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Given the cubic equation
X3 - e+ Cx -y = 0
1 2 3 )

with roots r;, Ty, T3, the problem of this paper is to write the equation

n n n n_n nn n_n nnn
(1) x3 - (riy + ry + 14 X%+ (r;Ty + TyTy + Toly )X — T Tyl

— 3 2 _— -
R T R T S R )

whose roots are rril, r?, r?, and whose coefficients are expressed in terms
of the coefficients ¢, c¢,, ¢, of the given equation,

This paper extends to the cubic equation a study initiated by the solution
of a similar problem for the quadratic by the same authors [1](1‘= Just as a
special quadratic equation leads to a relationship between the nt Fibonacci
number and a sum of binomial coefficients, so does a special cubic equation
relate the nth member of a Tribonacci sequence to a sum of products of bi-
nomial coefficients., Some Lucas identities also follow,

The summationfor initial values of powers of roots by elementary theory
yields the first five entries in the table below. Examination of this sequence
reveals an iterative pattern; namely, that if

_.n_.n n
= ry + Ty + Iy, n

v
=

(1,n)

then

“,n) T “Ca,n-1 T %%, n-2) T %%1,n-3)

which is easily proved, since each root, and hence sums of the roots, satisfies

the original equation,
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Sums through eighth powers appear in the table below., The right-hand

column gives the sum of the absolute values of the coefficients for each value

of n,
]
n _.n n n Coefficient
‘m T T TN Sums for n
0 3 3
1 cy 1
2 ct - 2¢, 3
3 c? - 3¢yCy + 3cg 7
4 ¢t - 4clc, + 2c} + 4ccq 11
5 c? - 503102 + 50103 + 50%03 - 5CyCy 21
6 ¢® - 6cle, + 9cicd - 208 + 6cle; - 12¢4c504 + 3¢l 39
7 ¢l - 7cley + 14cicd - Teqcd + Tedey - 21cke,ey + Tedeg + Te el 71
8 c8 - 8cbe, + 20cics - 16¢ics + 2¢) 131
+ 8cicy - 32cic,cq + 24c chey + 12¢ic? - 8cyed

It is possible to perceive the generalized number pattern for sums of nth powers
of the roots by extending the table above and breaking down the sum interms of

coefficients of powers of c;. If ¢ is the coefficient of c?/n! in the sum

n n n
r1+r2+1‘3 5

then
B = cf - nef ¢, + n(n - 3)c] %ed/2 - nm - Hn - 5)c; /3 + ..
P, = nc?_3 - nn - 4)0?_502 + n(n - 5)(n - 6)0?—703/21
“nn - 6)@ - T - 8)c) cB/3 + .-
- - ' -10
¥, = n(n - 5)0151 5 _nm - 6)n - ’7)0111 802 +nm - Nn - 8)n - 9)0111 ci/2!

n-12

- n(@ - 8 - 9¢n - 10)(n - 11)c; c§/3! + +..
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leading to the three equivalent expressions below, For cic.cs # 0,

[n/3]
(@) Fergerg = Y sk,
k=0
[(n-3k)/2]
Y = Z (—1)mc?_2m_3kc§nn(n -m -2k -1)!/(n - 2m - 3k)! m! ,
m=0
[n/3][ (n—3k)/2] m
-1 “m-2k-1)! n?m-3k mk
@ rferer= 3 3! ()nfl(2nmfn3k).'m!k1) ey
k=0 m=0
[n/a] [(n-3k)/2 ] m
n n n (-1)'"n n-m-2k-1\{ n-m-3k
(4) Ty Ty Ty = Z Z n—m—3k< k )( m )
k=0 m=0

n-2m-3k m k
X ¢y Cy C3 ,

where [n] is the greatest integer =n and (?:) is a binomial coefficient.
Notice that the coefficients of c§ are the same as the coefficients which arose
in studying the roots of the quadratic in [1]. The reiterative relationship of

the terms ¢ suggests a proof by mathematical induction for the three

formulae list(elci,n)and such a proof has been written by the authors, For the

sake of brevity, the proof is omitted. A derivation of the above formulas

could also be done using Waring's formula and Newton's identities (see [2]).
Thus far, we have found a way to express the coefficient for x? in our

general problem. The coefficient for X,

nn n n

_ nn
Cig,py = TiT2 * Tiry + IpTy

has a similar computalion. In the auxiliary cubic equation
n n n_n nn
(x - riTy X - v T3 )(Xx -Tryry ) =0

notice that 0(2 n) is the coefficient of x%. When n = 1, the above cubic

becomes, upon multiplication,



th
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x3 - (v + Tyrg + Tyrg)x® + (riryrg + ryrirg + ryr,ri)x - rirjri
= x5 - Ccpx? + ciegx - ¢ = 0,

Comparing this equation with the equations of our original problem, we can
apply the three formulae already derived for c(1 n) to find 0(2 n) if we re-
place c; by ¢y, cy by c,c3, and cg by c%. For example, from Equation (4),

if cycycy # 0, our formula for c becomes

(z’n)

[n/s] [(n—sk)/2]( 1)m ( . s
nn nn nn - nn-m - zK - o
(8)  ryry + ryry + Tyry = Z Z (n - 2m - 3k)! m!k!
m=0

k=0

m n-2m-3k 2k+m
{ Cy ¢

X c 3

In practice, when raising the roots of a given equation, it is simpler to utilize
the method of iterating functions than to substitute into the formulae, especially
as n becomes larger. An example worked by each method follows,

Given the equation
X3 - 6x+ 11x -6 = 0

write the cubic whose roots are the fourth powers of the roots of the given equa-
tion, without solving for the roots.

(A) By substitution: From the table given earlier or from Equations (3)
and (5), the desired cubic is
x3 - (¢} - 4021(:2 + 2¢8 + 4cjcy)xt + (ch - 40%0103 + 202103% + 4czo§)x - c§ = 0.
Substituting

cy = 6, cg = 11, ¢c3 = 6

yields

% - 98x% + 1393x - 64 = 0
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with roots 14, 24, and 3% As a check, the roots of the given equation are
1, 2, and 3.

(B) By iteration: To get c(1 4)’ we wish to write the sequence

‘1,07 ‘a1 a2 a,sy ey
Now
0(1,0) = 3, c(l,l) =c = 6, 0(1’2) = c% - 2Ccy = 36 - 22 = 14.
By the iteration relationship,
0(1’3) = 010(1’2) - Czc(l,l) + c3c(1’0) = 6(3) - 11(6) + 6(14) = 36 ;
0(1,4)= 6(6) - 11(14) + 6(36) = 98
Similarly,
o0 = F %o = b Caa " ch - 2ccy = 49.
Since
C(n,2) = €2, n-1) ~ %2 nog) T %2, ng)
substitution yields
0(2’3) = 251 and 0(2,4) = 1393,

yielding the same cubic as in (A).
Next let us turn our attention to several special cubic equations., First,

for the cubic

3 _ 2 _ - = = = =
XX oxsl=0 Cag T Can Tt fay TP
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and our repeating multipliers in the iterative relationship are 1, 1, 1. Then,

= 16) £ 1D+ 13) = T, e =7+3+1 = 11,

(1,3) 1,4)

© % T %@ T %) " %an-3)
For this particular equation we have a species of Tribonacci numbers, any term

after the third beingthe sum of the three preceding terms, with the entry terms

3, 1, 3. By Equation (4), the nth term Tn in this Tribonacci sequence is

[n/3] [(n-3k)/2 ]

m .
_ (-1) n n-m-2k -1 n-m- 3k
Tn‘z Z n - m - 3k k m
k=0 m=0

Notice that the sums of the coefficients in the table given for c(1 n) are these

same numbers. It is interesting to recall that the special equation

XX -x-1=0

led to a formula relating the nth member of the Fibonacci sequence to a sum
of binomial coefficients in the earlier study of the quadratic equation [1] .

Considering the special equation

¥ -x+x-1=0

with roots 1, +V-1, we can write the following from Equation (4):

[n/3] [(n-3k)/2]

m 1 if n is odd
-1)"'n n-m-2k-1\/n-m -3k .
_ ) o , ={_1ifn= 4s+2
n - m - 3k k m .
3ifn = 4s
k=0 m=0

Of more interest, however, are the following identities for the nth Lucas

number Ln, defined by
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Ly =1, Ly =3, Lp=Lpy+ Ly,
We substitute in Equation (3), using
ry=a=(1+nN5)/2, 1ry=p=(@1-nNB/2,
and letting ry vary. If ry; = 1, Equation (3) cannot be used directly because
Cy = af+ B +a =0,

and 0 is not defined, But, by following the derivation for Equation (3), it is
seen that, if ¢y = 0, ccq # O,

[0/3]
n n n nn - 2k - 1)! n-3k k
(3" r; + Ty + Iy = Z —————En - 3k)!k1) c; g
k=0
Since
cp=a+B+1=2 ¢ =af = -1,
and
Ly =a +8,
substitution gives
[n/3] -
Le1= 3 (152" nn - 2k - 1
n (n - 3k)! k!
k=0

In general, if
r3:p1 p#l’ p#_ly p#oa
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Equation (3) gives

n/3] [(n-3k)/2
A D ™o - m - o~ ypp o 10Ky mpK
n+p-Z Z M - 2m - 3K)! m! k'
k= m=0

Similarly, Equation (3') gives the following two identities using
ry = o, Try=pf, 7r3=-1/N5,
and the known relationship for Fibonacci numbers,
F o=@ -g)/N5 .

Below, n is taken to be 2s + 1 and 2s respectively.

[ (2s+1)/3 _
s+ ] @s + 1) (25 - 2k) 1 (-1)Ka?8 73K
Fasty - /57 = Z s-k+1

ke (28 - 3k + 1)!k!'5

=0

[*s/3] k 2s-3k
- - | S

Lyg + 1/58 _ Z 2s5(28 2k 1) ! ( k) 4

—~ (2s - 3k)! k! 5°°
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