ENUMERATION OF CERTAIN TRIANGULAR ARRAYS

University of Maryland, College Park, Maryland

1. INTRODUCTION

Let k be a positive integer. We define the numbers $F_n(k)$ and $N_n(k)$ by means of the recurrences

(1.1)
$$F_{n}(k) = F_{n-1}(k) + F_{n-k}(k) \quad (n \ge k) ,$$

(1.2)
$$N_{n-k}(k) = \sum_{j=0}^{k} (-1)^{j} {k \choose j} N_{n-j}(k) \quad (n \ge k)$$
,

with the initial conditions

(1.3)
$$F_n(k) = n + 1 \quad (0 \le n < k) ,$$

(1.3)
$$F_{n}(k) = n + 1 \quad (0 \le n < k) ,$$
(1.4)
$$N_{n}(k) = {k+n \choose n} \quad (0 \le n < k) ,$$

Note that

(1.5)
$$F_n(1) = N_n(1) = 2^n ,$$

(1.6)
$$F_n(2) = F_{n+2}$$

(1.6)
$$F_{n}(2) = F_{n+2},$$

$$N_{n}(2) = 3.2^{n-1},$$

where F_{i} denotes the usual Fibonacci number ($F_{0} = 0$, $F_{1} = 1$).

Given positive integers m and k, put m = pk + r ($1 \le r \le k$) and let T(k, m) denote the number of arrays

(1.8)
$$n_{11} \cdots n_{1k}n_{1, k+1} \cdots n_{1, pk}n_{1, pk+1} \cdots n_{1m}$$

$$n_{2, k+1} \cdots n_{2, pk}n_{2, pk+1} \cdots n_{2m}$$

$$\vdots$$

$$\vdots$$

$$n_{p, pk}n_{p, pk+1} \cdots n_{pm}$$

$$n_{p+1, pk+1} \cdots n_{p+1, m}$$

where n_{11} is either 0 or 1 and

(1.9)
$$n_{ij} \ge n_{i,j+1} \ge 0; \quad n_{ij} \ge n_{i+1,j} \ge 0$$
,

For example, T(2,5) and T(2,6) are the number of arrays

where each x is either 0 or 1 subject only to the conditions (1.9). As a further example, we have T(2,3) = 5, the arrays being

Indeed, we find that

(1.10)
$$T(k,n) = F_m(k) \quad (m, k = 1, 2, 3, \cdots)$$
.

The numbers $\,N_{n}(k)\,$ also occur in connection with triangular arrays of zeros and ones. We prove that

(1.11)
$$N_{n}(k) = \frac{1}{k} \sum_{j=0}^{k-1} [(\rho^{-j} + 1)^{k} - 1] (\rho^{j} + 1)^{n},$$

(1.12)
$$\sum_{n=0}^{\infty} N_n(k) x^n = \frac{x^k - 1}{x^k - (1 - x)^k},$$

where ho denotes a primitive $k^{ ext{th}}$ root of unity.

Finally, we have included some one-line arrays which can be enumerated in terms of the numbers $\,F_n(k)\,$ and $\,N_n(k).$

The author wishes to thank Professor Carlitz for his aid in the preparation of this paper.

2. THE NUMBERS F_n(k)

For given positive integers m and k, let T(k,m) denote the number of arrays (1.8) subject to the conditions (1.9).

To evaluate T(k,m), we first note that if $n_{1m}=1$ in (1.8), then $n_{11}=\cdots=n_1,m-1=1$ and there are T(k,m-k) arrangements of the resulting matrix. On the other hand, if $n_{1m}=0$, then $n_{2m}=\cdots=n_{p+1},m=0$ and there are T(k,m-1) arrays possible. This evidently yields

(2.1)
$$T(k, m) = T(k, m - 1) + T(k, m - k) \quad (m > k)$$

In the next place, it follows at once from (1.8) and (1.9) that

(2.2)
$$T(k,m) = m + 1 \quad (1 \le m \le k)$$
.

This evidently completes the proof of

Theorem 1. The number of arrays (1.8) subject to the conditions (1.9) is given by

(2.3)
$$T(k,m) = F_m(k) \quad (m,k = 1,2,3,\cdots)$$
.

As an immediate corollary of (2.3) we have

Theorem 2. Let q_k (n;p) denote the number of partitions of n into at most p parts, successive parts differing by at least k. Then

(2.4)
$$\sum_{n=0}^{M} q_{k}(n; p + 1) = F_{m}(k) ,$$

where m = kp + r (1 \le r \le k) and $M = m(p + 1) - k \binom{p+1}{2}$.

Indeed, using the generating function [2]

$$\sum_{n=0}^{\frac{1}{2}m(m+1)} \mathbf{q_1(n;m)x}^n \ = \ \prod_{j=1}^{m} \ (1 \ + \ \mathbf{x}^j \) \quad \text{,}$$

we easily verify that, for k=1, (2.4) reduces to (1.5). However, Chaundy [1] has noted that, for k>1, the generating function for $q_k(n;p)$ is not known.

Given positive integers m and k , put $m=pk+r(1 \le r \le k)$ and, for $1 \le j \le k$, let $N_j(m,k)$ denote the number of arrays

where n_{11} is either 0 or 1 and the n_{1j} are non-negative integers subject to the conditions (1.9). For example, $N_1(5,2)$ and $N_2(5,2)$ are the number of arrays

respectively.

It follows from (3.1) and (1.9) that

(3.2)
$$N_{j}(m,k) = {m+j \choose j} \qquad (1 \le m \le k) ,$$

(3.3)
$$N_{j}(m,k) = N_{j}(m-1,k) + N_{j-1}(m,k) (2 \le j \le k; m > k)$$
,

(3.4)
$$N_1(m,k) = N_1(m-1,k) + N_k(m-k,k)$$
 (m > k).

The proof of (3.2) is not difficult; (3.3) and (3.4) are proved in exactly the same way as (2.1).

Using (3.3) with j = k, we see that

$$N_{k-1}(m,k) = N_k(m,k) - N_k(m-1,k)$$
,

and, in general,

(3.5)
$$N_{k-j}(m,k) = \sum_{r=0}^{j} (-1)^{r} {j \choose r} N_{k}(m-r,k) \quad (1 \le j \le k-1)$$
.

Comparing (3.4) and (3.5), we obtain the recurrence

(3.6)
$$N_k(m - k,k) = \sum_{r=0}^{k} (-1)^r {k \choose r} N_k(m - r,k)$$
,

which should be compared with (1.2).

For k=1,2 the recurrence (3.6) is easily handled. Indeed, it follows from (3.2) that (3.6) is in agreement with (1.5) and (1.7). Note that (1.7) and (3.5) imply

(3.7)
$$N_1(m,2) = 3 \cdot 2^{m-2} \quad (m \ge 2)$$
.

To solve the recurrence (3.6) for general $\,k$, we make use of some results from the calculus of finite differences [3]. Let ρ denote a primitive k^{th} root of unity and note that the characteristic polynomial of the recurrence is

$$(x - 1)^k - 1$$

whose roots are ρ^j - 1 (j = 0,1,2,...,k - 1). Thus there are constants A_0 , A_1,\cdots,A_{k-1} such that

(3.8)
$$N_k(n,k) = \sum_{j=0}^{k-1} A_j(\rho^j - 1)^n$$
.

We show that

(3.9)
$$A_{j} = \frac{1}{k} \left[(\rho^{-j} + 1)^{k} - 1 \right] \quad (0 \le j \le k - 1) ,$$

first noting that we may extend the recurrence (3.6) and define $N_k(0,k) = 1$. To prove (3.9), we have, for $0 \le r \le k - 1$,

$$\begin{split} \sum_{j=0}^{k-1} \left[\left(\rho^{-j} + 1 \right)^k - 1 \right] \left(\rho^j + 1 \right)^r &= \sum_{s=0}^{k-1} \binom{k}{s} \sum_{t=0}^r \binom{r}{t} \sum_{j=0}^{k-1} \rho^{j(t-s)} \\ &= k \sum_{s=0}^r \binom{k}{s} \binom{s}{t} = k \binom{k+r}{r} \end{split},$$

which, using (3.2), implies (3.9).

It follows from (3.8) and (3.9) that

(3.10)
$$N_k(n,k) = \frac{1}{k} \sum_{j=0}^{k-1} \left[(\rho^{-j} + 1)^k - 1 \right] (\rho^j - 1)^n,$$

so that

(3.11)
$$N_{k}(n,k) = \sum_{s=0}^{k-1} {k \choose s} \sum_{r \equiv s \pmod{k}} {n \choose r}.$$

If we define generating functions

(3.12)
$$F_{kj}(x) = \sum_{n=0}^{\infty} N_{j}(n,k)x^{n} \quad (1 \le j \le k) \quad ,$$

then it is clear from (3.2) and (3.3) that

(3.13)
$$(1 - x)^{j-1} F_{kj}(x) = F_{k1}(x) \quad (j = 2, 3, \dots, k) .$$

Moreover, using (3.4), we have

$$F_{kk}(x) = x^{-k}(1 - x)F_{ki}(x) - \frac{x^{-k}(1 - x^k)}{1 - x}$$

Comparison with (3.13) then yields

(3.14)
$$F_{ki}(x) = \frac{(x^{k} - 1)(1 - x)^{k-1}}{x^{k} - (1 - x)},$$

(3.15)
$$F_{kj}(x) = \frac{(x^{k} - 1)(1 - x)^{k-j}}{x^{k} - (1 - x)^{k}} \qquad (1 \le j \le k).$$

We summarize the results of this section by stating

Theorem 3. Let N_j (n,k) denote the number of arrays (3.1) subject to the conditions (1.9). Then N_j (n,k) satisfies (3.6), (3.10), and has generating function (3.15).

4. SOME ONE-LINE ARRAYS

Let $S_k^{\prime}(n_1)$ denote the number of one-line arrays

$$(4.1)$$
 $n_1 n_2 n_3 n_4 \cdots$

where the n_{j} are non-negative integers, subject to the conditions

(4.2)
$$n_{j} \ge n_{j+1} + k \quad (j = 1, 2, 3, \cdots)$$
.

It is clear from (4.1) and (4.2) that

$$S_k(n) = 1$$
 $(n \le k)$,

$$S_k(n) = \sum_{r=0}^{n-k} S_k(r)$$
 (n > k),

which implies

$$S_k(n) = S_k(n-1) + S_k(n-k)$$
 (n > k).

Thus an easy induction establishes

Theorem 4. The number of arrays (4.1) subject to the conditions (4.2) is given by

(4.3)
$$S_k(n) = 1$$
 $(1 \le n \le k)$,

(4.4)
$$S_k(n) = F_{n-k}(k)$$
 $(n > k)$.

In particular note that (4.3) and (4.4) yield

(4.5)
$$S_2(n) = F_n$$
 $(n = 1, 2, 3, \cdots)$.

Returning to the numbers $F_n(k)$, we see from (1.1) and (1.3) that

(4.6)
$$F_{nk+j}(k) - 1 = \sum_{r=0}^{n} F_{rk+j-1}(k) \quad (1 \le j \le k) .$$

In the next place, for $1 \le j \le k$, let S_{kj} (n₁) denote the number of arrays (4.1), where the n_r are non-negative integers subject to the conditions

(4.7)
$$n_{r} \geq n_{r+1} \quad (r \neq j \pmod{k}),$$

$$n_{r} > n_{r+1} \quad (r \equiv j \pmod{k}).$$

It is immediate from (3.7) that

(4.8)
$$S_{kj}(1) = j$$
 $(1 \le j \le k)$,

(4.9)
$$S_{k,j+1}(n) = 1 + \sum_{r=1}^{n} S_{kj}(r)$$
 $(1 \le j \le k - 1)$,

(4.10)
$$S_{k_1}(n) = 1 + \sum_{r=1}^{n-1} S_{k_r}(r) .$$

We shall show that

(4.11)
$$S_{ki}(r + 1) = F_{rk+i-1}(k) \quad (1 \le j \le k)$$
.

The proof of (4.11) is by induction, the case r = 0 being in agreement with (4.8).

Assuming (4.11) for $r \le n - 1$, we see from (4.10) that

$$S_{k1}(n + 1) = F_{(n-1)k}(k) + F_{nk-1}(k)$$

which implies

(4.1)
$$S_{k_1}(n + 1) = F_{n_k}(k)$$
.

Using (4.6), (4.9), and (4.12), we obtain successively

$$S_{k,j+1}(n+1) = 1 + \sum_{r=0}^{n} F_{rk+j-1}(k) = F_{nk+j}(k)$$
,

which proves

Theorem 5. The number of arrays (4.1) subject to the conditions (4.7) is given by (4.11).

Finally, we can use the numbers N_j (n,k) to enumerate certain one-line arrays. For $1 \le j \le k$, let R_{kj} (n) denote the number of arrays

(4.13)
$$n n_1 n_2 n_3 \cdots$$
,

where

[Oct.

It follows that

(4.15)
$$R_{kj}(n) = \binom{n+j}{j} \qquad (0 \le n \le k) ,$$

(4.16)
$$R_{kj}(n) = \sum_{s=0}^{n} R_{k,j-1}(s) \quad (2 \le j \le k) ,$$

(4.17)
$$R_{ki}(n) = \sum_{s=0}^{n-k} R_{kk}(s) \qquad (n > k) .$$

and we deduce

Theorem 6. The number of arrays (4.13) subject to the conditions (4.14) is given by

(4.18)
$$R_{kj}(n) = N_j(n,k) \quad (1 \le j \le k)$$
.

For convenience of reference, we give the following tables of $\boldsymbol{F}_{n+k}(\!k\!)$ and N_i(n,k).

	kn	1	2	3	4	5	6	7
F _{n+k} (k):	1	4	8	16	32	64	128	256
	2	5	8	13	21	34	55	89
	3	6	9	13	19	2 8	41	60
	4	7	10	14	19	26	36	50
	5	8	11	15	20	26	34	45
	6	9	12	16	21	27	34	43
	7	10	13	17	22	2 8	35	43

N _j (n,k):	j	kn	1	2	3	4	5	6	. 7	8
	1	1	2	4	8	16	32	64	128	256
	1	2	2	3	6	12	24	48	96	192
	2	2	3	6	12	24	48	96	192	384
	1	3	2	3	4	8	18	38	76	150
	2	3	3	6	10	18	36	74	150	300
	3	3	4	10	20	38	74	148	298	598
	1	4	2	3	4	5	10	25	·60	130
	2	4	3	6	10	15	25	50	110	240
	3	4	4	10	20	35	60	110	220	460
	4	4	5	15	35	70	130	240	460	920

5. ADDITIONAL PROPERTIES

The above table of values for $N_1(n,k)$ suggests the formulas

(5.1)
$$\sum_{j=0}^{k-1} (-1)^{j} {k \choose j} N_{k-j}(n,k) = \begin{cases} 0 & (2 \mid k, n > k), \\ 2N_{k}(n-k,k) & (2 \nmid k, n > k), \end{cases}$$

(5.2)
$$N_{n+r}(n + km - r, k) = N_{n-r}(n + km + r, k)$$
 $(n \ge r)$,

(5.3)
$$N_r(km + r, k) = 2N_{r-1}(km + r, k)$$
.

To prove (5.1), we have, using (3.5) and (3.6),

$$\begin{split} \sum_{j=0}^{k-1} \ (-1)^j \ \binom{k}{j} \ N_{k-j} (\!n,k) &= \sum_{r=0}^{k-1} \ (-1)^r \ \binom{k}{r} \ N_k (\!n-r,k) \sum_{j=0}^{k-r-1} \ (-1)^{r+j} \binom{k-r}{j} \\ &= \ (-1)^{k+1} \sum_{r=0}^{k-1} \ (-1)^r \ \binom{k}{r} \ N_k (\!n-r,k) \\ &= \ (1 + \ (-1)^{k+1}) N_k (\!n-k,r) \quad , \end{split}$$

which implies (5.1).

(5.4)
$$N_{j}(n,k) = \sum_{r=0}^{k-1} \left[(\rho^{r} + 1)^{k} - 1 \right] (\rho^{r} + 1)^{n+j-k} \rho^{-jr} (1 \le j \le k; n \ge k)$$

so that

(5.5)
$$N_{k-j}(n,k) = \sum_{s=0}^{k-1} {k \choose s} \sum_{r \equiv s+j \pmod k} {n-j \choose r} (1 \leq j \leq k).$$

It is clear from (5.4) that

$$\begin{split} N_{n+r} (n + km - r, k) &= \sum_{s=0}^{k-1} \left[(\rho^s + 1)^{2n+km} - (\rho^s + 1)^{2n+km-r} \right] \rho^{-s(n+r)} \\ &= \sum_{s=0}^{k-1} \left[(\rho^{-s} + 1)^{2n+km} - (\rho^{-s} + 1)^{2n+km-r} \right] \rho^{s(n+r)} \\ &= \sum_{s=0}^{k-1} \left[(\rho^s + 1)^{2n+km} - (\rho^s + 1)^{2n+km-r} \right] \rho^{-s(n-r)} \end{split}$$

which completes the proof of (5.2). We remark that (5.3) is an immediate corollary of (5.2).

Note that (5.2) requires only that $n \ge r$. This follows because (5.4) is valid for all non-negative j.

REFERENCES

- 1. T. W. Chaundy, "Partition-Generating Functions," Quarterly Journal of Mathematics (Oxford), Vol. 2 (1931), pp. 234-40.
- 2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 1954.
- 3. Charles Jordan, Calculus of Finite Differences, Chelsea, New York, 1947.

* * * * *