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1. INTRODUCTION

Let k be a positive integer. We define the numbers Fn(k) and Nn(k)
by means of the recurrences

(1.1) F) = F _0+F & 0>k,

F
k if k
(1.2) N = 20 D ( Npj® @2k,

with the initial conditions

(1.3) F&k =n+1 (0<n<k,
(1.4) Nn(k) = [k+n (0< n< k)
¢ n n sn ’

Note that

(1.5) F (1) = N (1) = ot

(1.6) F (2 =F .,

(1.7) N (@) = 3.2 |

where Fj denotes the usual Fibonacci number (Fy =0, F; = 1).
Given positive integers m and k, put m = pk+r (1 < r< k) and

let T(k, m) denote the number of arrays

(1.8) Dyg ©*° DakOg o1 ©°° T, plel, phet ©°° Dim

Ny k+1 ° " N2, pkNz, pk+1 *° " Nom

° . o
o °

n see T
p,pkp,pl+ pm

* e 0 n
D1, pkett pti,m

where nyy is either 0 or 1 and
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(1.9) > 0; >0,

.2 N, . .2 n, ..
nl]“nl,]+1“ ’ n1J* i+1,] —

For example, T(2,5) and T(2,6) are the number of arrays

X X X X X X X X X XX
X X X X X X X
X X X ,

where each x is either 0 or 1 subject only to the conditions (1.9). As a
further example, we have T{2,3) = 5, the arrays being

111 111 110 100 000
1, o, 0, 0, 0o .

Indeed, we find that
(1.10) Tkn) = F () (mk = 1,2,3,°") .

The numbers Nn(k) also ozcur in connection with triangular arrays of

zeros and ones. We prove that

k-1 . .
(1.11) N =1y [(p“J vk 1](PJ T
i=0
(1.12) i N _(R)x" = B
n=0 = Xk - Q1 - X)k

where p denotes a primitive kth root of unity.
Finally, we have included some one-line arrays which canbe enumerated

in terms of the numbers Fn(k) and Nn(k).

The author wishes to thank Professor Carlitz for his aid in the prepara-

tion of this paper.
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2. THE NUMBERS Fn(k)

For given positive integers m and k, let T(k,m) denote the number
of arrays (1.8) subject to the conditions (1.9).
To evaluate T(k,m), we first note that if nyy = 1 in (1.8), thenny; =

= ny,m-1 = 1 and there are T(k,m - k) arrangements of the resulting
matrix. On the other hand, if nyy = 0, then nyyy = +° = Np+m = 0 and
there are T(k,m - 1) arrays possible. This evidently yields

2.1) Tk,m) = Tk,m - 1) + Tkk,m - k) {m > k)
In the next place, it follows at once from (1.8) and (1.9) that
(2.2) Tk,m) = m+1 (1< m<Kk)

This evidently completes the proof of
Theorem 1. The number of arrays (1.8) subject to the conditions (1.9) is

given by
(2.3) T(k9m) = Fm(k) (m3k = 1,2, 33""') .

As an immediate corollary of (2.3) we have
Theorem 2. Let qk(n;p) denote the number of partitions of n into at

most p parts, successive parts differing by at least k. Then

M
2.4) 2 qbsp 1) = F ),
n=0

where m = kp+r (1< r<k) and M = m(p + 1) _k<P;1)_

Indeed, using the generating function [2]

%m (m+1)

E qi(n;:rn)xn =
=0

a+x) ,

T=s
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we easily verify that, for k = 1, (2.4) reduces to (1.5). However, Chaundy
[1] has noted that, for k > 1, the generating function for qk(n;p) is not

known.
3. THE NUMBERS Nn(k)

Given positive integers m and k, put m = pk + r(1 £ r £ k) and,

for 1 £j &k, let Nj(m,k) denote the number of arrays

(3.1) N4 °°° N k+1 "°° Dg,pk+1°°° Dym
Djp =+ Djk+1 0 Ojpk+t °°° njm'
Dj+k,k+1 **° Dj+k,pk+1 °** Bj+k,m

Dj+pk,pk+t *°* Oj+pk,m

where nyy is either 0 or 1 and the njj are non-negative integers subject to

the conditions (1.9). For example, Ny(5,2) and N,(5,2) are the number of

arrays
X X X X X b4
X X X X
X X X X
X be
X ) 3
respectively.
It follows from (3.1) and (1.9) that
(3.2) N,k = (m Jf j) lemck ,
(3.3) Nj(m,k) = Nj(m - 1,k) + Nj_l(m’k) 2<jt£k m>k),

(3.4) Ny(m,k) = Nym - 1,k) + N, (m - kk) (m> Kk .

k(

The proof of (3.2) is not difficult; (3.3) and (3.4) are proved in exactlythe same
way as (2.1).
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Using (3.3) with j = k, we see that
Nk—-l(m,k) = Nk(msk) - Nk(m - lak) B

and, in general,

] .
pINSIN (Jr) N - rk) (1< j<k-1)

(3.5) Nk = z

Comparing (3.4) and (3.5), we obtain the recurrence

k
k
(3.6) N m - kk) = r;) n* <r> N m -1,k

which should be compared with (1.2). )

For k = 1,2 the recurrence (3.6) is easily handled. Indeed, it follows
from (3.2) that (3.6) is in agreement with (1.5) and (1.7). Note that (1.7) and
(3.5) imply

(3.7) Ny(m,2) = 32™7° (m > 2)

To solve the recurrence (3.6) for general k, we make use of some re-
sults from the calculus of finite differences [3] Let p denote a primitive
kth root of unity and note that the characteristic polynomial of the recurrence

is
(X-l)k—l,

whose roots are pJ -1 =0,1,2,---,k - 1). Thus there are constants A,

Aygyr e+, Ay such that

k-1 :
(3.8) N, k) = 3 Aj(pJ -t
j=0
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We show that

(3.9) Aj=%[(ﬂ_j+1)k—1] O<j<k-1,

first noting that we may extend the recurrence (3.6) and define Nk(O,k) = 1.

To prove (3.9), we have, for 0 £ r £k - 1,

k-1 . . k-1 k-1 .
> [(P"J + k- 1](;0J +1F = Y <§) > (f) Y plt-9)
j=0 s=0 t=0 j=0
_ kYfs) _ k+r
e (5)(1) -+ (57)
§=0
which, using (3.2), implies (3.9).
It follows from (3.8) and (3.9) that
SR ST ¢ i gn
(3.10) R AR e T
so that
k-1 K
(3.11) N k) = 3 (s) ) <i})
S=0 r=s(mod k)
If we define generating functions
Q0
(3.12) Pt = 3 Nj(n,k)xn 1<ji<k ,

n=0
then it is clear from (3.2) and (3.3) that

(3.13) a - x)j-iij(X) = Fyx) G =2,3,"*°,k)
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Moreover, using (3.4), we have

Kk K
F 0 = x50 - 0F o - XX )
Comparison with (3.13) then yields
k k-1
(3.14) F &) tx —k1><1 - %) ,
x - {1-x)
K k-j
(3.15) Pt = & -0 . Lejik .
J x5 - (1 -x)

We summarize the results of this section by stating

Theorem 3. Let N.{n,k) denote the number of arrays (3.1) subject to
the conditions {1.9). Then Nj(n,k) satisfies (3.6), (3.10), and has generating
function (3.15).

4. SOME ONE-LINE ARRAYS

Let Sk(ni) denote the number of one-line arrays
{4.1) DyNoNglly °* °
where the nj are non-negative integers, subject to the conditions

(4.2) n,an,, +k §=1,23"°)

It is clear from (4.1) and (4.2) that

Sk(n)

1
=
B
IA
z

n-k
S, ) = ];) 8, () >k ,
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which implies
Sk(n) = Sk(n - 1) + Sk(n - k) (n > k)

Thus an easy induction establishes

Theorem 4. The number of arrays (4.1) subject to the conditions (4.2)

is given by
4.3) Sk(n) =1 (1enctk ,
(4.4) Sk(n) = Fn_k(k) m >k .

In particular note that (4.3) and (4.4) yield

(4.5) Sptn) = F o= 1,2,3, °°*) .

Returning to the numbers Fn(k), we see from (1.1) and (1.3) that

n
“.6) Fnk+j(k) -1 = ;::0 Frkﬂ_i(k) 1cjtk .

In the next place, for 1< j< k, let Skj(ni) denote the number of

arrays (4.1), where the n are non-negative integers subject tothe conditions

@.7) n 2 oo (r ¥ j (modk)) ,

n > n o (r = j (mod k) ).

It is immediate from (3.7) that

“.8) Skj(l) =] tsjck,

n
4.9 Sk’jﬂ(n) =1+ r; Skj(r) l<jek-1),
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‘ n-1
(4.10) Ski) = 1+ 2.8 (r) .
=~ “kk
r=1
We shall show that
“.11) St D = Flp 0 0<j<i.

The proof of 4.11) is by induction, the case r = 0 being in agreement with
4.8).

Assuming (4.11) for r < n -~ 1, we see from (4.10) that
Ski(n + 1) = F(n—1)k(k) + Fnk_i(k) ,
which implies
4.1) Ski(n +1) = Fnk(k) .

Using (4.6), (4.9), and (4.12), we obtain successively

Sk,jﬂ(n 1) =1+ 12_; Frkﬂ'-i(k) - Fnk+j(k) ’

which proves

Theorem 5. The number of arrays (4.1) subject to the conditions (4.7)
is given by (4.11).

Finally, we can use the numbers Nj (n,k) to enumerate certain one-line

arrays. For 1 < j< Kk, let Rkj(n) denote the number of arrays

(4.13) nongonyomg cce s

where

(4.14) r 20, (r*j (modk)),
n, > k+1r1r+1 (r = j (mod k) ).
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It follows that

= [n Tt
(4.15) Rkj(n) ( i ) 0 £n k),
n
(4.16) Rkj(n) = Sz:% Rk’j_i(s) 2<cjck,
n-k
4.17) R () = S;) Rkk(s) @ > k)

and we deduce

[Oct.

Theorem 6. The number of arrays (4.13) subject to the conditions (4,14)

is given by

(4.18) Rkjﬁl) = Nj(n,k) 1<j<k

For convenience of reference, we give the following tables of Fn+k(k)

and Nj {n,k).
R 1 2 3 4 5 6 7
1 4 8 16 32 64 128 256
2 5 8 13 21 34 55 89
3 6 9 13 19 28 41 60
F 4 7 10 14 19 26 36 50
5 8 11 15 20 26 34 45
6 9 12 16 21 27 34 43
7 10 13 17 22 28 35 43
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i IR 1 2 3 4 5 6 7 8
1 1 2 2 8 | 16 32 64 | 128 | 256
1 2 2 3 6 | 12 24 48 96 | 192
2 2 3 6 | 12 | 24 48 96 | 192 | 384
1 3 2 3 4 8 18 38 76 | 150
2 3 3 6 | 10 | 18 36 74 | 150 | 300
3 3 4 |10 | 20 | 38 74 | 148 | 298 | 598
1 4 2 3 4 5 10 25 | 60 | 130
2 4 3 6 | 10 | 15 25 50 | 110 | 240
3 | 4 4 [ 10 | 20 | 35 60 | 110 | 220 | 460
1 4 5 | 15 | 35 | 70 | 130 | 240 | 460 | 920

ADDITIONAL PROPERTIES

The above table of values for Nj (n,k) suggests the formulas

k-1 i (K
R (J) Nk -

(5.2)

(5.3)

Nn+r(n + km - r,k) = Nn-r(n + km + r,k)

Nr(km + 1,Kk)

0

2Nk(n - k, k)

= 2N_ (km + 1,k)
r-1

ATo prove (5.1), we have, using (3.5) and (3.6),

k-1 i (K
Lo (3) N

which implies (5.1).

Il

k-1

r=0

1+ ¢1

k-1
CDFTY ()t
=0

)k+1

1t (‘;) N o - 1,k

(

)Nk(n - k9 I‘) ’

(nér) ’

k-r-1

2

=0

) Nk(n - 1,k)

(-1t (

)

|k n>n,

(2*1(, n>k),
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In the next place, it follows from (3.5) and (3.10) that
k-1 T k T nHj-k -jr
(5.4) Nj(n,k) = 3 [(p + 1) - 1] pr+ )" WLk nd k)
r=0
so that

k-1 .
(5.5) Nk_j(n,k) = Z (1;) Z <n - J)(l LjL k).

5=0 r=s+j{mod k) r

(S

It is clear from (5.4) that

k-1
Nyl 2 b - 1k = [(ps ¢ M8 qmtk m‘r]P—S(n+r)
s=0
k-1 ke "
= [(p"s + 1)211 _ (p——S + 1)211 m-r]ps(n-l—r)
S=0
k-1

_ [(ps . 1)2n+km _ (ps 4 1)2n+km—r] p—s(n—r)
0

]
Il

which completes the proof of (5.2). We remark that (5.3) is an immediate cor-
ollary of (5.2).
Note that (5.2) requires only that n = r. This follows because (5.4) is

valid for all non-negative j.
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