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Send all communications regarding Elementary Problems and Solutions
to Professor A. P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico, 87106, Each problem or
solution should be submitted inlegible form, preferably typed in double spacing,
on a separate sheet or sheets in the format used below. Solutions should be

received within three months of the publication date.

B-118 Proposed by J. L. Brown, Jr., Pennsylvania State University,
State College, Pa.

Let F1 =1 =Fy and Fp+y = Fpq + Fn for n > 1. Show for all n >
1 that

w Kk
F, /2%) < 2 .
Z O/

B-119 Proposed by Jim Woolum, Clayton Valley High School, Concord, Calif.

What is the area of an equilateral trapezoid whose bases are Fn_ 1 and

F and whose lateral side is F_ ?
n+i n

B-120 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex.

Find a simple function g such that gfn) is an integer when n is an

integer and g(m +n) - g(m) - g) = mn,

B-121 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex.
Let n, q,d, and r be integers with n >0, d >0, n=qd+7r, and

0 < r <d. Prove that

F_ = (Fd+1)qFr (mod Fg) .

n
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B-122 Prépo;ed by A.J. Montleaf, Univ. of New Mex., Albuquerque, N. Mex.
Show that

sin [(Zk + 1)0]/sin9 = 2 cos [21{0] + 2 cos [2(1{ - 1)0} + 2 cos [2(k - 2)0]

+eee +2cos (20| + 1

and obtain the analogous formula for F / F_ interms of Lucas numbers,
ek+)m/ " m

B-123 (Frorﬁ B-102, Proposed by G. L. Alexanderson, Univ. of Santa Clara,
Santa Clara, California.

Show that all the positive integral solutions of x%+ (x = 1)2 = z%are
given by
= 2 _ 2. = 2 2., = coe .
x = @) ® )z, = @ )+ P); n=12 ;

where Pn is the Pell number defined by P; = 1, Py = 2, and Pn+2 = 2P
+P .
n

n+i

SOLUTIONS

A NON-HOMOGENEOUS DIFFERENCE EQUATION
B-100 Proposed by J. A. H. Hunter, Toronto, Canada.

Let U = 0 P U - 1, with uy =1 and uy = 3. Find the general

solution for u -

Solution by F. D. Parker, St. Lawrence University, Canton, N.Y.

The general solution of the difference equation is u_ = cian + czbn +1,
where cy and cy are arbitrary constants, a = (1 +v6)/2 and b = (1 - V56)/

2. Since u; =1 and uy, = 3, we find the particular solution to be

-1 -
u =—2—an ——2bn

N w35 V5

Also solved by L. Carlitz; Herta T. Freitag; William T. Jackson; Douglas Lind;
William C. Lombard; C.B.A. Peck; Lt. A.G. Shannon, R.A.N; David Zeitlin;
and the proposer.

i1 =2Fr +1.
n-i



19677 ELEMENTARY PROBLEMS AND SOLUTIONS 589

A SEQUENCE OF SEQUENCES

B-101 Proposed by Thomas P. Dence, Bowling Green State Univ., Bowling Green
Ohio.

Let X be defined by x

r

=1, x =n, and X. = X, + X, .
1,n > Ta,n ? i+2,n i+1,n in

Express x,_  as a function of F_ and n.
in n
Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia

We claim X~ Fi + (n - 1)Fi- This is clearly true for i = 1,2 and

-
all n. Since both expressions obey the same second-order recurrence rela-
tion in i and agree in the first two values, they must coincide for all i and

n,
Also solved by Gerald Edgar, Herta T. Freitag, William C. Lombard, John W.
Milson, F. D. Parker, David Zeitlin, and the proposer.

EIQ_TE: The problem editor misstated the problem as '"Express i n in
terms of Frl and n" instead of "Express Xi,n in terms of n and Fio "
The proposer intended that Fi_1 in the solution printed above be expressed

in terms of Fi’ as one might do, for example, using the result of B-42.

PELL-PYTHAGOREAN TRIPLES

B-102 Proposed by Gerald L. Alexanderson, Univ. of Santa Clara, Santa Clara,

~Calif.
The Pell sequence 1,2,5,12,29,<°« is defined by Py = 1, Py = 2 and
= ; 2 = ; ;

Pn+2 2Pn+1 + Pn" Let (Pn+1 + 1Pn) X, Ty, with X and Yy real and

let z_ = lx + iy l Prove that the numbers x_, y_, and z_ are thelengths
n n n n’ “n n

of the sides of a right triangle and that X, and y, are consecutive integers

for every positive integer n. Are there any other positive integral solutions

of x4+ (x+1)% = z? than (x,z) = (Xn’ zn) ?

Solution by Herta T. Freitag, Hollins, Virginia.

= ; = V2 + v2 . i
(A) z, = Ixn + 1yn\ = Vxg +yp; hence X0 Vs and z, may be interpre—
ted as lengths of the sides of a right triangle.
(B) To show that Vo= % 1

i = 2 - 2 =
Since X Pn + Py and Yy ZPn . 1Pn , we need to show that
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- p? 2| =
‘ZPnHPn Pn+1 * Pn L.

Proof by mathematical induction:

(1) |2P,P; - P} + Pﬂ = 1, hence the statement is correct for n = 1.

(2) Assume the formula correct for n = k, i.e., assume that:

2 2| =
lzpkﬂpk - P TR 1.
Then,
2 L 2 9
2Py Pt ™ P ¥ Pk+1. = |2(2Pk+1 T PP - @R P S PR
_ |p2 2| _
= 'Pk+1 - 2P P, - Pl = 1.

This, however, means that correctness of the statement for n = k causes
its correctness for n = k + 1, and the query is settled.

(C) No, there are no other positive integral solutions of x2 + {x + 1)2 = z2
than (x,z) = (xn, zn). This, however, is only a hunch; I was unableto

establish the unicit-.

Also solved by the proposer.
NOTE: See proposed problem B-123,

AN INCREASING SEQUENCE

B-103 Proposed by Douglas Lind, Univ. of Virginia, Charlottesville, Va.

Let

a = D F, al),

where the sum is over all divisors d of n. Prove that {an} is a strictly

increasing sequence. Also show that
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Solution by Gerald Edgar, Boulder, Colorado.

For n 2 1, we have

v

N

F1 + F > F
1
difa+) o

a °
n+i n+1

Observe that
ay = 1= FZ ’

32:2:F3,

as

Il

Il
=

-~

and that for n >3, since (W -1) /' n and @ - 2) X n,

n-3
= L = -
an (:thn Fd - Fn +.i2—1 Fi Fn * Fn—i 1< Fn+1

so that in all cases for n > 1, we have a, < Fn+1 .

Therefore, for all n > 1, a < a_ so that {an} is a strictly in-

+1’
creasing sequence. Also, we have

21 anxn = i (d%% Fd) <

d=1 \dln
0 [e ¢}
id
= X ( 2 X ) B
d=1 \ i=1
= F
d=1 \ 1 - Xd d
d
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Also solved by the proposer.

TELESCOPING SERIES

B-104 Proposed by H. H. Ferns, Victoria, British Columbia.

Show that
F

[e e}

Z 2n+1 _ ;1_
H

n=1 LnLn+1Ln+2 3

where Fn and Ln are the nth Fibonacci and nth Lucas numbers,
respectively.

Solution by L. Carlitz, Duke University, Durham, N.C.

It is easily verified that

n+1Ln+2 - Fn+2Ln = Fopen o

Thus

EN; Fon+y _ X F o F o _ Fa Fae
n=t Tnlntilnee a=t \ Tnlnn Dol Lily  Daibnee

and therefore

F2n+1

L L. L
n=1 "n n+i" n+2

:—];
3

Also solved by Douglas Lind, F. D. Parker, L. A. G. Shannon, David Zeitlin,
and the proposer.

A PERIODIC SEQUENCE
B-105 Proposed by Phil Mana, University of New Mex., Albuquerque, New Mex.

Let g, be the number of finite sequences cy, cyp,°*°,cy, Wwith ¢y = 1,

each ¢ in %O,l}, (Ci’ Ci+1) never (0,0), and (Ci’ Ci+1’ci+2) never (0,1,0),
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Prove that for every integer s > 1 there is an integer t with t < s® -3 and

g, an integral multiple of s.

Solution by Douglas Lind, University of Virginia, Charlottesville, Va.

Acceptable sequences of length n can be produced by appending a "1
to all sequences of length n - 1, anda "110" to those of length n - 3. Then
all n-sequences not included are not acceptable since they violate the given
restraints. It follows that 8, = 8yt 8 s Put Ik = (gk, Ly gk+2). Each
Ik determines the entire sequence g, by using the above recurrence relation.
Thus modulo s > 1, if Ij = I, then {gn} is periodic with period slj - k.
Now there are (s - 1)° possible distinct triplets (a,b,c) modulo s such that

a,b,c £ 0 (mod s), Also {s-1)°3< s®-5 for s > 1. Thus either one of
Ij, I, o ¢, Ig_5 contains a 0, in which case there is a t < s® - 3 such that g
= 0 (mods), or Ij = I (mods) for some j,k < s3-3 with j £ k. But
then {gn} has period t = }] - ki> 0, so g
t < -3,

gy = 0 (mod s), where here

Also solved by Robert L. Mercer and the proposer.
* K K Kk A
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