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1. INTRODUCTION

Recent issues of numerous periodicals have given indication of a renewed

interest in the well-known Fibonacci sequence, namely

(]) 1, 1, 2, 3: 5: Ssenb’c s T,
n

where

C =¢C + C_
n n-i n-2

n2>3, with C; = C, = 1.
Some recent generalizations haveproduced a variety of new and extended results. .

A search of the literature seems to reveal that efforts to generalize the
Fibonacci sequence have consisted of either (a) changing the recurrence rela-
tion while preserving the initial terms, or (b) altering the initial terms but
maintaining the recurrence relation. A combination of these two techniques
will be employed here.

Heretofore, all generalizations of the Fibonacci sequence appear tohave
restricted any given term to being a function (usually sum) of the two preceding
terms. In this paper we shall extend this by considering sequences in which
any given term is the sum of the three preceding it.

Since the set of all algebraic integers, i.e., all y such that y satisfies

some monic polynomial equation,

n
p&x) = x +a X + ot +ax+a = 0,

with integral coefficients and of degree greater than zero, is an integral domain
under the operations of addition and multiplication, it was considered worth-
while to examine sequences in which the initial terms (hence all succeeding
terms) are algebraic integers. It will be shown that certain special cases of
such sequences are especially useful in the examination of the more general

case.
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2. THE GENERALIZED SEQUENCE {P_}

Specifically we consider the sequence
(2) {PH}E PO: Pi: Pz,"', Pns tee ’
where Py, Pj, P, are given, arbitrary algebraic integers, not all zero, and

n>3.

3) P =P  +P +P ., n2

n n-1 n-2

It will also be convenient to consider a companion sequence, so to speak,

(4) {Rn} = Rpy Ry Ry =o*5 Ry *00

where
Ry = Py - Py, Ry = Py - Py, and for n > 2,

©) Rn = Pn—l + Pn—z

From (5) and (3), when n > 5, we have

)

R =P  +P ,=(P +P )+ s

+ + +
n n-1i n-2 n-2 Phos ) (Pn—4 P

4

=R +R__+R
n-2 n-

n-1 3

Using (5) and (3) further, we have

R4 R3+R2+R1,

Ry = Ry + Ry + Ry

Hence for n > 3,

6) R =R ,+R__+R_ ..
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Thus {Rn} is actually the special case of (2) in which Ry = Py - Py,
Ry = Py-P;, Ry = P;+ P, The usefulness of the sequence {Rn} will be
evident in the development of { Pn} that follows,

Two other special cases of (2) should be mentioned at this time; namely
the cases in which Py = 0, Py = Py = 1 and Py =1, P; =0, Py =1 re-

spectively, to give the sequences

(7) 0,1, 1, 2, 4, 7, 13, 24, 44, °°°, Kn, e,
and
(8) 1, 0, 1, 2, 3, 6, 11, 20, 37, *°°, Lns e .

We see immediately that L, = Kj - Ky, Ly = Ky - Ky, and for n 2 2,
&) L =K  +K .

Hence we might call {Kn} a P -type sequence and {Ln} an R _-type
sequence.

The sequence {Kn } was defined and discussed briefly by M. Agronomoff
[1]. The following three relations involving various terms of this sequence

were discovered and proved by him:

(10) Kn+p = Kp . (Kp_1 + Kp K, * KpKn_2 )
— 2
(11) Km = Kpoy * Kn(Kn+1 + Kn—i * Kn—z) ’
- K2 2
(12) Kzn..j Kn —+ Kn—i -+ ZKn—iKn—Z .

There ié only one basic identity here because the latter two are evidently
special cases of the first one upon setting p = n and p = n - 1 respectively.

Further, it wés conjectured in [1] that even though the sequence (7) was
a Fibonacci-type sequence, it quite possibly would possess few of the interest-
ing properties which the Fibonacci sequence has, and even if it should, such
properties would be much more difficult to find duetothe more complex nature

of the recurrence relation determining the sequence.
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We turn now to an investigation of the sequence (2) and consider, among
other facts, how (10), (11), and (12) occur as special cases of more general

relations.

Paralleling the usual treatment of the Fibonacci sequence, we obtain a
closed expression for Pn since {Pn} satisfies a difference equation. Thus
(13) P = Bxj+ Byxy + Byxy
where xj. X5, X3 are the three distinct roots of the equation

X -xt-x-1-=0,

and Bj, By, By are constants depending on these roots as well as P;, Py,

P,, and are determined by the system

B1+B2+B3:P0

]

B1X1 + Bzxz + B3X3 P1

Il

Bx} + Byx} + Byxi = Py .
The values of xj, Xy, X3, By, By, B3 are such as to make (12) too cumber-
some to be of any further practical use inthe succeeding development and hence

will not be written here.
A much more useful way of representingthe recurrence relation for { Pn }

may be found as follows: In the notation of vectors and matrices, we have by

@),

f-Pg "111‘132
P, |=]100]||P ,

Py 0 1 0Py
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and by finite induction

P 11 1778 p,

n
(14) P l=lroo0 Py
010 Py

n-2

Further, a simple induction proof gives

(15) 100 =1 K L

213

so it might be said that {Kn} and {Ln} arise "naturally' in the investiga-

tion of { P b
Using (14) and (15), we find for n, p positive integers that

ntp Kp+1 Lp+1 Kp Pn
(16) Pt [T 1% T Koot [[Poot |
L K

P1r1+p—2 Kp—1 p-1 p-2 Pn—z
from which we immediately see that
1) Pn+p = Kp+1Pn + Lp+1Pn—1 + Kan_2 ,
(18) Pzn - Kn+1Pn * Ln+1Pn—1 * KnPn—z

= Ky Pp t K K P PP,

(19) Pzn—i - KDPI). * (Kn—1 * Kn-Z)Pn—i * Kn—ipn—z

Now setting Py = 0, Py = Py = 1, we have (10), (11), (12) as special cases

of (17), (18), and (19), respectively.

Since
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P n+p Kp+r+1 L ptr+i Kp+r Pn—r
Pn+p—1 - Kp+r Lp+r Kp+1"—1 Pn—r-i ?
Pn+p—2 Kp+1‘—1 Lp+r~-1 Kp+r—2 Pn— r-2
we also have
(20) Pn+p - Kp+r+1Pn--r * Lp+]c'+1Pn-r—1 * Kp+rPn—r—2

for n, p, r positive integers, r < n - 2,
Similarly for n, h, k positive integers, we can show that
@1 Printk = BpaerPn T ThakePros © KopncPnog -

Using (20) and (21), we have the following useful expression:

n-2

Pronoke| | Bttt Thiers Ko [ 21 1] [ P2

(22) Pon |71 %ot The Xy [J1 00 Py
P 1 0 o Jlo1o Py
n

It can be shown quite easily that the sequence

(23) Pi: Rza P21 R33 P3: tty Pl’l’ Rn+1’ eee

is generated by the matrix

110
101 ,
100
that is,
a 11 07 py
(24) R =101 R,
100 P,
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It is an interesting and useful fact that this matrix is the transpose of the
generating matrix for {Pn b

Using (24) in a way analogous to that in which we established (21), we
prove that

25) Printk = BpenPn © BpdBn T B Pnot o

(26) Rohk = ThoktPn ¥ YhokBn * DhokeiPno

two relations which are not only interesting in themselves but which also give

n-2

P thik Kkt Bnake Bpaeg |1 10 Py
@7 R | =T Iy Ln, |[201 R, | .
P 1 0 0 100 )

In order to define Pn for negative n, we use (14) for n > 0 written

in the form

P 01 0[P,
(28) P [=]o0o1]||®| .
- 111] [P,

Replacing n by -n in (28), we have for n > 0,

n

n 01 07" [P, -1 -1 17 [P,
(29) P (=001 Pi[=] 1 0o0] [P ,
P 111 P, 0 10| |P

which together with (14) determines Pn for all n since Py, Pj, Py are

given. The same result is obtained upon replacing n by -n in (3) to get

(30) P =P .-P -P_ ., n>0.
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Rn is also defined for negative n by (29) and (30) since

Rn - Pn—i * Pn—z °

This allows us to remove the restriction placed on n, p, r, h, k above.

3. LINEAR SUMS

A large number of what we shall call linear sum relations on terms of
the sequences {Rn} and {Pn} were found and proved. Since an exhaustive
list is not our aim, only a few of the more interesting ones are listed. No
proofs will be given here since the proofs may all be made rather easily by

finite induction.

1
(31) i}___:opi =5 (P, +P +P- Py,
n sn-1
(32) EP3i= EP1+P0’
i=1 i=0
n
(33) Rgj = Pgp - Py
i=1
n
(34) 2 Raiti = Pgpir - Py
i=1

These relations obviously have special cases forthe sequences Kn and Ln .

For example (33) becomes

n
33" E Lsi = Kgy
i=1
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4. QUADRATIC AND CUBIC RELATIONS

An attempt to parallel the quadratic relations of the Fibonacci sequence
failed. A different approach was necessary and this was found in the use of
the vector-matrix representation of Pn. We have the following interesting
quadratic form:

(35) Pfl + ]?121_-1 + 2Pn_1 Pl’l—2 = P2P2n_2 + R2P2n_3 + P1 Pzn_4 .

The proof of (35) follows by considering the left side of the relation as

the scalar product of the vectors [Pn, R, Pn_ 1] and [Pn, Pn—1’ Pn-z]

n
(recall Rn = Pn_1 + Pn-z)’ and then using (14) and (24), we have

P
n
P2 + P2  + 2P P =(P,R, P P
n n-1 n-1 n-2 n n n-1 n-1
P
n-2
11 1 p, Pon_s
- [PZ, R,, P1] 100 P | = [Pz, Ry, Pl:l Pon_s
010 P, Pon_4

= PyPyy o + RoPopng + PiPon-4 -

For Py =0, P; = Py =1, (35) becomes

2 2 =
(35') Kn - Kn—-i * 2Kn—iKn—z Kzn—i ’
which is (12). It was shown that (12) is also a special case of (19), but (35) is

not obtainable from (19) nor vice versa.

One of the most interesting relations involving terms of the Fibonacci

sequence is the one

_c2 o= (R
Cn—icn+1 Cn 1 ¢
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There is a relation of this nature for the sequence % Pn }; however as may

have been suspected, it has a cubic rather than a quadratic form. The desired
relation is

2 3 2 _ - ps
(36) PnPn—s " Pn—i - Pn—2Pn+1 - Pn+1Pn-1Pn—3 2PnPn—ipn—z Po~ ZP?i

+ P} + 2P§P; + 2P)P} + PiP, - 2P, P} - 2P PyP, - PP} .

Beforeproving (36), we notethat for Py = 0, P; = P, = 1, (36)becomes

67 KK _+K +K! K

n K K K -2KK K = 1.

n-1 n-2 n+ oo+ on-1 n-3 n n-1 n-2

The proof of (37) follows from (9) and (15) by the use of determinants
since

2 3 2 _ - =
KnKn—3 * Kn—i * Kn—gKn—H Kn+1Kn—1Kn—3 2KnKn—iKla—z
n
n+i Kn—i Kn K1[1+1 Ln+1 Kn 111
= K K K =K L K =11 00 =1,

n n-2  n-i n n n-1

K K K K L K 010
n-1i n-3 "n-2 n-1 n-1 n-2

Proof of (36): Even though (36) may be verified in very much the same
manner as (37), we adopt a different method of proof since this is more easily
used in a generalized version of (36). First, we state the following lemma
whose proof the reader can readily supply.

Lemma: Let A be any 3x 3 matrixand let X and y bethree-dimensional
vectors; then the cross product (AX) X (Ay) is equal to the cofactor matrix
of A multipliedby X X y; i.e.,

(AX) X (Ay) = (cofactor A) & X y).

Now the left side of (36) can be considered as the triple scalar product of the

three vectors [Pn+1’ Pn, Pn—1]’ [Pn—i’ Pn—z’ Pn—3:|’ and [Pn, Pn_i, Pn‘—z]'
By (14) and the lemma,
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n-3 7

P, P 11 177 p, 111 P;
P, X| P =100 Plx| 100 P,
P, P, 010 P, 010 Py
oo 1P} - p,p,
=110 -1 P3P, - PP,
01 -1 | P - PPy
Therefore
Pﬁpn—3 * P%—i * PIZI—ZPn'H - Pn+1Pn—1Pn—3 - 2PnPn-ipn—z
Pn+1' Pn—l Pn
=P, Pl X P
ani Pn—s ' PH—Z
11 01™%o0 o 11™%[P} - PP,
:[P[L, Ps, Pz] 101 00 -1 P3P, - PP,
100 01 -1 P} - P3Py

= Py(Pi - PyPy) + P3(PyP, - PyPy) + Py(P: - P3Py)

which reduces to the right side of (36).
Example: Suppose we let Py = 0, Py = 1; then the right side of (36)

becomes
3
Py - 2P, + 2 .

Setting this expression equal to zero and solving for P,, we see that there

exist algebraic integers, say Py, Pj, P, such that for the sequence {Pn},

2D + Pp3 4+ P2 P — :
nPn-s Pn—1 Pn—zpnﬂ Pn+1Pn—1Pn—3 N ZPnPn—ipn-z °
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The lemma and (22) may be used as in the previous method of proof to

show that for h, k, n, m, t integers

PP

(38) Pn+th+mPn+h+k+t * n n+h+tPn+h+k+m * Pn+tPn+h+kPn+h+m

-PP P P P

n- n+h+m™ n+h+k+t ~ Pn+m n+h+k P

P

n+h+t ~ n+th+t n+h+k+m

= (Kth+k+1 - Kh+kLh+1)[Pt+2(P1Pm - PoPm+1) + Pt+1(PoPm+2 - PZPm)
+ Pt(PZPm+1 - Pipm-]-z)} .

There are many interesting special cases of this relation. We mention
afew., If Py =0, P; =Py, =1, (38) becomes

(39) Kn+hKn+mKn+h+k+t * KnKn+h+tKn+h+k+m * Knﬂ1-1:Kn+h+kKn+h+m
= KoK themSnthkrt ™ KnrmSnth ko hot

- Kn+hKn+tKn+h+k+m

= BpRpney ~ Bpndn-) &Ky~ K&y
If k=h=1t, m=1, (39) becomes

(40) Kn+1Kn+hKn+3h * KnKn+2hKn+2h+1 * Kn+hKn+h+1Kn+2h N KnKn+h+1Kn+3h

_ 2 _ w2 - _ w2 .
Kn+1Kn+2h Kn+hKn+2h+1 Kh—lKhKZh—l Kh—1K2h ’
andif t = h, k = m -h, (39) reduces to
- 2 _ K2
(41) KnKn+2hKn+zm + 2Kn+hKn+mKn+h+m KnKn+h+m Kn+mKn+2h
2 = _ _
- Kn+hKn+zm (Kth—1 K Kn-1

In order that the above results be valid, we must choose h and k so
that

K K

nEntkor ~ Bpndfhor T Knlnoks ~ Kpslhey T 0 0
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for in the proof of (38), we assume that the matrix

Kkt Phokrt Kpak

Kh+1 Lh+1 Kh

1 0 0

is non-singular,
Using (27) we can find relationships involving terms of both the sequences

{Rn} and {Pn} which reduce to an expression independent of n, For ex-

ample, it may be proved that

(42) Pn+h+k+t(Rn+th+m - PnPn+h+m) * Rn+h+t(PnPn+h+k+m - Pn+mPn+h+k)
* Pt ®PraniBarhim T BoenFnthtkrm) — ®pak-Pn T BpkPhey)

I:Pt (P1Pm - PePmsy) + Py (PoPmiy - PyPry) + P(PyPrnsy - PiPryy )]

It should be noted that no terms of the sequence { Rn} appear on the right side
of (42) and also that the second factor on the right .side of the equality sign in

(42) is the same as the second factor on the right side of (38).

5, MISCELLANEOUS RESULTS

We conclude with some miscellaneous results, The following limiting
relations may be established using (13) and the fact that ry, r,, thetwo com-

plex roots of

X3 - X2 -x-1=20 ,
are such that
‘I‘li = lrzi < 1.
P , —
(43) limit —2 -1 -\3/3\/?5 19 + Y19 + 3V/33
n-—>oo n 3
(44) limit f@ = <1 ’\:/3\/33 - 19 +\3/19 + 3\/3—3> h
n—>® Pn 3
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By induction the following theorem may be established:

Theorem: For every positive n,

Kip = Koy = 0 (mod 2)
Kins = Kip—3 = 1 (mod 2)

Kyy = 0 (mod 4)

If we let D(Py, Py, Py, ++-, Ppn) be the determinant

Py Py Py ot P
Py P, Py - P
PP, P Pn

it can be shown that for n > 3,

D(Po, Pi’ Pz, tee, Pn) =0 °

This material is taken from Some Generalizations and Extensions of the

Fibonacci Sequence, a thesis submitted to the University of Pittsburgh by the

first author in partial fulfillment of requirements for the Ph. D. degree.
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