since x = 3, y = 1 is the least positive 
integral solution of the given equation, every solution in positive integers is 
given by 

x + AS - . (H^)" 
9J2 + (1 + \ 6 ) | n 

2 

k=o ^ v ' 

k=o k=o 

= L2n + V5 F 2 n . 
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where the last equality is a result of Lucas;[3, p„ 191]. Thus, all solutions 
in positive integers are given by x = L2n, y = F 2 n for n - 1 as claimed. 

We note in passing that Lucas |3, p. 199] observes that L2 - 5F2 = ±4 
and that Wasteels [4] proved that if 5x2 ± 4 is the square of an integer then 
x is a Fibonacci number., 

Proof of Theorem 1. By direct calculation we obtain 

r • i 2a - b + Vb2 + 4 [a,b] = ^ — 

Therefore, na = [a,b] if and only if 

(1) n = 2a - b and n ^ = ^b2 + 4 . 

The second of these equations is equivalent to 

b2 - 5n2 = -4 

and, by Lemma 1, this is solvable in positive integers if and only if n = F 2 m _ 1 

and b = L2 m_l e Finally, since F m + L m = 2 F m + 1 for every m, it follows 
from (1) that 

n + b F 2 m - i + L 2 m - i 
a = —-£ = g - = F 2 m 

and the proof is complete, 
The proofs of Theorems 2 and 4, which depend on Lemma 2, are exactly 

analogous to the proof of Theorem 1 and will therefore be omitted. Of course, 
Theorem 2 is the special case of Theorem 4 with b = 1. 

Proof of Theorem 3. Par t (a) follows directly from Theorem 4 with 
n = L 2 r , a = L2 r + 1 , b = F 2 r , c = 5F 2 r , and m = 2r since it is easily 

2 shown that L 2 r F 2 r = F 4 r , L2 r+1F2 r = F 4 r + 1 - 1, and 5F2 r = L4 r - 2. 
To obtain Part (b) we define the sequence /3. for cf ^ 1 by the following 

series of calculations which depend on Lemma 1: Let 
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01 = L2r-i<* - L 2 r + 1 

^ L 2 r - l " 5 F 2 r - i 
2 

-10 

+ 1 

+ 1 
\fE L 2 r _ ! + 5 F 2 r _ i 

± = i + 12 
^ ^5h2r^1 + 5F2T_t - 10 

= 1 + j82 , 

- V5 L 2 r _ 1 + 5 F 2 r _ 1 - 10 
_ = __ _ 

N/5 L 2 r - i - 5 F 2 r - ! + 10 
= F 2 r - l ~ 2 + Jo 

= F2T.t - 2 + ft , 

J ^ = 10 

^ *sfE L 2 r ^ t - 5 F 2 r - i + 10 

10(\/5 L 2 r _ ! + 5F2 r_1) 

-20 + 10(V5 -L2Y-1 + 5 F 2 r - i ) 

2 
= 1 + — — 

\ 5 L 2 r - i + 5F 2 r _ i - 2 

= i + pt , 

"JE La r - i + 5 F 2 r - i " 2 

= g 

\Z5L 2 r _ ! - 5 F 2 r _ ! 
= 5F 2 r _ j - 2 + 2 + 1 

= S F j r - j - 2 + j35 . 
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Since /35 = ft, the sequence now repeats and it follows that 

L2r_i<2 = L2 r - 1 + ft 

= L2r ~ 1 + TTT2 

= L 2 r - 1 + — 
1 + F2r-i - 2 + ft 

- [L2r-.i - 1, 1, F 2 r _ 1 - 2, 1, 5F2r_i - 2] 

as claimed, 
3. More general results. Since Fn+^/Fn is a convergent in the simple 

continued fraction expansion of (1 + sJ5)/2, the results of the preceding s e c -
tion suggest that one ask if there is any interesting connection between the 
simple continued fraction expansion of a quadratic surd £ and the simple con-
tinued fraction expansion of q £ where p / q is the n convergent to £. 
The following theorems, which generalize those of Section 2, answer this ques-
tion in the affirmative for surds of the form £ = [a, b] or 4 = [a, b, c ] , 

Theorem 5. Let £ = [a, b ] s let n be a positive integer, let PTJ\ 
denote the k convergent to £ and let t = q, + q. Then n£ = [ r , s ] 

if and only if n = q2m-2> r = P2m-2' an(* s = ^2m-2 ^o r some integer m ^ 
1. 

Theorem 6. Let §,n,pj/q, and t be as in Theorem 5. Then n£ = 
[u, v, w] if and only if vn = q2m_i, vu = p2m_j - 1, and vw = t2 m_i - 2 
for some integer m ^ 1. 

Theorem 7. Let £ = [a, b , c ] , let Py/\ D e the k convergent to 
£, let t k = Qk - 1

 + ( l k + 1 . and let sfe - P k - 1
 + Pk+1- T n e n > f o r e v e r Y integer 

r ^ 1, we have 

a ) ^2r^ ~ P2r» 2̂r» ^ ^2r 

b) ^ r - i = LP2r-i " " ! » ! > ^2r 
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°) t2r-1^ = [s2r_lJ q^-i, ( c2 + ^ K r l 

and 

d) t2 r£ = [ s 2 r - 1, 1, q2 r - 2, 1, (be + 4)q2 r - 2 ] 

Proof of Theorem 5. The convergents to £ = [a,b] a r e given by the 

difference equations 

Q = bq + q. 
TI n - i TI-2 

p = bp + p n *n *n- i *n-2 

with the init ial conditions q0 = 1, qt = b , p0 = a, and pA = ab + 1. These 

a r e easi ly solved to obtain 

i j/b + ^PTT\n+1 / b - ^b^7T\n+1| 

(2) a , ab + 2 
pn = 2 * V i + ^ ^ ' Vl ' 

where 

V ,/b - ^b^TrV , __ f b + \fb2 + 4 
n - l " I 2 

and i t i s easi ly shown by induction that t = q + Q for n ^ 0. 

Moreover , s ince [ a ,b ] = (2a - b + \ /b2 + 4 ) /2 , i t follows that n£ 

[ r , s ] if and only if the equations 

n(2a - b) = 2r - s , 

(3) . 
nN/b2 + 4 =Vs2 + 4 

s imultaneously hold. The second of these equations i s equivalent to 
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s2 - n2(b2 + 4) = -4 

and s = b , n = 1 i s c l ea r ly the minimal posi t ive solution. There fo re , every 
solution (s ,n) in posi t ive in tege r s i s given by the equation 

s + nN/^TT = 2 ( s + V
2
b2 + 4 ym~\ m=l,2,--., 

and it i s eas i ly shown by expanding the powers h e r e and in (2) that this r educes 

to 

s + n4>2 + 4 = t 2 m _ 2 + q 2 m - 2 v b 2 + 4 

Also, f rom the second equation in (2), we have 

n(2a - b) + s 
r " 2 

(2a - b)q2m_2 + t2 m_2 

2 

^2m-3 + tfcm-i "* b(^2m-2 
= a q 2 m „ 2 + g 

= a q 2 m ^ 2
 + Q2m-3 

= P2m-2 

s ince it i s eas i ly proved by induction that aq + q = p for all n. This 

comple tes the proof. 

Proof of Theorem 6. Note in pa r t i cu l a r that the preceding a rgument 

essent ia l ly shows that 

IA\ (b + \/b2 + 4) . ^ H 7 , ^ , 
(4) * - ^ *- = t k - 1 + q ^ v f a 2 + 4 , k ^ 1 .. 

Also, i t i s easi ly shown by induction that 
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m 

]C (k) b V i = q^-i 
fc=o 

m+i 

k=o 

m 

"I 
k=o 

m 
K 4- — 

and 

m 

lL (k) b \ - 2 = ̂ m-2 
k=o v ' 

Now, a s in the preceding proof, one can show that n£ = [u, v, w ] if and 

only if vw + 2 and vn a r e s imultaneously posi t ive in tegral solutions of the 

Pel l equation 

(6) (vw + 2)2 - (vn)2(b2 + 4) = 4 

and of n(2a - b) = 2u - w. Also, the general solution of (6) i s given by 

0 , fcr—r 0 b2 + 2 + b ^ b 2 + 4 (vw + 2) + vn \Jbil + 4 = 2 { > , m = 1,2, 

Using the equal i t ies in (4) and (5) this may be simplified to give 

„ I (b2 + 2) + b "A>2 + 4 ( _ i 2 + b(b + »7b2 + 4) i 
Z \ 2 ~ l ) 2 I 

m 
/m\ (b + N/'b2 + 4 ) ^ 

- 2-J \k/ k-i 
k=0 * 
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m 

k=0 

m 

k=o k=o 

= t2m,t + \lb2 + 4 - q2m_t . 

Thus, vw + 2 = t2m_1, vn = q2m_l5 and 

vn(2a - b) + vw vu = —^ _ i 

(2a - b)q2m-i + t 2 i n - i - 2 

P2H1-1 " 1 

as in the preceding proof. 
Proof of Theorem 7. For 

( = [a.b.c] = a + -b c +Yb2°2 + — 

define 

A = f-a,. B=A + c, C = bA/c, 

and 

D = bB/c = C * b . 

The following identities are useful: 

a ) Q2k = 1 + cq2k+icl2k-i/b 
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b) qlk+i = b(q2k+2Cl2k + D / c 

c ) P2k = aQ2k + cq 2 k- i /b 

d> P2k+l = aq2k+i + ^2k 

e) (q2kB - cq 2 k + 1 /b)(q 2 k A + cq 2 k + 1 /b ) = c / b 

f) (q2kD - q2k+i)(q2kC + q2k+i) = b / c 

g) (q2k+iB - q2k+2 + D(q2k+iA + q2k+2 - 1) = q2k+2 + q2k - 2 = t2k+i - 2 

h) t 2 r = b t 2 r _ i + t 2 r_2 

i) t 2 r + i = c t 2 r + t 2 r _ i 

J) s2k = at2k + t2k_i 

k) s2k+i = at2k+i + c t 2 k /b 

2 9 
m) c t 2 k - bt2k+it2k-i = ct2kt2k+2 - b t2k+i = -b(bc + 4) 

n) ( t 2 r_iB - c t 2 r / b ) ( t 2 r . i A + c t 2 r / b ) = c(bc + 4) /b 

o) (t2 r_iD - t 2 r ) ( t 2 r „ iC + t 2 r ) = b(bc + 4 ) / c . 

T h e s e a r e proved in a s t ra ight forward manner . 

To prove 7a, we have by identity c) and the definition of B that 

q2kf = q2ka + q2kA 

= q 2 k a + cq 2 k _ i /b - cq 2 k _! /b + q2kA 

= P2k + Bq2k - cq2k+i/b » definition of B, 

= P2k + 1 / 0 1 -
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Using identity e) and the definitions of C, D and t2k, we have 

Pi = b(q2kA + c q 2 k + 1 / b ) / c 

= q2kC + Q2k+l » definition of C9 

= Q2k+i + Q2k-1 + Q2kC - q2k-i 

= *2k + q2kD - Q2k+i 

= t2k + 1/^2 • 

Using identity f) and the definitions of C and t2k» we have 

125 

We the re fo re have 

02 = c ta2kC + Q2k+i)/b 

= q2kA + cQ2k+i/b 

= cfa2k+i + Q2k-l)/b + <*2kA - cq 2 k - l /b 

= c t 2 k / b + I / f t . 

q2k^ = [P2k» t2k, c t 2 k /b ] , 

proving 7a. 

The proof of 7b is s i m i l a r and u s e s identity g) at a key point in the a rgu-

ment . The argument will not be p resen ted he re . 

To prove 7c, we note that 

^2r-lb = t 2 r _ j a + t 2 r _ iA 
= s2 r_i + t 2 r _ iA - c t 2 r _ 2 / b 

= s2 r_i + ( t2 r_iB - c t 2 r / b ) 

- Q c(bc + 4) /b 
S 2 r - i + t 2 r_!A + c t 2 r / b 

- s 2 r_ i 
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Pi = (b t 2 r - iA + c t 2 r ) / c (bc + 4) 

= Q2r-1 + (bt2r_iA + c t 2 r - c(bc + 4)q2 r_1) /c(bc + 4) 

= Q2r-i + ( t ) t 2 r - l A + ccl2r+l - c(bc + 3)q2 r_1) /c(bc + 4) 

= q 2 r - i + (bt2rA + cbq 2 r - c(bc + 2)q2 r_i) / c (bc + 4) 

= Q2r-i + (bt 2 r - iA + cbq 2 r - (be + 2){q2 r - q2 r_2)) /c(bc +• 4) 

= Q2r-i + (bt2r_iA - 2q 2 r + (be + 2)q2 r_2) /c(bc + 4) 

= Q.2r-l + (bt2r_iA - 2(cq2 r_i + q2r_2) + (be + 2)q2 r_2) /c(bc + 4) 

= Q2r-l + (bt2r-iA - 2cq 2 r _ i + bcq 2 r _ 2 ) /c (bc + 4) 

= Q2r-l + (bt2 r - iA - c(q 2 r _ i + q2 r_3)) /c(bc + 4) 

= q2 r_i + (bt2r_iA - c(t2r__2))/c(bc + 4) 

= Q2r-i + ft2r-ic - t 2 r , 2 ) / ( b c + 4) 

= Q2r-i + ( t 2 r- iD - t 2 r ) / ( b c + 4) 

-4- MbC + 4 ) / C 
q 2 r - i + (be + 4)(t2 r_iC + t 2 r ) 

1 
~~ ^2r- i 

and 

t 2 r - i A ~ c t 2 r / b 

= Q2r-i + £— = Q2r-i + 
a Vl2r-1 ' ~ 
P 2 j8i((bc2 + 4c)/b) 

P2 = (be2 + 4 c ) ; V b = ((be2 + 4c) /b)(q 2 r _ i + -X ) 
P2 

((be2 + 4c ) /b )q 2 r „ 1 + ~ - . 

Hence we obtain 

t 2 k - i f = [s2k-i» q2k-i» ((be2 + 4c)7b)q2k^i] . 

The proof of p a r t d) is s im i l a r and the argument i s omitted. 
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The following theorem, which i s s tated without proof, i s a pa r t i a l con-

v e r s e of T h e o r e m 7. 

Theo rem 8, Let f , p, , q, , s, , and t, be as in Theo rem 7 and let n, 

u, and v be posi t ive in tegers . 

a) If v i s such that b divides cv and n£ = [ u , v, c v / b ] , then n = q 2 r , 

u = t 2 r , and v = p 2 r for some posi t ive integer r . 

b) If n f = [ u , 1, v j , then n = q 2 r _ i , u = P2r-l - 1» a n d v = t 2 r - 2 for 

some posi t ive in teger r . 

Remark . When a s imple continued fract ion has a pa r t i a l quotient 1 the 

corresponding approximation of the convergent to the number in question i s not 

as good as when other in tegers a r e pa r t i a l quotients. T h e l T s c a n b e el iminated 

as a l l but the f i r s t pa r t i a l quotient if it is pe rmi t t ed to have - l ' s a s n u m e r a t o r s , 

The corresponding convergents would then be be t te r approximat ions than the 

or iginal ones . 

Setting about to purge the l ' s f rom the expres s ions obtained in T h e o r e m s 

2, 3b, 7b and 7d we r a n a c r o s s an in te res t ing pa t t e rn that allowed us to s i m -

plify the notation. Let u s define the symbol - [ a 0 , a l s a2, • • •] to be the 

express ion 

a0 
ai + -ZL 

1 a9 + • 

Although th is express ion might not always be meaningful,it is in the c a s e s we 

cons ider he r e . 

With the new notation we a r e able to r e s t a t e a few of the t h e o r e m s as 

T h e o r e m 9: 

a) F k a = ( - D k + 1 [ F k + 1 > L k ] . 

b) v = (-1)k[Lk+1' K> 5K]-
c) If i = [ a , b ] then q^ = (- l )k[>k> \ ] . 

d) If f = £SL, b , c 1 and k odd, then q, f = - fp^ ! t, l 
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e) If f = La,b,c] and k even, then t, g = - \s,, q,9 (be + 4)q, 1. 

The proofs are quite similar to the original proofs and are omitted. 
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