RESIDUES OF FIBONACCI-LIKE SEQUENCES

LAURENCE TAYLOR
QOak Ridge, Tennessee

In the February, 1964, issue of the Fibonacci Quarterly, Brother U.
Alfred [1] advanced the conjecture (later proved by J. H. Halton [2]) that,

when any Fibonacci number is divided by another Fibonacci number, one or the

other of the least positive and negative residues is again a Fibonacci number.
The object of this paper is to prove that the only Fibonacci-like sequence for
which this is true is the Fibonacci sequence. If zero is excluded as a remain-
der, then the Lucas sequence has the above property.

The proof falls naturally into two parts. The first part will be to show
that every Fibonacci-like sequence, modulo any member of the sequence, is
congruent to a sequence made up of a subsequence of the original sequence and
the negatives of these values. The second part will be to show that these sub-
sequences are actually remainders of the divisor for only the Fibonacci and
Lucas sequences.

Obviously, a sequence has the propertydescribed above if and only if any
non-zero integral multiple of it does. Since any divisor of two neighboring
members of Fibonacci-like sequences divides every member of the sequence,
we will consider only sequences with neighboring terms relatively prime. In
what follows, Hi will denote the ith member of a general Fibonacci-like
sequence defined by Hi+1 = Hi + Hi—l’ where H;, and H; are arbitrary. The
set of integers will be denoted by I, the set of non-negative integers by P,

and the set of natural numbers by N.

PART I

Since it is easily established by induction that

H H_ .,

m+k Fka—l + Fk+1 m

for all integers m and k, the following two lemmas readily follow.

!

Lemma 1l: H .= F.H (mod H_ ) for all integers i.
—_—— s 'mH i m-1 m

m-—
Lemma2: H . =TF H = (-1)ittyg
—_— m-1 -1 1m-1 m+i1
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(mod Hm) for all integersi.
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It is known that any number must eventually divide one of the Fibonacci
numbers, and that F;-1 = Fn—an + (1) for all integers n. Applying these
results and Lemma 1, it is not difficult to prove Lemmas 3 and 4.

Lemma 3: Let n be any integer such that Fn = 0 (mod Hm). Then

Hm:tn = 0 (mod Hm) .
Lemma 4: For the n of Lemma 3, ]?‘121_1 = (-1 (mod Hm) .
Lemma 5;: For the n of Lemma 3, and for all integers i,

)n+i+1

= (-1 (mod Hm )

Fn—iHm-i m-n+i

Proof: The proof is by induction on i. For i = 0, apply Lemma 3.
For i =1, apply Lemma 1. Assume that Lemma 5 holds for i = k-1 and
i =k-2, orthat

n+k

F (-1)" "H

i

k1) (mod Hm) ,

n—1Hm- (k-1) m-n-+(

B n+k-1
Fo oy (kg = G 7 H

m-n+(k-2) (mod Hm) .

Subtracting the first formula from the second yields the expected result for i
= k. Hence, the formula is correct for all i € P. Lemma 2 can be used to
extend the result to include negative integers.

Lemma 6: Let t = nq + r. Then, if q € N and Fn = 0 (mod Hm),

il

= q-1
Hrn-n+t = Fan—1Hm—1 (mod Hm) .

Proof;: The proof is once again by induction on q. When q = 1, the
expression above becomes identical to Lemma 1. Assume that Lemuma 6 holds

for q =k -1, or that

_ k-2
Hm—n+t = Ft—(k—1)n Fn—IHm—i (mod Hm) .
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(k-1)n - Ft—knFn—1 * Ft—kn+1Fn = Ft—knFn—1
divides Fn by hypothesis. Substituting back into the formula above,

But, Ft (mod H_), since H
_ m m

_ k-1
Hoonit = Fonfnoflmeg (mod Hm)'
Hence, Lemma 6 is true for all q € N.
Theorem 1: For every i€ I, thereexistsa K€ I, m-n £ k £ m,

such that

Hi = in (mod Hm)’
where n is the smallest natural number such that Fn = 0 (mod Hm)'

Proof: Tet i =m-n+t, k=m-n+7r, and t =ng+r, 04&£r < n
The case g = 0 is trivial, sincethen t = p and i = k. Thecase q £ 0 is

equivalent to t < 0. But, by Lemma 2 and properties of congruences,

H = (- 1)t+ "

mentt (mod Hm_n) = (-1)" 'H

_t) (mod Hm).

m-n+(-t) m-n-+(

Since -t > 0, we needconsider onlythe case t > 0 or g € N. By Lemmaé,

= q-1
Hm—n+t - Fan-iHm—1 (mod Hm)'

By Lemma 1,
. _ T+
Fer_1 = (-1)" 'H r (mod Hm)
Substituting,
- r+iq-1
H o ¢ = GO F7H - (mod Ho)
By Lemma 4,
2 -
Fn“1 = (-1) (mod Hm)

We must now distinguish two. cases.
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Casel: If gq is odd,

Fq-i - (_1)11((1—1)/2

nei (mod Hm )s

leading to Hm iHm—r (mod Hm), where m-n < m-r £ m.

—n+t
Case 2: If q is even,

Fit - Cppla-2)/ep

n-1 n-1i (mod Hm)'
By Lemma 5,
Fn—iHm—r = (_1)n+r+1Hm—n+r (mod Hm)'
Substituting these two results leads to
H T (mod H_).
m-n+t m-n+r m

where 0 £ r £ n, so m-n<m-n+r< m.

In Theorem 1, if Hm divides Hi’ we can take k = m or k= m - n.
While every Hi divides some other member of the sequence (see Lemma 3),
it is necessary to notice that zero cannot appear as amember of the subsequence
of Theorem 1 unless our Fibonacci-like sequence is the Fibonacci sequence it-
self. Since zero can occur as a remainder in any Fibonacci-like sequence and
since Theorem 1, applied to Fibonacci numbers, leads to the theorem proved
by Halton in [2], the only Fibonacci-like sequence which strictly fulfills the
requirements of Brother Alfred's conjecture is the Fibonacci sequence.

In Part II, we will investigate Fibonacci-like sequences to determine if
any other sequence leaves residues which, in.all cases, are either Zero or

equal in absolute value to members of the original sequence.

PART II

Now, if our sequence is to have the desired property, there must be a
set of elements of the sequence whose absolute values are less than that of

Hm' The first observation to be made about Fibonacci-like sequences is that
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far to the right and to the left, the absolute values increase without limit.
Hence, we need only examine a small section of the whole sequence to deter-
mine if it has the desired property.

There must be at least one Hi with a minimal absolute value, and, be-
cause of the divergence of the sequence in both directions, there can be only a
finite number of such minima.

Lemma 7; If Hj is a minimum, |H0[ 22, then, if H;y > 0, the only
possible remainder equalin absolutevalueto a member of the original sequence
upon division by H“2 is +H), and if Hy < 0, the onlysuchremainderfor H,
is +H,.

Proof: If H, is negative, we will obtain the negative of the sequence for
Hy positive. Hence, consider only H; 2 2. None of H;, Hy, H;, H., can
be aminima, since each of Hil = Hy 2 2, i = %1, +2, leadsto a contradiction.

If Hy >0, toavoid |Hj| < Hy for some i, for the terms near Hy we

can have only the following:

H_3: 3H0+201=H1+a

Ho, = -(Hy + )

H.; = 2Hy) + «

Hy = Hy

Hy = 3H) + o

Hy = 4H) + o

Hi = Li+1H° + Fia/ , a>1,

where Ln and Fn are respectively the nth Lucas and Fibonacci numbers.

If Hy < 0, with the conditions above we obtain

H o= (1)L

+ Kol
i 1+1H0 Fy )

or a new sequence which, except for changes in sign, is the sequence for H;>
0 reflected about Hy,. In particular, H, = -(H; +a).

Noticethat the sequence diverges for | i| > 2. From the sequence above,
it is easy to see that the only remainder in the sequence for H_2 will be +H,

when Hy > 0, and when H; < 0, the only remainder for H, will be +Hj.
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Lemma 8: If Hp is a minimum, [Hy|= 1, and neither H; nor H_,
is a minimum, then the only remainder equal in absolute valueto a member of
the original sequence upon divisionby H_, is +H; when H; > 0, and the only
such remainder for H, is +tH; when H; < 0.

Proof: Avoiding [Hy| = [|Hy| and [H_,| = |H0| as well as lHl, < [Ho|
leads to the formulae of Lemma 7.

Lemma 9: If Hy is a minimum, |H0| 2 2, then there exist numbers
Hi which leave remainders which are neither zero nor equal in absolute value
to a member of the original sequence.

Proof: If any number Hj is divided by H;,, the remainder must beless
in absolute value than H;, the minimum of the sequence. Thus, if |H0l 2 2,
all remainders cannot be zero because any two adjacent terms are relatively
prime, and any non-zero remainder is a number not equal in absolute value to
a member of the original sequence. So H; is a number H; for the lemma.

Suppose we exclude division by H, Since (Hyp, H;) = 1, H;y is nota
minimum. Either Hy is positive or H; is negative. Without loss of gener-
ality (see proof of Lemma 7), we assume that Hy is négative. By Theorem 1,
if n, is the least natural number such that Fn2 = 0 (mod Hy), and if t = qny+

r, 0<r<mny, for q an oddnumber;

H2—1’12+t = in_r (mod HZ ) .

Now, Hyy = Hy if andonly if r = 2. If |H0[ 22, [H) 23=TF,; so ny2
4, and atleast 0 £ r < 4. Set t = gny + 3 for an odd number q, say q =

1. Substituting, we have Hy= +H_; (mod Hy), and *H_; # zH; (mod Hy) by

|

inspecting the proof of Lemma 7. Thus, we can take i = 2.

Lemma 10: If [Hy| = 1 is a minimum, and neither H, nor H_, is a
minimum, then there exist numbers Hi which leave remainders which are
neither zero nor equal in absolute value to a number in the original sequence.

Proof: Without loss of generality, we assume that H; < 0. If |H2| 2 3,
so that ny 2 4, by Lemma 8 we can use the same proof as for Lemma 9.
Since H, is not a minimum, H, # 1 and H, # -1. The only remaining case

is when |H2| = 2, which leads only to the following sequence,

ce, _28, 14, -9, 5, -4, 1, -3, -2, -5, -7, -12, -19, -31, =50, - -,
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where 31 = 8 (mod -23) while neither +8 nor +15 is in the original sequence.

Theorem 2: The only sequences which possess the property that, upon
divisionby a (non-zero) member of that sequence, the members of the sequence
leaveleast positive or negative residues which are either zero or equal in abso-
lute value to a member of the original sequence are the Fibonacci and Lucas
sequences.

Proof: By Lemmas 9 and 10, for a sequence to possess the above prop-
erty, its minimum must be either Hy = 0 or |[Hy| = 1 with one of H, and
H_, also a minimum. '

If Hy = 0, we can have only the Fibonacci sequence.

Considering the cases |[Hy| = 1 and |H2| =1; |Hy =1 and lH_2| =1,
leads to the Lucas sequence and the negative of the Lucas sequence.

It can be shown that, since when Theorem is applied to Lucas numbers,
for each Lk’ Lk < Lm‘ or Lk = 0 (mod Lm), that the Lucas numbers do
indeed have the property of Theorem 2. The Fibonacci numbers are known to
also have this property, as proved by Halton in [2].

Wehave used a minimum value greaterthan2 as a criterion to determine
if there exist numbers Hi which leave remainders which do not satisfy Theo-
rem 2. Another criterion is that such numbers Hi exist if and only if IHJI #
IH_].I for any j, where the sequence has been renumbered so' that either H.O
is the minimum or H; is between the two minima H; and H_;. This second
criterion requires a longer proof, but not a difficult one, done by examining all
cases.

Examining several sequences to aid in the formulation of the proofs given
here led to an interesting question. If Brother Alfred's conjecture is not true
for a whole sequence, can it be true for some elements of the sequence, and if

80, which ones?
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