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1. INTRODUCTION

E. T. Bell [2] has defined a set of generalized Stirling numbers of the

second kind S, (n,r); the numbers S;(n,r) are the ordinary Stirling numbers

k
of the second kind. Letting A(m) denote the number of odd Si(n + 1, 2r + 1)

Carlitz [ 3] has shown that

.00 oo +1
Sy n n
3 A)xD = 1 (1 +x®2 o+x2 ),
n=0 n=o

In Section 3, we shall determine the generating function for the number
of odd generalized Stirling numbers S,(n,r). Indeed we shall prove the fol-
‘lowing theorem.

Theorem. Let w() denote the number of odd generalized Stirling num-

bers S, + r, 4r); then

o0 o0
Y o = 1o+ w2
n=o n=0

Later Carlitz [4] obtained the generating function for the number of
Siln, r) that are relatively prime to p for any given prime p. It would be of
interest to obtain such a generating function for the generalized Stirling num-
bers Sk(n, r). At present the apparent difficulty with the method used herein
is that, except for the case k = 2 and p = 2, the basic recurrence (2.4) for
Sk(n, r) with k> 1 is a recurrence of more than three terms, whereas for
the cases that have been solved we had a three-term recurrence. In Section4,
we shall discuss this problem for the numbers S,(n, r) and the prime p = 3;

several congruences will also be obtained for this case.
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2. PRELIMINARIES

The numbers Sk(n, r) maybe defined by introducing an operator 7 which
transforms t° into (et - 1™ Powers of 7 are defined recursively as

follows:

(2.1) Tt =1 t) ,

n

where u is a positive integer. We shall also define 79" = t", The general-

ized Stirling numbers are then defined by

00 n
, kr _ Z t
(202) Tt = 7! £ Sk(n, I‘) ;1—!

Hence Si(n,r) is the ordinary Stirling number of the second kind (see [5,
pp. 42-43]) and Syfn,r) = 8{n,r), the Kronecker delta. From (2.1) and (2.2)
we can readily see [ 2, p. 93] that

n
2.3) Sy 1) = ;sjm, 08, (1) .

Hence the numbers Sk(n, r) can be derived from the ordinary Stirlingnumbers
of the second kind by repeated matrix multiplication (see [ 5, p. 34]).

Becker and Riordan [ 1] have studied some of the arithmetic properties
of these numbers; in particular, they obtained for Sk(n, r) the period modulo
p, a prime. Inthe same paper they derived the following basic recurrence

modulo p (equation (5.4)):

e s@in s X ¥ (S - 1) 5,00, 08,0+ 1,7)
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3. PROOF OF THEOREM

For p = 2 we have from (2.4) that
Son + 4,1r) = Syln + 1,1) + Sy, r - 4) (mod 2)

Hence if we let
n
(3.1) 8,x) = Z Sy, 1)x"
=0

it follows that
: 4 =
(3.2) Sn+4(x) - Snﬂ(x) + x Sn(x) = 0 (mod 2)
Let oy, ay, a3, and a4 be the roots of the equation

yi+y+xt = 0

in F[y], where F = GF(2,x), the function field obtained by adjoining the
indeterminate x to the finite field GF(2). Also let

_ n
(3.3) ¢, (x) = Zozj

=t

Then from the definition of the a's we see that
¢x) = di(x) = Px) = Pyx) = 0, P3(x) = 1
Moreover

(3.4) ¢y = ¢ 00 +xl$ &) ;

hence
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¢5(X) = O, (be(X) =1.

Now put
35 S = @rxt Do &)+ Kb+ xG ) P )
Then
Six) =1 S,x) = x?
Six) = x §3(X) = x5 + x + 2

Referring to the table at the end of the paper we see that by (3.1)

Sn(x) = Sn(x) (mod 2)
for n = 0,1,2, and 3. Therefore we see from (3.2), (3.4), and (3.5) that
(3.6) Sn(x) = Sn(x) (mod 2)

for all non-negative integers n.

From (3.3) we have with a little calculation that

0 4

n 1
60t = D0 757
= :

3
1+ 3+ x4t

n=0

1
M8
T
™
=
N
Y

therefore

k
(3.7) ¢ (x) = <4(n-3k-3)
" % <n - 3k - 3) :
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Combining (3.1), (3.5), (3.6) and (3.7) we have

n
E Sy, T)x" EZ (n _k31_< } 1) <n-sk)
=0

k
AN k 4(n-3k-3) k 4(n—3k-1)
+x41-;<n_3k_3>x +Zk: n-3sk-1)%
2 k a(n-3k-2) , .3 k 4(n-3k-3)
+X4];J<n—3k-2)x +sz:<n—3k—3x
(mod 2)

Comparing coefficients we see that

Sama) = (;71) G -n-sred
59 Sy, 4j + 1) = (;") G =n-8r-3 or n-3r-1)
) S,(n, 4j + 2) = (f) G =mn-3r-2)

Sy, 4j + 3) = (Jr) G =n-3r-3 ,

where the modulus 2 is understood in each congruence.

Let ()j(n) denote the number of odd S,(n,k), 0 =k =n, with
k =z j (mod4) (G = 0,1,2,3) .
By the first congruence in (3.8) we see that
Soln + 1, 4j+4) = <;‘> (mod2) (j = n-3r-3) ,
and hence
(3.9) Gyln +1) = 63(n) .

Similarly since

Syn + 2, 4j+4) = (Jr) (mod 2) (j=n-3r-2) ,
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it follows that
(3.10) Goln + 2) = 6,(n)
In a like manner we obtain

01(11) = 03(11) -+ 02(?(1 + 1)
= @yln + 1) + Gpln + 3) ;
the second equation follows from (3.9) and (3.10). Since all Bj(n) may be
expressed in terms of @y(n) it will suffice to determine the generating func-

tion for @y(n) alone.
Now by (3.8)

Sy(2n, 4j) = (j _rl) (mod 2) (j = 2n- 3r - 3)

From this it follows that

Sy(2n, 4j) = 0 (mod 2)
unless

j =r+1 (mod 2) .

Hence if we let

r=2r+s, j-1=2"+s (s=20,1 ,
then

S,(2n, 4j) = G’,) (mod 2) (j' = n - 31" - 28 - 2),

and therefore
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(3.11) 0y(2n) = 6,(0) + O3(n - 1)

Otn + 2) +0yn) .

Similarly, since

S,(2n + 1), 4j)

(J._r1>(mod2) G =2n-3r-2) ,

we have

Syn+1,4j) = 0 (mod 2)
unless

r=j=1 (mod 2
Letting
r=2rr+1, j=2j'+1
we get
Sy(2n + 1,4§) = (f,) (mod 2) (' = n-3r' - 3) .
Therefore
(3.12) B8y@2n + 1) = 83tn) = Hptn + 1) .
If we let

Il

wn) Gpn + 4)
we obtain from (3.11) and (3.12) that

w{2n) = wh) + ol - 2)
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and

w@n +1) = wh - 1) .

Since 0((1) = 64(2) = 6,(3) = 0, we have w(m) = 0 for n < 0, and these

equations for w(n) are valid for all n = 0,1,2,°°* , Hence we have

o6 o0 e
Z wn)x" = Z w(2n)x? + Z w(@n + 1)x20HL
n=0 n=0 n=0
[o's} (0.}
= Z w@)x + Z wh - 2)x + Z wh - 1)xtt
n=0 n=o n=0
[0 o]
= (1 +x° +x%) E wn)x2D
n=0
) n .
= 0@+ +x27%,
n=0

and the theorem is proved.

From this generating function we see that w) also denotes the number

of partitions
n=my+nge 2 +mny. 2% +nge 25 + e (nj:0,3,4).,

4, THE CASE p = 3

We shall now consider the above problem for the prime p = 3. Since
the work is similar to that of Section 3, many of the details will be omitted.

From (2.4) we have

(4.1) Sytn + 9,3) = 28 + 3,)) + 2S5 + 1,j) + Sy, j - 9  (mod 3) .

Therefore letting
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n .
(4.2) 8,6 = ]z:% Sy, x
we have

4.3) Sn +9(X) = 2Sn+3(x) + 28 +1(X) + X9Sn(x)

(mod 3) .

Let @y, ay, <2+, ag be the roots of the equation

vy ry - x°

in F[y], where F = GF(3,x). Then if

we see that

(4.9 B = Bt = -
Moreover

(*.5) b0 = X () - &
and hence

(4.6)  Pyx) = Pylx) = ---

If we let

4.7

i

Il

=0

9.
¢ & = Zalll s
j=t

= ¢7(X) =

n-+i

0,

= Pux) = Pilx) =

So(X) + SZ(X) + Sg(X)

Six) + Sq(x)
Spx) + Sg(x)

Ss_j (%)

belx) =1 .

® - &,

0, ¢14(X) = Pplx) = -1,

o, 8)
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and

8

(4.8) 5,00 = ) L0y )

i

it is clear from (4.3), (4.4), **°, (4.8) that

1l

(4.9) En(x) Sn(x) (mod 3) @ = 0,1,2,°°°),

As in Section 3 we see that

[0 o} e ]
Zd)n(x)tn = Z Y ¥ > (;‘)(ﬁ) (-1)Pxh
n=9 n=0 6k+s+r=n 2j+th=r

and hence

k k j _a_pk_oi
(4.10) b, (x) :zk: 1" ZJ:(J) (n_6kl_8_zj)xs(n 8-6k 23)0

By expanding (4.8), comparing coefficients and combiningterms we have,
for instance, from (4.2), (4.9), and (4.10) that

S0 +9, 9h +9) = 2 )™k (;‘)(ﬁ) (mod 3)
i

and

1l

Syn+8, 9h +8) = Z (_1)n+k (13&)(}31) (mod 3) ,
ik .

but

Syn + 8, 9h +6) =

1l
<
g
™
=
=]
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where the summations are over all nonnegative integers j and k such that
h = n - 6k - 2j. The numbers Sy, %h +j) for j = 0,1,--+,5 are more
complicated.

At this point the method employed in Section 3 seems to fail. As was
mentioned in Section 1, the apparent difficulty in this case is the fact that the
recurrence (4.1) is a four-term recurrence. If we consider the generalized
Stirling number Sz, r) and the prime p = 2 we again get a four-term recur-
rence; the development of the problem inthis case is very similar to our work

in the present section.

TABLE
Generalized Stirling Numbers of the Second Kind S,(, r)

r
n 1 2 3 4 5 6 7 8
1 1
2 2 1
3 5 6 1
4 15 32 12 1
5 52 175 110 20 1
6 203 1012 945 280 30 1
7 877 6230 8092 3465 595 42 1
8 4140 40819 70756 40992 10010 1120 56 1
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